HirosHIMA MATH. J.
41 (2011), 41-53

Estimation on inverse regression using principal components of
covariance matrix of sliced data

Tomoyuki AKITA

(Received June 3, 2010)
(Revised August 20, 2010)

ABSTRACT. Li (1991) introduced the so called sliced inverse regression (SIR) which
reduces the dimension of the input variable in regression analysis, without any model-
fitting process. Akita et al. (2009) proposed an improvement of SIR, called SIR, which
uses conditional covariate matrices. In this paper, developing the approach of PCA-
SIR, we propose yet another improvement of SIR, which we call PCA-SIR2. Simu-
lation results produced by SIR, PCA-SIR and PCA-SIR2 are compared.

1. Introduction

We consider regression problem with the response variate y and p-
dimensional covariate x = (xi,...,x,)". Li (1991) introduced the so called
sliced inverse regression (SIR) for the linear or non-linear model

y=f(ﬁ'{x,ﬂ§x,...,/)’}<x,8), (1)

where f(-) is an unknown link function and |, ...,y are unknown parameter
vectors in R?, and ¢ is the error, an unobservable random variable which is
independent of x. For p x p matrix 4, we write #[A] for the subspace of R”
spanned by the column vectors of 4. SIR enables us to estimate the basis of

B=2AB - Pkl

This space %4, which is the subspace of R” spanned by f,,..., S, is called the
effective dimension reduction space (EDR).

It should be noted that, within the framework of (1), we have various
popular regression models, such as the linear regression model

y=a+px+e, (2)
the single index model

y:h(ﬂ,xas)v (3)
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and the projection pursuit regression model

y=h(Bix) +ha(B5x) + - + hg (Byx) + & 4)

Let #(y) = E(x|y) — E(x) be the inverse regression curve. If the covariate
x is elliptically distributed, then SIR can be used to estimate 4. For, in this
case, we have

Sy = RZPy, -, 2Bk, (5)

where 2~ = Cov(x) and S, = {#(y) : y € Domain(g)} is the range of #.
We put 2, = Cov(y(y)). Let 4, i=1,...,p, be the eigenvalues of the
generalized eigenvalue problem

Zyyi = My (6)
and let y;, i=1,...,p, be the corresponding eigenvectors. If 4; > 0, then
yie‘-@[zl/zﬂlv"wzl/zﬁl(]v (7)

(see Li (1991)). In the estimation of the EDR space # via SIR, we calculate
an “estimator of p;” from samples. However, if f(z,¢) is an even function of
z, then E(x|y) =0, so that we cannot estimate % by SIR.

There are several methods for estimating 4. Among them are SIR, sliced
average variance estimation (SAVE) (Cook and Weisberg, 1991), graphical
regression (Cook, 1994, 1995), parametric inverse regression (Bura and Cook,
2001), partial SIR (Chiaromonte et al., 2002), ESAVE, (Zhu et al., 2007) and
PCA-SIR (Akita et al., 2009). In this paper, developing the approach of PCA-
SIR based on conditional covariance matrices, we propose yet another im-
provement of SIR which we call PCA-SIR2.

This paper is organized as follows. In section 2, we consider the sample
covariance matrices formed from sliced samples and explain the theoretical
background of PCA-SIR2. In section 3, we present the algorithm of PCA-
SIR2. Simulation results to compare SIR, PCA-SIR and PCA-SIR2 are given
in section 4. In section 5, we consider the convergence of estimators.

2. Theoretical background of estimation

Let {(yi,x;):i=1,...,n} be a set of data from model (1), .#, an interval
of R depending on he{l,2,...,5n}, I ={i:y; € 4}, and n, = #(I;). We
define the covariance matrix X, of the sliced data {y;},., by

iGI/,

. 1 & L 1 &
2y = n—h; Ly, (pi)(xi — %) (x; — %) with ¥, = n—h; Ly (yi)xi,  (8)
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where 1,4 is the indicator function of 4. We also define the sample covariance
matrix 2 by

3

N 1 n . ) 1 "
ZZ—Z(x,‘—fh)(x;ffh)/ with x:;;xi_ 9)

The next theorem concerns the eigenvectors of X~ 1/25,5-1/2,

THEOREM 1. Let H be a p x p orthogonal matrix whose column vectors
consist of the normalized orthogonal basis of %[Zl/zﬂh . ,Zl/zﬂK] and that of
its orthogonal complement. Then, as n — o0

. 4 0
2, — e HX'? in probability, (10)
0 I,k
where A = diag(oy1,...,0onk) with oy being the (i,i) entry of

EHE P (x—p)(x—p)'Z7'PH' | y e 7y,

We can prove Theorem 1 easily by using law of large numbers. The
implication of Theorem 1 is as follows:  From Theorem 1, we see that
the subspace spanned by K eigenvectors of X~ '/23,3-1/2 converges to
R(Z'V2B,,...,Z12B], and the subspace spanned by the remaining (p — K)
eigenvectors to its orthogonal complement. Let A, ..., 4y be the eigenvalues
of 27125, 512 and ilhl,...,ilhp the corresponding eigenvectors. Then K
eigenvectors, say, b, g by changing the numbers if necessary, converge
to the basis of 2[X'/2p,,...,2'2p,], and ilhKH,...,ilhp to the basis of the
orthogonal complement of Z[X 1/2,31,...,2 l/zﬂK]. Since this holds for any
he{l,2,...,n} and 2[Z'/?,,...,Z'2B,] does not depend on h, we have, for
hh'e{l,2,...;n}, i=1,2,...,K and j=K+1,K+2,...,p,

(hh,-,hhrj)2 —0 as n — oo,
o)
o2y
E (hpis byyj)” — 0 as n— 0.
h'#h j=K+1

From the observation above, we are led to the algorithm PCA-SIR2 described
in section 3. It enables us to find the basis of the EDR space 4.

3. PCA-SIR2

Given a set of data (y;,x;), i=1,...,n, our new method PCA-SIR2
proceeds in the following five steps:
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Step 1. Divide the range of y into # slices
Ih:{i5/h—13J’i</h}a hzlvzv"'a’/]
where —o0 =/ <1 <+ < {1 <4y = 0.

Step 2. Calculate covariance matrices 2 in (8) and 2" in (9).

Step 3. For h=1,2,...,n, let Ay = App =--- = A, be the eigenvalues
of matrix 223,212 and Ry, ..., hy, the corresponding nor-
malised eigenvectors. Calculate the following squared inner
products between eigenvectors of 2j and those of 2y,..., 25 1,
Zh+17...,2,72

(i byy)?, W e {1,2,....q\{h}, i, j=1,2,...,p.

Step 4. For each i =1,2,..., p, withih each slice h=1,2,...,7,

Sp 5 N2 TRy 2y a2

21 = (hyhin)”, 22 = (hyhi) v Zg=1p = (hyihyp)”,
into z{ <zy <.~ <z} ,, and calculate ¢ = Z;l?l)“’_m z}.
Let ¢;,...,c; be the K smallest values of ¢;’s. We use subscript
ir in Step 5.

Step 5. We consider Z[hy;,, ..., hy,| as the estimator of
Ay, 2By
Let 4 be p x (Ky) matrix given by
A= (b, .. kb, Ry Ry, ).

For the eigenvectors él,...7éK corresponding to the K largest

eigenvalues of 4A4’, output
ﬁ‘l/zéla s 7‘\?1/251(
as the basis of the EDR space 4.

4. Simulation results

In this section, we show some results of simulation studies which we

conducted to compare SIR, PCA-SIR, and PCA-SIR2. We adapt the criterion
proposed by Li (1991) to measure the distance between Z[f,,...,Bx] and

B, ...

Bl Let B=(B,,....Bx) and B= (B,,...,Bx). Then the squared
multiple correlation coefficient R?(B), which is the product of eigenvalues of

B'B(B'B)"'B'B(B'B)”', is employed to measure the distance between the

hyperplanes.

If K =1, then
0/ 2
RZ ﬁ — A(ﬁlﬂl) ]
) AR

From 1000 runs of the Monte Carlo simulation, we report means of RZ.
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Table 1. y= (;‘i’fx)3 +¢, n=100, normal

SIR SAVE ESAVE PCA PC2
2 0.970641 0.957759 0.217619 0.934050 0.051357
3 0.987819 0.985986 0.913249 0.975297 0.954613
4 0.991398 0.988077 0.952120 0.983929 0.985268
8 0.996129 0.958998 0.950359 0.992669 0.993622
12 0.997324 0.558445 0.939480 0.993599 0.994312
16 0.997810 0.071469 0.925421 0.992154 0.992863

Table 2. y = (fix)* +¢ n =200, normal

SIR SAVE ESAVE PCA PC2
2 0.985722 0.983108 0.206642 0.970314 0.035771
3 0.994223 0.994332 0.978660 0.988859 0.985630
4 0.996121 0.995853 0.985268 0.992773 0.994567
8 0.998345 0.997904 0.982537 0.997012 0.997480
12 0.998873 0.997872 0.978614 0.998004 0.998229
16 0.999089 0.996258 0.975286 0.998344 0.998457

Table 3. y=(fjx)* +¢ n =100, normal

SIR SAVE ESAVE PCA PC2
2 0.192511 0.981387 0.973642 0.901018 0.760304
3 0.185635 0.972527 0.969161 0.906328 0.909477
4 0.183586 0.968558 0.967148 0.840081 0.923895
8 0.217607 0.942713 0.949333 0.733058 0.915318
12 0.221793 0.903547 0.933142 0.609051 0.889294
16 0.222166 0.872368 0.917211 0.477671 0.849218

First, we consider the following models with K = 1:

(1) »y=(Bx) +e

) v=(Bx)’+e
In these models, the covariate x and the error ¢ follow the normal distributions
N(0,Is) and N(0,0.1), respectively, where I, is the p x p identity matrix. In
this simulation, we put #; = (1,—1,0,0,0)’, and the results are shown in Tables
1-4. In the tables, PCA and PC2 mean PCA-SIR and PCA-SIR2, respec-
tively. We see that the values of R? for PCA-SIR2 are very small when
H =2, so the method should not be used in this case. On the other hand, if
H > 3, then the values of R? for PCA-SIR2 are nearly equal to 1 as those for
other methods.
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Table 4. y= (;‘i’fx)2 +¢, n =200, normal

SIR SAVE ESAVE PCA PC2
2 0.202815 0.992029 0.990366 0.971826 0.826442
3 0.199905 0.988165 0.987506 0.971914 0.968792
4 0.197157 0.985882 0.985542 0.933977 0.960459
8 0.206676 0.979370 0.980238 0.928101 0.974716
12 0.238394 0.972510 0.975074 0.904689 0.975755
16 0.245747 0.967654 0.971526 0.858137 0.974453

Table 5. y = (B|x)+ (B5x)* +& n =100, normal

SIR SAVE ESAVE PCA PC2
2 0.548823 0.788497 0.629719 0.654998 0.409186
3 0.662408 0.818942 0.694473 0.663842 0.550517
4 0.665339 0.813094 0.758186 0.683578 0.556134
8 0.670205 0.685610 0.793902 0.683995 0.526532
12 0.668120 0.599823 0.781846 0.640539 0.509771
16 0.658361 0.553725 0.779070 0.601200 0.502736

Table 6. y = (B]x)> + (B5x)* +& n =100, normal

SIR SAVE ESAVE PCA PC2
2 0.367651 0.933492 0.905053 0.509906 0.557671
3 0.387267 0.919098 0.894192 0.544662 0.678187
4 0.374500 0.902262 0.886403 0.560528 0.667932
8 0.394949 0.812020 0.791434 0.570816 0.598108
12 0.395353 0.764159 0.737009 0.543973 0.544599
16 0.410187 0.711335 0.699161 0.522666 0.481134

Next, we considered the following models with K = 2:

(3) y=(Bix)+ (Bx)’ +e,

@) y=(Bix)+ (B +e
The covariate x and the error ¢ follow the normal distribution N(0,7;p) and
N(0,0.1), respectively. In this simulation, f, = (1,—1,0,...,0)" and 8, =
(0,—1,1,0,...,0), and the results are shown in Tables 5-8. We see that
SAVE and ESAVE,;, (ESAVE with parameter o = 1/2) have good behaviors
when K =2 and the covariate is normally distributed, with the behavior of
PCA-SIR2 is not so bad.

Finally, we consider some cases where the distribution of covariate is not
normal. We take the same models as (1)-(4) above but the distribution of
covariate x is replaced by a multivariate z-distribution. The error ¢ is normally
distributed. The results are shown in Tables 9-12. From the simulation
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Table 7. y = (ﬁfx)3 +¢, n =100, non-normal
SIR SAVE ESAVE PCA PC2
2 0.938578 0.555209 0.196973 0.754648 0.067951
3 0.956962 0.576702 0.645265 0.891007 0.604149
4 0.964734 0.451926 0.768416 0.933611 0.890786
8 0.973892 0.111958 0.755786 0.956693 0.974071
12 0.977530 0.047813 0.692849 0.957635 0.972764
16 0.979310 0.034598 0.640405 0.939672 0.959533
Table 8. y = (B/x)* +& n =200, non-normal
SIR SAVE ESAVE PCA PC2
2 0.965554 0.748075 0.192696 0.852529 0.055208
3 0.975228 0.785978 0.812536 0.939305 0.750028
4 0.979388 0.709462 0.886198 0.960360 0.950969
8 0.984761 0.333782 0.874620 0.976572 0.992109
12 0.987209 0.135501 0.828582 0.980614 0.994120
16 0.988560 0.064414 0.787917 0.982642 0.994590
Table 9. y = (f|x)* +¢ n =100, non-normal
SIR SAVE ESAVE PCA PC2
2 0.194276 0.973348 0.959292 0.826993 0.596467
3 0.203009 0.940863 0.940968 0.869197 0.831137
4 0.197529 0.910557 0.915456 0.834491 0.866139
8 0.222312 0.785917 0.810268 0.693930 0.801604
12 0.239064 0.685352 0.721137 0.546928 0.706295
16 0.257178 0.615964 0.658510 0.494763 0.588851
Table 10. y = (fjx)> +& n =200, non-normal
SIR SAVE ESAVE PCA PC2
2 0.204408 0.989556 0.987534 0.903803 0.659781
3 0.199815 0.978519 0.978429 0.949175 0.934868
4 0.204919 0.965646 0.966047 0.935784 0.943013
8 0.220897 0.905043 0.913564 0.874847 0.947013
12 0.243639 0.843446 0.862153 0.832493 0.943414
16 0.249150 0.783236 0.812710 0.774091 0.921320
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Table 11. y=(Bix) + (ﬁéx)2 +¢, n=100, non-normal

SIR SAVE ESAVE PCA PC2
2 0.540453 0.662824 0.622784 0.684377 0.430781
3 0.627499 0.673844 0.684804 0.676313 0.521725
4 0.623323 0.659906 0.701966 0.674850 0.517324
8 0.622478 0.583122 0.675519 0.649888 0.497773
12 0.622994 0.541763 0.645940 0.615523 0.464434
16 0.613880 0.514178 0.622011 0.563132 0.444411

Table 12. y = (fjx)> + (B5x)* +& n = 100, non-normal

SIR SAVE ESAVE PCA PC2
2 0.360737 0.880715 0.867530 0.514416 0.453818
3 0.377416 0.829433 0.829160 0.520488 0.557645
4 0.370769 0.794728 0.798521 0.524498 0.561269
8 0.379395 0.698324 0.707542 0.533072 0.488556
12 0.395061 0.638532 0.656351 0.523567 0.449569
16 0.399511 0.597496 0.616404 0.506230 0.409344

results, we see that when K =1 and the distribution of x is not normal, the
behaviors of SIR and SAVE are not so good, while those of PCA-SIR and

PCA-SIR2 are good.

5. Consistency

In this section, we consider an inner product of eigenvectors of
37125,5712 and £7125,, 712 to prove the convergence of f; when K = 1.

We consider the model

y=f(Bix,e),

ﬂl - (1707"'a0)l7

X~ ]V]’(Ov IP),

where f(z,¢) is an even function of z.

REMARK. The model

y= f(ﬁl/xv E)a

is reduced to the above one by a suitable affine transformation.

Suppose that the data (y;,x;) i =1,...,n, are given.

n 3 1 n
' m=> W(y),  ®m=—> lyy)x,
ar i=1 M4

X~ NP(”72)5

ell x,

As in section 2, we put

N 1 &
2p = az 1y (i) (i = X3) (i — X3,
i=1
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where 1,(-) = 1, , 4)(-). We consider the asymptotic variance of the eigen-
vectors of a multiple eigenvalue in the same way as Anderson (1963).

We introduce some notation. Let o, = E[x?|y € .,], where x| is the
first element of x. Let p; be an eigenvector corresponding to o;, and let
2;---,7, be a basis of the eigenspace corresponding to the eigenvalue 1.
Then X = diag(os, 1, ;). We put I'=(y,...,y,) and 4 =diag(a1, ).
Let di > --- >d, be the eigenvalues of >-125,5-12 and ¢; an eigenvector
corresponding to d; for i=1,2,...,p.

We consider the matrix 72123, -Y2. Since both 2 and X, have
asymptotic normal distributions,

NZIO ARG YD 3utley Sl o ¥ '

converges to a multivariate normal distribution with mean 0. FEigenvalues and
eigenvectors of I3~ 123,5 12T are di,...,d, and ey =TI"¢c,...,e, =1"c,,
respectively. Let D = diag(d;,...,d,) and E = (e;,...,e,). For uniqueness,
we take the eigenvector e; such that ¢; > 0. We put T'=1"2"1/23,5-12
and U= +/n(T —4). Then T = EDE’ holds.

We write

(5 ) vl l) (0 )
0 1, wy; Uxp ey Ex
d
D:diag(dl,dz,...,dp):< : )
D,

p1=/n(d, — o), Py =/n(Dy — I,_1), pP= (pl

flh=Vnep,  fo = Vney.
We are ready to state the next lemma.
LEMMA 1. We have, in probability, ey — 1, e, —0' and ey — 0, as

n— oo. The asymptotic distribution of E is the unique normalized Haar
measure on the group O(p —1) of (p—1) x (p—1) orthogonal matrices.

We refer to Anderson (1963) for the details of the proof of Lemma 1.
Here, we give an outline of it.
Since EE' =1I,, we have

FRANCEA

0 I,1) \ 0 EnE,
+1< 0 6’11fz/1+f1/2E2/2>+1W.
vin\ e fo; + Exfis 0 "
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Comparing the blocks, we get
2 =1-1y EnE;, =1, Ly
11 — n 11, 22L99 = Lp—1 n 22,

1 1
0 =ei fy, + fLEp, +—=wi, 0=eci1fo + Enfir Jr—nwzl-

i Vi
On the other hand, T can be expanded as
T=4+ ! U
T n
=E(4+ ! P|E
B Vi
NE
-\ 0 EnE,
+L ( pieqy anert fo) + fszz/2> +1M
Vi \aren for + Enfia EnPrE3, n
Hence,
/!
T:A—l(m’w“ 0 >
n 0 W
+L ( pieqy aneir fyy + fszz/z) +1M
Vi \ aperr for + En fis EnPrE;, no’
then

1 1
Uy = p1€121 +%(m11 —op), Uy = ExnPrE5, +7ﬁ(Mzz — W),

1 1
u, = apen for + fr1E2 +7ﬁm127 uy = opern for + Exfin +ﬁm12'

We see that Ej, is asymptotically orthogonal and the limiting distributions of
plefl and EnP,E}, are equal to those of u;; and U, respectively. We also
find that Exnf,, and —Exnf), are asymptotically equivalent, and the limit-
ing distribution of both coincides with that of (1/(g; — 1))u;>. So, we may
consider the asymptotic variance of Uy to derive the asymptotic distribution
of Ezz.
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Using the asymptotically normal random variables

1 n ([7)
= \/E{le; Ly(pi)xix] — thh}, Vi = (Uij ),
1 n 1 n
Z=vn ;Z L(yi)xie,  an=vn ;Z Lu(wi) = pn ¢
i=1 i=1

%y, and 212 can be expanded as

. 1 1 1
Sh=Zt e — (Vi — i 2 ),
: h+ﬁph( = qi /)+01’<\/ﬁ>

. 1 & 1
V=7 — W+0(—J,
2\/71; P\vn

whence 21/25,571/2 a5

NG

In the next Lemma, we list some of the expectations which we need later.

e s ! 3 1
SRS =y — {p/ Vi — anZ) — Z (ViZi + Zi Vk)} +0 (>
d k:

LemMA 2. Let 1 <h<k<wn, and i,j,l,m=>2, i# j Then
{Ph B—pn) (h=k) (0, (0)] _ {Ph(l —pn) (h=k)

J Ui Ujj ,
pipe (h# k) i) —PhPi (h # k)
h) (k h) (h
B { h # k Eloiv)1 =0, Elvv,)1=0,
1 - = k h 1 - h h = k
{ Dh) ) ’ Elgeqi] = {Pl( pn) ) 7

—PhPE h # k) —DhPk (h#k)

Elgwy] = 0.

We define W = (wlg-h)) by W = \/n(X"125,2712 - %,). Then w®
converges to normal random matrix with mean 0. From Lemma 2, we have,
for i,j > 2,

Ew{wt] = {2(ph = 1)/p Eh = k)

i Vi ) h#k)’
w )y [ (e =1)/pn (h=k)
E[wij Wi ]—{_2 h£k)

E[w@)/v;f)] = E[wf,h)w;,ﬁ)] =0.
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)

We see that the limiting marginal distribution of Uz(g is normal with

expectation 0, and the density of Uy, is proportional to

ap(—%(iiﬁ*‘}:lé>):eﬁ(—%ﬁdUn»ﬁ-
i=2

2<i<j

Thus, the limiting joint distribution of (Ex, P;) is given by
1
exp (— 5 (tr(E22P2E2/2>>2) |J(U22 — (Ezz, Pz))‘

= k(ps)exp(~ 5 () ) [T~ ),

i<j

where J(Uy; — (Ex, P;)) is the Jacobian which depends on only P, (See,
Muirhead (1982)). The distribution of 75 is the same as that of Q'7T>Q for any
orthogonal matrices Q. Hence the distribution of EQ is the same as that of E
except for the effect of ¢; > 0. This implies that the distribution of E is the
unique normalized Haar measure on O(p — 1).

If

Ph+ pr # 1, Ph+ pr +3papi # 1, (11)

then the asymptotic covariance matrix of joint distribution of W and W ®
becomes nonsingular. On the other hand, if (11) does not hold, then it
becomes singular. In particular, if # =2, then the asymptotic covariance
matrix becomes singular. Hence the estimation via PCA-SIR2 may fail if
n =2. In fact, the simulation results on R? for # = 2 in section 4 suggest that
this is the case. When # =2, which is the singular case, the eigenvectors
of 27125,5-12 are determined by the eigenvectors of >-125,3-Y2 1In the
nonsingular case, the two vectors are not bisected at right angle with prob-
ability one. So, let

o)

EW = (e, E®=(ef",. . ),

Cp
be the matrices of the eigenvectors of the A-th and k-th slices. Then, for
Lj=2,

h k — h k _
(el el =1+0,n7"), (e e!) = 0p(n"17),

and ((e,@)’e}]‘))2 has a non-degenerate distribution on [0,1]. Thus if n is
enough large, then the matrix 4 in step 5 of section 3 is made of eih)’s.
Thus, the estimator X'/2£, in PCA-SIR2 converges to f, in probability. In

general, the case K > 2, similar argument may be hold.
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If f(z,¢) is an odd function of z, then the asymptotic behavior of the
covariance matrix becomes very complex. We leave the problem of consis-
tency in this case open here.

Acknowledgement

The author is deeply grateful to his supervisor, Professor Hirofumi
Wakaki, for his continual guidance and valuable ideas and comments.

References

[1] Akita, T., Tanaka, S., Kawanishi, D., and Wakaki, H. (2009). An improvement method
of sliced inverse regression using principal component analysis. Journal of Statistics and
Application. Vol. 4 2-3 489-498.

[2] Anderson, T. W. (1963). Asymptotic theory for principal component analysis. Ann. Math.
Statist. 34 122-148.

[3] Bura, E. and Cook, R. D. (2001). Estimating the structural dimension of regressions via
parametric inverse regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 393-410.

[4] Chiaromonte, F., Cook, R. D. and Li, B. (2002). Sufficient dimension reduction in
regressions with categorical predictors. Ann. Statist. 30 475-497.

[5] Cook, R. D. (1994). On the interpretation of regression plots. J. Amer. Statist. 89 177-189.

[6] Cook, R. D. (1998). Regression Graphics. Wiley, New York.

[7] Cook, R. D. (2004). Testing predictor contributions in sufficient dimension reduction. Ann.
Statist. 32 1062-1092.

[8] Cook, R. D. and Weisberg, S. (1991). Discussion of “Sliced inverse regression for dimension
reduction,” by K. C. Li. J. Amer. Statist. 86 328-339.

[9] Duan, N. and Li, K. C. (1991). Slicing regression: a link free regression method. Ann.
Statist. 19 505-530.

[10] Li, K. C. (1991). Sliced inverse regression for dimension reduction. (with discussion). J.
Amer. Statist. Assoc. 86 316-342.

(11] Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. John Wiley & Sons,
New York.

(12] Zhu, L. X., Ohtaki, M. and Li, Y. (2007). On hybrid methods of inverse regression-based
algorithms. Comput. Statist. 51 2621-2635.

Tomoyuki Akita
Department of Mathematics
Graduate School of Science

Hiroshima University
Higashi-Hiroshima 739-8526, Japan
E-mail: d082905@hiroshima-u.ac.jp



