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ABSTRACT. The study deals with the theory of interior capacities of condensers in a
locally compact space, a condenser being treated here as a countable, locally finite
collection of arbitrary sets with the sign +1 or —1 prescribed such that the closures
of oppositely signed sets are mutually disjoint. We are motivated by the known fact
that, in the noncompact case, the main minimum-problem of the theory is in general
unsolvable, and this occurs even under very natural assumptions (e.g., for the New-
tonian, Green, or Riesz kernels in R”, n > 2, and closed condensers of finitely many
plates). Therefore it was particularly interesting to find statements of variational
problems dual to the main minimum-problem (and hence providing new equivalent
definitions to the capacity), but now always solvable (e.g., even for nonclosed,
unbounded condensers of infinitely many plates). For all positive definite kernels
satisfying Fuglede’s condition of consistency between the strong and vague (= weakx)
topologies, problems with the desired properties are posed and solved. Their solutions
provide a natural generalization of the well-known notion of interior equilibrium
measures associated with a set. We give a description of those solutions, establish
statements on their uniqueness and continuity, and point out their characteristic
properties. Such results are new even for classical kernels in R”, which is important
in applications.

1. Introduction

The article is devoted to further development of the theory of interior
capacities of condensers in a locally compact space. A condenser will be
treated here as a countable, locally finite collection of arbitrary sets with the
sign +1 or —1 prescribed such that the closures of oppositely signed sets are
mutually disjoint. For a background of the theory for condensers of finitely
many plates we refer the reader to [21]-[25]; see also M. Ohtsuka’s study [19],
where the condensers were additionally assumed to be compact. The reader
is expected to be familiar with the principal notions and results of the theory
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of measures and integration; its exposition can be found in [2, 3, 8] (see also
[10, 22] for a brief survey).

The theory of interior capacities of condensers provides a natural exten-
sion of the well-known theory of interior capacities of sets, developed by O.
Frostman [9], H. Cartan [4], and Vallée-Poussin [20] for classical kernels in
R” and later on generalized by B. Fuglede [10] for general kernels in a locally
compact space X. However, those two theories—for sets and, on the other
hand, condensers—are drastically different. To illustrate this, it is enough to
note that, in the noncompact case, the main minimum-problem of the theory of
interior capacities of condensers is in general unsolvable, and this phenomenon
occurs even under very natural assumptions (e.g., for the Newtonian, Green, or
Riesz kernels in R”, n> 2, and closed condensers of finitely many plates);
compare with [4, 10]. Necessary and sufficient conditions for the problem to
be solvable have been given in [23, 25]; see Sec. 5 below for a brief survey.

Therefore it was particularly interesting to find statements of variational
problems dual to the main minimum-problem of the theory of interior capacities
of condensers, but in contrast to the last one, now always solvable—e.g., even for
nonclosed, unbounded condensers of infinitely many plates. (When speaking
on duality of variational problems, we mean their extremal values to be equal.)

In all that follows, X denotes a locally compact Hausdorff space and
M = M(X) the linear space of all real-valued Radon measures v on X equipped
with the vague (= weakx) topology, i.e., the topology of pointwise convergence
on the class Cy(X) of all real-valued continuous functions on X with compact
support.

A kernel ik on X is meant to be an element from @(X x X), where @(Y)
consists of all lower semicontinuous functions ¥ : Y — (—o0,00] such that
Y =0 unless Y is compact. The energy and the potential of a measure v € 9
with respect to the kernel x are defined by

K(v,v) = jx<x, DA @)(x,y)  and  K(v) = jx(-, Dv(y),

respectively, provided the corresponding integral is well-defined (as a finite
number or +oo). Let &= &.(X) denote the set of all ve I with —o0 <
K(v,v) < 0.

In the present study we shall be concerned with minimal energy problems
over certain subclasses of &, properly chosen. For all positive definite kernels
satisfying Fuglede’s condition of consistency between the strong and vague
topologies on & (see Sec. 2), those variational problems are shown to be dual
to the main minimum-problem of the theory of interior capacities of condensers
(and hence providing some new equivalent definitions to the capacity), but now
always solvable. See Theorems 2, 3, 4 and Corollaries 11, 13 below.
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Their solutions provide a natural generalization of the well-known notion
of interior equilibrium measures associated with a set (cf. [10]). We give a
description of those solutions, establish statements on their uniqueness and
continuity, and point out their characteristic properties; see Sec. 8—11. The
results obtained hold true, e.g., for the Newtonian, Green or Riesz kernels in
R", n > 2, as well as for the restriction of the logarithmic kernel in R? to the
open unit disk.

2. Preliminaries: topologies, consistent and perfect kernels

Recall that a measure v > 0 is said to be concentrated on a set E < X if
the complement CE := X\E is locally v-negligible; or, equivalently, if E is v-
measurable and v = vg, where vg :=v|; is the trace of v upon E.

Let M"(E) be the convex cone of all nonnegative measures concentrated
on E, and 61 (E) :== M (E)NE. Also write M := M"(X) and &7 := &7 (X).

From now on, the kernel under consideration is always assumed to be
positive definite, which means that it is symmetric (i.e., x(x, y) = x(y, x) for all
x, y € X) and the energy x(v,v), v € I, is nonnegative whenever defined. Then
& forms a pre-Hilbert space with the scalar product

(v, n) = Jk(x, »d(vi @ v2)(x,p)

and the seminorm ||v|, := \/k(v,v); see [10]. A (positive definite) kernel is
called strictly positive definite if the seminorm ||v|| := ||v||, is a norm.

A measure ve & is said to be equivalent in & to a given vye & if
[lv —wo|| = 0; the equivalence class, consisting of all those v, will be denoted
by [vol,.

In addition to the strong topology on &, determined by the seminorm || - ||,
it is often useful to consider the weak topology on &, defined by means of the
seminorms v — |k(v, 1)|, we & (see [10]). The Cauchy-Schwarz inequality

e, < IVIHlells vned,

implies immediately that the strong topology on & is finer than the weak one.
In [10], Fuglede introduced the following two properties of consistency
between the induced strong, weak, and vague topologies on &*:
(C) Every strong Cauchy net in &% converges strongly to any of its
vague cluster points;
(CW)  Every strongly bounded and vaguely convergent net in & converges
weakly to the vague limit;
n [11], the properties (C) and (CW) were shown to be equivalent.
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DeriniTION 1. Following Fuglede [10], we call a kernel x consistent if it
satisfies either of the properties (C) and (CW), and perfect if, in addition, it is
strictly positive definite.

REMARK 1. One has to consider nets or filters in ™" instead of sequences,
since the vague topology in general does not satisfy the first axiom of countabi-
lity.  We follow Moore’s and Smith’s theory of convergence, based on the concept
of nets (see [16]; cf. also [8, Chap. 0] and [14, Chap. 2]). However, if X
is metrizable and countable at infinity, then "' satisfies the first axiom of
countability (see [10, Lemma 1.2.1]) and the use of nets may be avoided.

TaeoreM 1 (Fuglede [10]). A4 kernel i is perfect if and only if & is
strongly complete and the strong topology on & is finer than the vague one.

EXAMPLE. In R”, n =3, the Newtonian kernel |x — y|*™" is perfect [4].  So

are the Riesz kernels |x — y|*™", 0 <o <mn, in R", n>2 [5, 6], and the re-
striction of the logarithmic kernel —log|x — y| in R*> to the open unit disk
[15].  Furthermore, if D is an open set in R", n =2, and its generalized Green
function gp exists (see, e.g., [13, Th. 5.24]), then gp is perfect as well [7].

REMARK 2. As is seen from Theorem 1, the concept of consistent or perfect
kernels is an efficient tool in minimal energy problems over classes of nonnegative
measures with finite energy. Indeed, the theory of capacities of sets has been
developed in [10] exactly for those kernels. We shall show below that this
concept is efficient, as well, in minimal energy problems over classes of signed
measures associated with a condenser. This is guaranteed by a theorem on the
strong completeness of proper subspaces of &, to be stated in Sec. 12.

3. Condensers of countably many plates. Measures associated with a
condenser; their energies and potentials

3.1. Let I™ and I~ be countable (finite or infinite) disjoint sets of indices
ieN, the latter being allowed to be empty, and let / denote their union.
Assume that to every i€ [ there corresponds a nonempty set 4; = X.

DEFINITION 2. A collection A = (4;),,, is called an (I, 1~)-condenser (or
simply a condenser) in X if every compact subset of X intersects with at most
finitely many A; and

AiNAd;=¢  foralliel®, jel . (1)

The sets A;, iel*, and 4;, jel~, are said to be the positive and,
respectively, the negative plates of the condenser A. Note that any two equally
signed plates can intersect each other.
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Given I'" and I, let € = €(/",17) be the class of all (I, )-condensers
in X. A condenser A € ¢ is called closed or compact if all A;, i € I, are closed
or, respectively, compact. Similarly, we call it universally measurable if all the
plates are universally measurable—that is, measurable with respect to every
ve M. Next, A= (4;), ., is said to be finite if so is 1.

Given A = (4;),.;, write A := (4;);.;- Then, due to (1), A is a (closed)
(I'",I7)-condenser. In the sequel, also the following notation will be used:

A= UA,', A+ = U Ai7 A™ = U Ai-
iel iel* iel~

Note that 4™ and A~ might both be noncompact even for a compact A.

3.2. With the preceding notation, write

{+1 ifiel*,
o =
-1 ifiel".

Given A €€, let M(A) consist of all (finite or infinite) linear combinations

= Z il where u' e MT(4;).

iel

Any two u; and u, in M(A) are regarded to be identical (1, = ) if and only if
wl =gl for all ie I. Observe that, under the relation of identity in Mi(A) thus
defined, the following correspondence is one-to-one:

MA) 5 = (i) e [0 (40).

iel

We call ue M(A) a measure associated with A, and u', i €I, its i-coordinate.

For measures associated with a condenser, it is therefore natural to intro-
duce the following concept of convergence, actually corresponding to the vague
convergence by coordinates. Let S denote a directed set of indices, and let u,,
se S, and g, be given elements of the class M(A).

DEeFINITION 3. A net (u,), ¢ is said to converge to y, A-vaguely if
,u" — ,ué vaguely for all ie[.

Then M(A), equipped with the topology of A-vague convergence, and the
product space [],;.; M* (4;) become homeomorphic. Since M(X) is HausdorfT,
so are both M(A) and [[,., M"(4;) (see, e.g., [14, Chap. 3, Th. 5)).
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Similarly, a set < IMM(A) is called A-vaguely bounded if all its i-
projections are vaguely bounded—that is, if for every ¢ € Co(X) and every
iel,

sup |u'(p)] < o0
HES

LemMA 1. If & < M(A) is A-vaguely bounded, then it is A-vaguely rela-

tively compact.

ProoF. Since by [2, Chap. III, §2, Prop. 9] any vaguely bounded part of
M is vaguely relatively compact, the lemma follows from Tychonoff’s theorem
on the product of compact spaces (see, e.g., [14, Chap. 5, Th. 13]). ]

3.3. Since each compact subset of X intersects with at most finitely many
A;, for every g € Co(X) only a finite number of u'(p) (where p e M(A) is given)
are nonzero. This yields that to every ue M(A) there corresponds a unique
Radon measure Ru such that

Ru(p) = > oup'(p)  for all peCo(X);

iel

its positive and negative parts in Jordan’s decomposition can be written in the
form

Rut=> "y’ and  Ru =>4,
iel* iel~
respectively.  Of course, the mapping R : M(A) — i thus defined is in general
non-injective, i.e., one may choose u’ € M(A) so that u’' # u, while Ry’ = Ru.
(It would be injective if all the plates A4;, i € I, were mutually disjoint.) We
shall call u,u’ € M(A) R-equivalent whenever their R-images coincide.

LeMMA 2. The A-vague convergence of (u),cs to iy implies the vague
convergence of (Ru),.s 10 Ruy.

Proor. This is obvious in view of the fact that the support of any
¢ € Co(X) might have points in common with only finitely many A;. O

REMARK 3. Lemma 2 in general can not be inverted. However, if all the
sets A;, iel, are mutually disjoint, then the vague convergence of (Ru,),. to
Ry implies the A-vague convergence of (ug),.s t0 iy This can be seen by
using the Tietze-Urysohn extension theorem (see, e.g., [8, Th. 0.2.13]).

3.4. To define energies and potentials of linear combinations u e M(A), we
start with the following two lemmas, the former one being well-known (see

[10]).
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LemmA 3. Let Y be a locally compact Hausdorff space. If Y € d(Y) is
given, then the map v [ dv is vaguely lower semicontinuous on M*(Y).
LEMMA 4. Fix ue M(A) and y € (X). If [ dRu is well-defined, then
v aru=>"u v au 2)
iel
and [ dRy is finite if and only if the series on the right converges absolutely.

PrOOF. We can assume ¥ to be nonnegative, for if not, then we replace
by a function ¥’ > 0 obtained by adding to \ a suitable constant ¢ > 0, which
is always possible since a lower semicontinuous function is bounded from below
on a compact space. Hence,

ledRﬂ+> > ledﬂf for all N e N.
iel*t,i<N

On the other hand, the sum of g’ over all ieI* that do not exceed N
approaches Ru™ vaguely as N — oo; consequently, by Lemma 3,

+ ; i
jldeﬂ < Jlim - Z deﬂ.
ielT,i<N
Combining the last two inequalities and then letting N — oo, we get
|warut =3 [waw
ielt

Since the same holds true for Ry~ and 7~ instead of Ru™ and I, respectively,
the lemma follows. O

COROLLARY 1. If pu,py € M(A) and x € X, then

K(x, Ru) = ZCXK x, 1) (3)
iel

K(Ru, Ruy) =Y eonc(pt’, ) 4)
i,jel

each of the identities being understood in the sense that its right-hand side is well-
defined whenever so is the left-hand one and then they coincide. Furthermore,
the left-hand side in (3) or in (4) is finite if and only if the corresponding series on
the right converges absolutely.

Proor. Relation (3) is a direct consequence of (2), while (4) follows from
Fubini’s theorem (cf. [3, §8, Th. 1]) and Lemma 4 on account of the fact
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that x(x,v), where ve 9™ is given, is lower semicontinuous on X (see, e.g.,

[10])- O

DEerINITION 4. Given u,u; € M(A), we shall call x(-,u) :=x(-, Ru) the
potential of u and rx(u, 1) = k(Ru, Ruy) the mutual energy of u and p; (of
course, provided the right-hand side of the corresponding relation is well-
defined). For u = pu; we get the energy r(u,p) of w; ie., if x(Ru, Ry) is well-
defined, then

re(u, 1) == k(Ru, Ru) = Z ooy (p', w1l (5)

i,jel

COROLLARY 2. For neM(A) to be of finite energy, it is necessary and
sufficient that u' € & for all iel and

i 2
DI < o

iel

Proor. This follows immediately from the definition of x(y, u) in view of
the inequality 2rc(vi,v;) < ||[vi||> + |[v2]|* for vi,vs € &. O

REMARK 4. Observe that the series in (5) actually defines the energy of the
vector measure (u');., relative to the interaction matrix (oz,vocj),‘j o, compare with
[12] and [17, Chap. 5, §4]. However, our approach is essentially based on the
fact that, due to the specific interaction matrix, the same value can also be
obtained as the energy of the corresponding Radon measure Ryu.

REMARK 5. Since we make no difference between pe M(A) and Ru when
dealing with their energies or potentials, we shall sometimes call a measure
associated with A simply a measure—certainly, if this causes no confusion.

3.5. Let &(A) consist of all ueM(A) of finite energy r(u, ). Since M(A)
forms a convex cone, it is seen from Corollary 2 that so does &(A).

One of the crucial arguments in our approach is that &(A) can be treated
as a semimetric space with the semimetric

e — ﬂz”g(A) = [[Ruy — Reio ||, s € E(A); (6)

then &(A) and its R-image become isometric. The topology on &(A) defined
by means of the semimetric || - || := || - [|54) is called strong.

Two elements of &(A), u; and w,, are said to be equivalent in &(A) if
lle; — 1o]] = 0. Note that the equivalence in &(A) implies R-equivalence (i.e.,
then Ru; = Ry,) provided the kernel « is strictly positive definite, and it implies
the identity (i.e., then u; = w,) if, moreover, all 4;, i € I, are mutually disjoint.
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4. Interior capacities of condensers. Elementary properties

4.1. Let o be a set in the pre-Hilbert space & or in the semimetric space
&(A), an (I, 17 )-condenser A being given. In either case, let us introduce the
quantity

2. . 2
1] = inf [pv]|,

interpreted as +oo if # is empty. If ||#]|* < oo, then one can consider the
variational problem on the existence of 1= A(#) e # with minimal energy

121* = 12)1%

such a problem will be referred to as the #-problem. The # -problem is
called solvable if a minimizer A(A#) exists.
The following lemma is a slight generalization of [10, Lemma 4.1.1].

LEmMMA 5. Suppose H is convex and L= A(H) exists. Then for any
ve A,

by =207 < v = 12017 ()

Proor. Let # < &. For every he (0,1], the measure u:= (1 —h)A+ hv
belongs to .#, and therefore ||u||* > ||4||>. Evaluating ||x/|* and then letting
h— 0, we get x(v,2) =A% and (7) follows (see [10]).

Suppose now # < &(A). Then R# is a convex subset of &, while RA is
a minimizer in the R -problem. What has just been shown therefore yields
|[Rv — RA||* < ||Rv||* — ||RA||?, which gives (7) when combined with (6). []

We shall be concerned with the # -problem for various specific # related
to the notion of interior capacity of an (I*,I~)-condenser (in particular, of a
set); see Sec. 4.2 and Sec. 8 below for the definitions.

4.2. Fix a vector-valued function g = (g;),.;, where all g;: X — (0,00) are
continuous, and a numerical vector a = (g;);., with ¢; >0, iel. Given an
(I'",I7)-condenser A in X, write

M* (4, a1, 9;) = {V e M (4)) : Jgi dv = ai},

and let M(A,a,g) consist of all e M(A) with u' e M*(A4;,a;,9;) for all i.
Given a kernel x, also write

éa+(Ai7 ai, gl) = EIR+(14i7 ai, gl) n (’)@’ (’)@(Aa a, g) = %(Av a, g) N (g(A)
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DEerFINITION 5. We shall call the value

|
cap A :=cap(A,a,g) =———— 8
R T WATE N

the (interior) capacity of an (I'",I~)-condenser A (with respect to x, a, and g).

Here and in the sequel, we adopt the convention that 1/0 = +oc0. It
follows from the positive definiteness of the kernel that 0 < cap(A,a,g) < 0.
(See Sec. 4.4 and Sec. 4.5 below, providing necessary and sufficient conditions
for the non-degenerated case 0 < cap A < oo to hold.)

REMARK 6. [If I is a singleton, then any condenser consists of just one set,
say Ay. If, moreover, gy =1 and a; =1, then the notion of interior capacity
of a condenser certainly reduces to the notion of interior capacity of a set (see
[10]). We denote it by C(-) as well, ie., C(Ay) :=1/||67(41,1,1)||%

REMARK 7. In the case of the Newtonian kernel |x — y|™" in R®, the notion
of capacity of a condenser A has an evident electrostatic interpretation. In the
framework of the corresponding electrostatics problem, the functions g;, i€ l,
serve as a characteristic of nonhomogeneity of the conductors A;.

43. On € =€ *,I), it is natural to introduce a partial order relation < by
declaring A" < A to mean that 4] < A; for all iel. Here, A’ = (A4])
Then cap(-,a,g) is a nondecreasing function of a condenser, namely

iel*

cap(A’,a,g) <cap(A,a,g)  whenever A’ < A. 9)

Given A € €, denote by {K}, the increasing filtering family of all compact
condensers K = (K;);.; € € such that K < A.

Lemma 6. If K ranges over {K},, then

cap(A,a, g) = Jim cap(K,a, g). (10)

ProOF. We can assume cap(A,a,g) to be nonzero, since otherwise (10)
follows at once from (9). Then the set (A, a,g) must be nonempty; fix u, one
of its elements. Given K e {K}, and i € I, let x; denote the trace of x' upon
K;, ie., ug = ui. Applying Lemma 1.2.2 from [10], we conclude that

ng d:u :E%ngdﬂ[(v ZGI, (11)

Kl p!) = lim el i), il (12)
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Fix ¢ >0. It follows from (11) and (12) that for every iel one can
choose a compact set K = 4; so that
a

T e teit? 13
Igi dﬂ}(lp ( )

in2 i 2 -
a1 = Nl 1] < %72, (14)

Having denoted K” := (K?),_,, for every K € {K}, that follows K° we therefore

have [g; dug #0 and

iel>

. oid; i
HK ‘= 4]/11( € g<K7 a, g)a
,»ezl fgi dﬂ](

the finiteness of the energy being obtained from (14) and Corollary 2. Thus,

laxl® = 16K, a,g)||. (15)
We next proceed by showing that
2 a2
el = tim | (16)

To this end, it can be assumed that x > 0; for if not, then A must be finite since
X is compact, and (16) follows from (11) and (12) when substituted into (5).
Therefore, for every K that follows K, and every i e I we obtain

]l < ')l < [[Ru™ + Ru ||, (17)
1 — pll < &i?, (18)

the latter being clear from (14) because of r(uj,u' — uk) =>0. Also observe
that, by (5),

2 a2
el = llag ]l < >

i,jel

i a; g T,
w(p!, 1) = i e a, )
Joidisc [ g dug "%

<> [K(ui — e, 1) + < (i, 17— 1)
i,jel

+< ai : 4 1>K(ﬂ£,ﬂ£)].
fgi dﬂK fgj d,ul](
When combined with (13), (17), and (18), this yields

[ll® = llaxl?) < Me  for all K = Ko,

where M is finite and independent of K, and the required relation (16) follows.
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Substituting (15) into (16), in view of the arbitrary choice of u e &(A,a,g)
we get

2 . 2
> 3 .
16(A,a,g)||” > }gg\lé(K,a,g)ll

Since the converse inequality is obvious from (9), the proof is complete. []

Let £°(A,a,g) denote the class of all ze &(A,a,g) such that, for every
iel, the support S(u’) of u' is compact and contained in 4.

COROLLARY 3. The capacity cap(A,a,g) remains unchanged if the class
&(A,a,g) in its definition is replaced by £°(A,a,g). In other words,

€A, a,8)]* =|6°(A,a,g)|”.

PROOF. We can assume |&(A,a, g)||> to be finite, for otherwise the
corollary follows from &°(A,a,g) = &(A,a,g). Then, by (9) and (10), for
every ¢>0 there is Ke{K}, such that ||€(K,a,g)|*<|&(A a,g)’+e
Together with ||&(K,a,g)[* > [|6°(A,a,g)||> = ||€(A,a,g)|?, this completes the
proof. ]

4.4. Unless explicitly stated otherwise, in all that follows it is assumed that
cap(A,a,g) > 0. (19)

LemMA 7. For (19) to hold, it is necessary and sufficient that any of the
following three equivalent conditions be satisfied:

(1) &(A,a,g) is nonempty;

(il) S, Ivill> < oo for some v; € & (Ai, i, g5);

(i) Y/ 167 (Air @i, 90)|° < 0.

Proor. The equivalence of (19) and (i) is obvious, while that of (i) and
(i) can be obtained directly from Corollary 2. If (iii) holds, then for every
iel one can choose v; € & (A; ar,g;) so that ||vi||* < ||&F(4iai,g)||* +i72
and (ii) follows. Since (iii) is an immediate consequence of (ii), the proof is
complete. O]

COROLLARY 4. For (19) to be satisfied, it is necessary that
C(4;)>0  forall iel. (20)

If A is finite, then (19) and (20) are actually equivalent®.

!However, (19) and (20) are no longer equivalent if A is infinite—cf. Corollary 5.
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Proor. For Lemma 7, (ii) to hold, it is necessary that, for every i e/,
there exist a nonzero measure ve &7 (4;), which in turn is equivalent to (20)
according to [10, Lemma 2.3.1]. Since the former implication can be inverted
whenever A is finite, the proof is complete. O

Let g; inr and g; sup be the infimum and the supremum of g; over 4;, and let
Cinf ‘= 51'615 gi,inf, gsup = Sllélg) Ji sup-

COROLLARY 5. If 0 < ginr < 8gup < 0, then (19) holds if and only if

>t <
iel C(A’)
ProorF. Lemma 7 yields the corollary when combined with the relation
2 2
a: 2 as
———— <" ai,g)|I” < 57—,
giz.supC(Ai) l l g[%infc<Ai) (21)

which can be seen by reasons of homogeneity.

Indeed, to establish (21), we can certainly assume C(A4;) to be nonzero, for
otherwise Corollary 4 with I = {i} shows that each of the three parts in (21)
equals +co. Therefore, there exists 6; € §7(4;,1,1). Since

L a;l;
" [ gido;

>

€ g+(Ai7ai7gi)7

we get
2 502 2
al0:° = 671|017 = 97 i 167 (A i, 90) 117,

and the right-hand side of (21) is obtained by letting 6; range over &*(4;,1,1).
To verify the left-hand side, fix w; € §%(A4;,a;,9;). Then

0< aig,fslup < wi(X) <ag; i < 0.
Hence, w;/w;(X)e &7 (4;,1,1) and
2 - 2
llooil|* = a?g; Sipll6 ™ (Ai 1, DI

In view of the arbitrary choice of w; € &7 (4;,a;,g;), this completes the proof.
O

4.5. In the following assertion, providing necessary conditions for cap A to be
finite, it is assumed that g; ¢ > 0 for all iel.

LemMa 8. If cap(A,a,g) < oo, then there exists jel with C(A4;) < co.
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PrOOF. Suppose, on the contrary, C(4;) = oo for all ieI. Given ¢ > 0,
for every i el one can choose vi e §1(4;,1,1) with compact support so that
|lvi|| < éea;'i~2g;ins. Since then

oav!
ng, T cé(Aag

iel

and ||9]| <&, ;i72, we arrive at a contradiction by letting & — 0. O

The following assertion?, to be proved in Sec. 14, shows that, under proper
additional requirements, Lemma 8 can be inverted.

COROLLARY 6. Let x be perfect and either 1~ = & or the following
conditions both hold:

Zaig;ilnf < o0, (22)

iel

sup  x(x,y) < . (23)
xeA*t,yeAd-

If there exists jel such that A; is closed, C(A;) < oo, and gjwp < o, then

RemaARK 8. Corollary 6 remains valid if, instead of the boundedness of
gj, we require the following restriction on its growth: there exist rj € (1,0) and
1 €& such that g/ (x) < k(x,7;) for all x € A4;.

5. On the solvability of the main minimum-problem

Because of (19), we are naturally led to the &(A,a,g)-problem (cf. Sec.
4.1), i.e., the problem on the existence of /e &(A,a,g) with minimal energy

1211 =

&(Aa,g)|

the &(A,a,g)-problem may certainly be regarded as the main minimum-
problem of the theory of interior capacities of condensers. The collection
(possibly empty) of all minimizing measures A in this problem will be denoted
by Y(Aa,g).

If, moreover, cap(A,a,g) < co, then let us look at the &(A,acap A, g)-
problem as well. By reasons of homogeneity, both the &(A,acap A, g)- and

21t is in fact a corollary to Lemma 9, to be formulated in Sec. 7 below.
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the &(A,a,g)-problems are simultaneously either solvable or unsolvable, and
their extremal values are related to each other by the following law:

1

— = [|6(Aacap A, g)|>. (24)
1€(A, a,g)|l

Assume for a moment that A is compact. Since then v— [g;dv is
vaguely continuous on M*(4;), M(A,a,g) is A-vaguely compact. Therefore,
if A is additionally assumed to be finite, while x is continuous on A% x A,
then the energy |u||* is A-vaguely lower semicontinuous on &(A) and the
solvability of both the problems immediately follows (cf. [19, Th. 2.30]).

But these arguments break down if any of the above-mentioned three
assumptions is dropped. In particular, the class %i(A,a,g) is no longer A-
vaguely compact whenever A is noncompact. Moreover, it has been shown by
the author that, in the noncompact case, the problems are in general unsolvable
and this occurs even under very natural assumptions (e.g., for the Newtonian,
Green, or Riesz kernels in R”, n > 2, and finite, closed condensers).

In particular, it was proved in [23] that, if A is finite and closed, x is
perfect, and bounded and continuous on 4" x 4~, and satisfies the generalized
maximum principle (see [15, Chap. VI]), while ¢g; =g; for all i, j and
0 < gnr < 8gp < o0, then either of the &(A,a,g)- and the &(A,acap A, g)-
problems is solvable for any a if and only if C(4;) < co for all iel. If]
moreover, C(A4;,) = co for some i € I, then both the problems are unsolvable
for all a with g;, sufficiently large.

In [25, Th. 1], the last statement was sharpened. It was shown that if, in
addition to all the preceding assumptions, for all i # i,

C(Al) < 0 and A; ﬂAiO = Q,

while x(-,y) — 0 (as y — o0) uniformly on compact sets, then there exists
A;, € [0,00) such that the problems are unsolvable if and only if a; > 4.
Actually, 4;, = [ g dA"™, where / is a minimizer (it exists) in the auxiliary #-
problem with # := {ue &(A) : u' € 1 (A;,a;,9;) for all i #iy}.

6. Standing assumptions

In view of the results reviewed in Sec. 5, it was particularly interesting to
find statements of variational problems dual to the &(A,acap A, g)-problem
(and hence providing new equivalent definitions to cap A), but now solvable for
any (I'",1")-condenser A (e.g., even nonclosed or infinite) and any vector a.

We have succeeded in this under the following conditions, which—together
with (19)—will always be tacitly assumed: the kernel x is assumed to be
consistent and either I~ = ¢, or (22) and (23) both hold.
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REMARK 9. These assumptions on a kernel are not too restrictive. In
particular, they all are satisfied by the Newtonian, Riesz, or Green kernels in R",
n =2, provided the Euclidean distance between A+ and A~ is nonzero, as well
as by the restriction of the logarithmic kernel in R* to the open unit disk.

7. A-vague and strong cluster sets of minimizing nets

7.1. To formulate the results obtained, we shall need the following notation.
Denote by M(A,a,g) the class of all nets (y,),.; = §°(A,a,g) such that

}im\luzl\z =6(A,a,g)]. (25)
eT

This class is not empty, which is seen from (19) on account of Corollary 3.
Let .#(A,a,g) (respectively, .#'(A,a,g)) consist of all limit points of the

nets (4,),. € M(A,a,g) in the A-vague topology of the space 9M(A) (respec-

tively, in the strong topology of the semimetric space &(A)). Also write

M(A,<a,g):= {,ue‘JJE(A) : Jgi du' < a; for all iel}
and &(A,<a,g):=9M(A,<a,g)NE(A). Then the following lemma, to be

proved in Sec. 13 below, holds true.

LemMMA 9. For every (u,),.r € M(A,a,g), there exist its A-vague cluster
points; hence, M (A,a,g) is nonempty. Moreover,

M(A,a,g) < ' (A a,2)NE(A, <a,g). (26)
Furthermore, for every ye ./'(A,a,g),

. . 2:
tim I, — 7 =0, (27)

and hence 4'(A,a,g) forms an equivalence class in &(A).

It follows from (25)-(27) that ||Z||> = ||6(A,a,g)|* for all { e .#(A,a,g).
Also observe that, if A =K is compact, then .#(K,a,g) = (K, a,g), which
together with the preceding relation proves the following assertion.

CoroLLARY 7. If A=K is compact, then the &(K,a,g)-problem is
solvable.  Actually,

‘gp(K7a7g) = %(K7aag)' (28)

7.2. When approaching A by compact condensers K € {K},, we shall always

suppose all those K to be of capacity nonzero. This involves no loss of
generality, which is clear from (19) and Lemma 6. Then Corollary 7 enables
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us to introduce the (nonempty) class Mo(A,a,g) of all nets (k)gcx;,, Where
k€ ¥(K,a,g). Let .#)(A,a,g) consist of all their A-vague cluster points.

On account of Lemma 6, we have My(A,a,g) = M(A,a,g). Therefore,
the following assertion is an immediate consequence of Lemma 9.

COROLLARY 8. The class #y(A,a,g) is nonempty, and
%O(Aa a, g) < %(Av a, g) < %I(A7 a, g)

REMARK 10. Each of these three cluster sets, #y(A,a,g), /4 (A, a,g) and
M'(A,a,g), plays an important role in our study. However, if k is additionally
assumed to be strictly positive definite (hence, perfect), while A;, iel, are
mutually disjoint, then all these classes coincide and consist of just one element.

7.3. Also the following notation will be used. Given ye.#'(A,a,g), write

This equivalence class does not depend on the choice of y, which is seen from
Lemma 9. This lemma also yields that, for any (y,),.r € M(A,a,g) and any
ve .l (A 5a,g), Ru, — v in the strong topology of the pre-Hilbert space &.

8. Extremal problems dual to the main minimum-problem
Recall that we are keeping all our standing assumptions, stated in Sec. 6.

8.1. A proposition P(x) involving a variable point x € X is said to subsist
nearly everywhere (n.e.) in E, where E is a given subset of X, if the set of all
x € E for which P(x) fails to hold is of interior capacity zero (see, e.g., [10]).

If C(E) >0 and f is a universally measurable function bounded from
below n.e. in E, then we write

« in}fE” f(x) :=sup{q: f(x) = ¢ ne. in E}.

Then

f(x)=“inf” f(x) ne. in E,

xek

which can be obtained directly from the following known fact (see the corollary
to Lemma 2.3.5 in [10] and the remark attached to it).

LemMmaA 10 (Fuglede [10]). A countable union of U, N E with C(U,NE) =0
has interior capacity zero as well, provided these U, are universally measurable®.

3Whereas E is arbitrary.
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82. LetlI'=1I (A,a,g) denote the class of all Radon measures v € & such that
there exist real numbers c¢;(v), i € I, satisfying the relations

oairc(x,v) = ¢i(v)gi(x) n.e. in 4, iel, (29)
Zci(v) > 1. (30)
iel

REMARK 11. For any ve T, the series in (30) must converge absolutely.
Indeed, due to (19) and Corollary 3, there exists ue &°(A,a,g); then, by [10,
Lemma 2.3.1), the inequality in (29) holds yp'-a.e. in X. In view of [g; du' = a;,
this gives i(ou’,v) = c;(v) for all i e I.  Since, by Fubini’s theorem and Lemma
4, . k(ou',v) converges absolutely, the required conclusion follows.

We also observe that I’ (A,a,g) is convex, which can be seen from Lemma
10.
The following assertion, to be proved in Sec. 17 below, holds true.

THEOREM 2. Under the standing assumptions,
IT(A,a,g)|” = cap(A, a,g). (31)

If |I'(A,a,8)||* < o, then we shall be interested in the I'(A, a,g)-problem
(cf. Sec. 4.1), i.e., the problem on the existence of & e I'(A,a,g) with

lo)* = IF(A,a,g)|

the set of all those & will be denoted by % = @(A,a, g).

A minimizing measure & can be shown to be unique up to a summand of
seminorm zero (and, hence, it is unique whenever the kernel under consideration
is strictly positive definite). Actually, the following stronger result holds.

LemMma 11. If @ exists, then ?(A,a,g) forms an equivalence class in &.

PrOOF. Since I is convex, Lemma 5 yields that % is contained in an
equivalence class in &. To prove that @ actually coincides with that equiv-
alence class, it suffices to show that, if v belongs to I", then so do all measures
equivalent to v in &. But this follows at once from Lemma 10 and the fact
that the potentials of any two equivalent in & measures coincide n.e. in X (see
[10, Lemma 3.2.1]). ]

8.3. Assume for a moment that cap(A,a,g) is finite (cf. Sec. 4.5). Then
Theorem 2, combined with (8) and (24), shows that the I'(A, a, g)-problem and,
on the other hand, the &(A,a cap A, g)-problem have the same infimum, equal
to the capacity cap A, and so these two variational problems are dual.
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But what is surprising is that their infimum, cap A, turns out to be
always an actual minimum in the former extremal problem, while this is not
the case for the latter one (see Sec. 5). In fact, the following statement on the
solvability of the I’ (A, a,g)-problem, to be proved in Sec. 17 below, holds true.

THEOREM 3. Under the standing assumptions, if, moreover, cap A < oo,
then the class 9(A,a,g) is nonempty and can be given by the formula

%(A,a,8) = M;(A,acap A, g). (32)

The numbers ¢;(®), i€ I, satisfying both (29) and (30) for &€ %(A,a,g), are
uniquely determined, do not depend on the choice of &, and can be written in
either of the forms

ci(@) = oifcap A] k(¢ ), (33)
(@) = mleap Al Tim w(sd, ), (34)
(e dl(Aacap A,g) and (p,),.s € M(A,acap A, g) being arbitrarily given.

The following two assertions, providing additional information about ¢;(®),
can be obtained directly from the preceding theorem.

COROLLARY 9. For every @ € ?(A,a,g), we have

A e EE O([d[K(X, Cb) .
ci(@) = xlgg,- o) Sfor all iel. (35)

i(
CoROLLARY 10. [Inequality (30) for & € 9(A,a,g) is actually an equality;
ie.,

> al@) =1. (36)

iel
REMARK 12.  Assume for a moment that C(A;) =0 for some jel. Then,
by Corollary 4, cap A =0. On the other hand, vy =0 belongs to I'(A,a,g)
since it satisfies both (29) and (30) with c¢;(vy), where c;(vo) =1 and c¢;(vo) =0
for all i # j. This means that identity (31) holds true in the degenerate case
C(A4;) =0 as well, and then %(A,a,g) consists of all ve & of seminorm zero.
What then, however, fails to hold is the statement on the uniqueness of c;(®).

Let I'.(A,a,g) consist of all veI'(A,a,g) for whom inequality (30) is in
fact an equality. By arguments similar to those that have been applied
above, one can see that I,(A,a,g) is convex, and hence all the solutions
to the minimal energy problem over this class form an equivalence class in
&. Combining this with Theorems 2, 3 and Corollary 10 leads to the following
assertion.
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COROLLARY 11. Under the standing assumptions,
||f*(A7 a, g)||2 = Cap(Av a, g)

If, moreover, cap(A,a,g) is finite, then the I'.(A,a,g)-problem is solvable;
actually, Mg(A,acap A,g) is the class of all its solutions.

REMARK 13. Theorem 2 and Corollary 11 (cf. also Theorem 4 and Cor-
ollary 13 below) provide new equivalent definitions to the capacity cap(A,a,g).
Note that, in contrast to the initial definition (cf. Sec. 4.2), no restrictions on the
supports and total masses of measures from the classes I (A,a,g) or r (A,a,g)
have been imposed; the only restriction involves their potentials. These defi-
nitions to cap(A,a,g) are new even for a finite, compact condenser;, compare with
[19]. They are not only of obvious academic interest, but turned out also to be
important for numerical computations; see [18].

8.4. Our next purpose is to formulate an s -problem such that it is still dual
to the &(A,acap A,g)-problem and solvable, but now with J# consisting of
measures associated with a condenser.

Let I'(A,a,g) consist of all e &(A) for whom both the relations (29) and
(30) hold (with u in place of v). In other words, let

I(Aag) = {nebA): Rue [(Aag)).
Observe that the class I'(A,a,g) is convex and
IT(Aa.8)[* > | T(A,a,8)] . (37)

We proceed by showing that inequality (37) is in fact an equality and that the
minimal energy problem, when considered over I'(A,a,g), is still solvable.

THEOREM 4. Under the standing assumptions,
IT'(A,a,g)||* = cap(A, a, g). (38)

If, moreover, cap A is finite, then the I'(A,a,g)-problem is solvable and the class
Y(A,a,g) of all its solutions w is given by the formula

Y(A,a,g) = ./'(A,acap A, g). (39)

PrOOF. We can assume cap A to be finite, for if not, then (38) is obtained
directly from (31) and (37). Then, according to Lemma 9 with a cap A instead
of a, the class .#'(A,a cap A, g) is nonempty; fix y, one of its elements. It is
clear from its definition and identity (32) that y € &(A) and Ry e %(A,a,g).
Hence, y € I'(A,a,g) and, therefore,

I7(A, 2, g)lI” = 121 = IT(A,a,8)”
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In view of (31) and (37), this proves (38) and, as well, the inclusion

AM'(A,acap A, g) = 9(A,a,g).

But the right-hand side of this inclusion is an equivalence class in &(A), which
follows from the convexity of I'(A a,g) and Lemma 5 in the same manner as
in the proof of Lemma 11. Since, by Lemma 9, also the left-hand side is an

equivalence class in &(A), the two sets must actually be equal. O

COROLLARY 12.  If A =K is compact and cap K < oo, then any solution to
the (K, a cap K, g)-problem gives, as well, a solution to the I'(K, a,g)-problem.

Proor. This is obtained from (39), combined with (26) and (28) for
acap K in place of a. O

REMARK 14. In case cap A < oo, fix we %(A,a,8) and e Y(A, a,g).
Since, by (32) and (39), x(x,w) = k(x,®) n.e. in X, the numbers c;(w), i€,
satisfying (29) and (30) for w instead of v, are uniquely determined and equal
ci(®). This implies that relations (33)—(36) hold, as well, for o in place of &.

RemaARK 15. In Theorems 3, 4 and Corollary 11, no restrictions on the
topology of A;, i €1, have been imposed. So, all the f(A, a,g)-, f*(A7a7g)-,
and I'(A,a,g)-problems are solvable even for a nonclosed, infinite condenser A.

REMARK 16. If I is a singleton and g, =1, then Theorems 2, 3, 4 and
Corollaries 11, 12 can be derived from [10]. Moreover, then one can choose
weYG(Aag) so that o(X)=a C(A4)), and exactly these w are called the
interior equilibrium measures associated with the set Ay [10]. However, this fact
in general can not be extended to a condenser A consisting of more than one
plate; that is, in general,

9(A,a,g)N&(Aacap A, g) = O,

which is caused by the unsolvability of the &(A,a cap A,g)-problem.

9. Interior equilibrium constants associated with a condenser

9.1. Throughout Sec. 9, it is always required that cap(A,a,g) < co. Due to
the uniqueness statement in Theorem 3, the following notion naturally arises.

DErFINITION 6. The numbers
Ci = Ci(Avavg) = Ci(d))a iEIa

satisfying both (29) and (30) for & € %(A,a,g), are said to be the (interior)
equilibrium constants associated with A.
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COROLLARY 13. The interior capacity cap(A,a,g) is equal to inf ic(v,v),

where v ranges over all ve & (similarly, ve &(A)) such that, for every iel,
oaik(x,v) = Ci(A, a, g)gi(x) n.e. in A;.

The infimum is attained at any @& € @(A, a, g) (respectively, w € 9(A,a,g)), and
hence it is an actual minimum.

Proor. This follows from Theorems 2, 3, 4 and Remark 14. O

9.2. Some properties of the interior equilibrium constants C;(A,a,g), iel,
have already been provided by Theorem 3 and Corollaries 9, 10. Also observe
that, if I is a singleton, then certainly C)(A,a,g) =1 (cf. [10, Th. 4.1]).

CoOROLLARY 14. Ci(-,a,8), i €I, are continuous under exhaustion of A by
the increasing filtering family of all compact condensers K < A.  Namely,

(A — lim C;(K .
Ci(A,a,g) im Ci(K,a,g)

Proor. Under our assumptions, 0 < cap K < o« for every K € {K},, and
hence there exists ix € ¥ (K,acap K, g). Substituting ix into (33) yields

Ci(K,a,g) = wi[cap K| k(Jg, /x). (40)

On the other hand, it follows from Lemma 6 that the net cap Alcap K]flﬂq(,
where K € {K},, belongs to the class M(A,acap A,g). Substituting it into
(34) and then combining the relation obtained with (40), we get the corollary.

O

COROLLARY 15.  Assume that, for some jel, C(A;) = oo and gjins > 0.
Then C;(A,a,g) <O.

ProOF. Suppose, on the contrary, that C; > 0. Given & € Q(A,mg), we
have ajajx(x,®) > Cigjinr >0 n.e. in 4;. Hence, according to Lemma 3.2.2
from [10], C(4)) < ajz||cb||2q72g]fi2nf < oo, which is a contradiction. ]

REMARK 17. Lemma 8, which has already been proved by elementary
arguments, can also be obtained as a consequence of Corollary 15. Indeed, if it
were true that C(A;) = oo for all i €1, then, by Corollary 15, the sum of C;,
where i ranges over I, would be not greater than 0, which is impossible.

10. Interior equilibrium measures associated with a condenser

As always, we are keeping all our standing assumptions, stated in Sec.
6. Throughout Sec. 10, it is also required that cap(A,a,g) < oco. Our next
purpose is to introduce a notion of interior equilibrium measures y, associated
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with the condenser A such that the characteristics obtained possess properties
similar to those of interior equilibrium measures associated with a set. Fu-
glede’s theory of interior capacities of sets [10] serves here as a model case.

10.1. If A =K is compact, then, as follows from Theorem 4, Corollary 12 and
Remark 14, any minimizer Ak in the &(K, a cap K, g)-problem has the desired
properties, and so yg might be defined by the formula

YK ‘= /'LK, where ;LK € y(K,a cap Kv g)

However, as is seen from Remark 16, in the noncompact case the desired
notion can not be obtained as just a direct generalization of the corresponding
one from the theory of capacities of sets. Having in mind that, similar to our
model case, the required distributions should give a solution to the I'(A,a, g)-
problem and be strongly and A-vaguely continuous under exhaustion of A by
compact condensers, we arrive at the following definition.

DEeFINITION 7. We shall call y, € §(A) an (interior) equilibrium measure
associated with the condenser A if there exist a subnet (Ky), g of (K)k k;, and
Jx, € ¥ (K;,acap K, g) such that the net (ik,),. g converges to y, both A-
vaguely and strongly. Let Z(A,a,g) denote the collection of all those y,.

Lemmas 6 and 9 enable us to rewrite the above definition in the following,
apparently weaker, form:

Q(Avavg) :'—%O(Avacap Aag) (41)

THEOREM 5. Z(A, a,g) is nonempty, A-vaguely compact, and it is contained

in an equivalence class in &(A). Furthermore,
P(A,a,8) = 9(A,a,g)NE(A, <acap A, g). (42)
Given y:=y, € Z(A,a,g), we have
I71* = cap A, (43)
oaic(x,y) = Cigi(x) n.e. in A, iel, (44)
where C; = Ci(A,a,g), i €I, are the interior equilibrium constants. Actually,

ae(vE 1
C[ — OC,K(]) ﬂy) _ lnf 2 alalK(xv y) . (45)
cap A xedi  gi(x)

In case I~ # (&, assume moreover that x(x,y) is continuous on A~ x A~, while
k(,y) =0 (as y — oo) uniformly on compact sets. Then, for every i€l,

waic(x,y) < Cigi(x) — for all xeS(y), (46)
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and hence
oaiic(x,y) = Cigi(x) ne. in A;NS(yH.

Also note that Z(A,a,g) is contained in an R-equivalence class in Mi(A)
provided the kernel x is strictly positive definite, and it consists of a unique
element y, if, moreover, all A4;, ie I, are mutually disjoint.

REMARK 18. As is seen from Theorem 5, the properties of interior equilib-
rium measures associated with a condenser are quite similar to those of interior
equilibrium measures associated with a set (compare with [10, Th. 4.1]). The
only important difference is that the sign < in (42) in general can not be omitted—
even for a finite and closed, though noncompact, condenser (cf. Remark 16).

REMARK 19. Like in the theory of interior capacities of sets, in general
none of the i-coordinates of y, is concentrated on A; (unless A; is closed).
Indeed, consider X = R", where n >3, k(x, y) = |x — y|>™", I = {1}, I~ = {2},
gi=g2=1, ai=ax=1, and let A ={x:|x|<r} and Ay ={x:|x| > R},
where 0 <r < R < oo. Then it can be shown that

YA = VA= [9+ - 97] cap Av

where 07 and 0~ are obtained by the uniform distribution of unit mass over the
spheres S(0,r) and S(0,R), respectively. Hence, |y,|(A4) = 0.

10.2. The purpose of this section is to point out characteristic properties of the
interior equilibrium measures and the interior equilibrium constants.

PropoOSITION 1. Let pe &(A) admit the properties
2
[lul|” = cap(A, a, g),

ok (g’ 1) )

azairc(x, 1) cap A

n.e. in A;, iel.

Then p is equivalent in &(A) to every y, € (A, a,g) and, for all iel,

arc(ul, p) : it (X, )
i A _HME LR« f »_ VO .
C ( A, g) Cap A xl?A,' gi(x)

Actually, there holds the following stronger result, to be proved in Sec. 19.

PROPOSITION 2. Let ve &(A) and B; € R, i€, satisfy the relations

oaic(x,v) = Bigi(x) n.e. in A, iel, (47)

cap A + ||v||2
_spar il 4
S = (48)
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Then v is equivalent in &(A) to every y, € Z(A,a,g) and, for all iel,

B = Ci(Aag) == inf "4

vedi gi(x) @)

Thus, under the conditions of Proposition 1 or 2, if, moreover, « is strictly
positive definite and all 4;, i € I, are mutually disjoint, then the measure under
consideration is actually the (unique) interior equilibrium measure y,.

11. On continuity of the interior capacities, equilibrium measures, and
equilibrium constants

11.1. Given A, =(A4}),.;, neN, and A in €, we shall write A, T A if
A, <Ay for all n and 4; =) _ Af for all iel.
Following [1, Chap. 1, §9], we call a locally compact space countable at

infinity if it can be written as a countable union of compact sets.

THEOREM 6. Let either g; ins > 0 for all i € I or the space X be countable at
infinity. If A,, ne N, are universally measurable and A, T A, then

cap(A,a,g) = lim cap(A,,a,g). (50)

Assume moreover that cap(A,a,g) is finite, and let y, := 7y, , ne€ N, denote an
arbitrary interior equilibrium measure associated with A,. If y is any of the
A-vague limit points of (y,),en (Such a y exists), then y is actually an interior
equilibrium measure associated with A and

li —9I* =0.
lim [y, —y[|* =0

Furthermore,

Ci(A,a,g) = 1in131 Ci(A,,a,g) for all iel. (51)
ne

Thus, if x is additionally assumed to be strictly positive definite (hence,
perfect) and all 4;, iel, are mutually disjoint, then the (unique) interior
equilibrium measure associated with A, approaches the (unique) interior equi-
librium measure associated with A both A-vaguely and strongly.

REMARK 20. Theorem 6 remains true if (A,),.n IS replaced by the
increasing filtering family of all compact condensers K such that K < A.
Moreover, then the assumption that either g;inr > 0 for all i € I or X is countable
at infinity can be omitted. Cf., e.g., Lemma 6 and Corollary 14.
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REMARK 21. If I is a singleton and g, =1, then Theorem 6 has been
proved by Fuglede (see [10, Th. 4.2]).

11.2. The rest of the article is devoted to proving the results formulated in
Sec. 7-11 and is structured as follows. Theorems 2, 3, 5, and 6 will be proved
in Sec. 17, 18, and 20. Their proofs utilize a description of the potentials of
measures from the classes .#'(A,a,g) and .#Zy(A,a,g), to be given in Sec. 15
and 16 by Lemmas 14 and 15, respectively. In turn, Lemmas 14 and 15 use a
theorem on the strong completeness of proper subspaces of &(A), which is a
subject of the next section.

12. Strong completeness of measures associated with condensers

12.1. Keeping all our standing assumptions on x, g, a, and A, stated in Sec. 6,

we consider &(A,<a,g) to be a topological subspace of the semimetric space
&(A); the induced topology is likewise called the strong topology.

THEOREM 7. If A is closed, then the semimetric space &(A,<a,g) is
complete.  In more detail, if (u,),.s < 6(A,<a,g) is a strong Cauchy net and
1 is one of its A-vague cluster points (such a p exists), then ye &(A,<a,g) and

lim |1, — | = 0. (52)

Assume, in addition, that the kernel is strictly positive definite (hence, perfect)
and all A;, i €1, are mutually disjoint.  If, moreover, (i), s converges strongly
to yuy € E(A), then actually uy e §(A,<a,g) and p, — uy A-vaguely.

REMARK 22. In view of the fact that the semimetric space 6(A,<a,g) is
isometric to its R-image, Theorem 7T has thus singled out a strongly complete
topological subspace of the pre-Hilbert space &, whose elements are signed
measures. This is of independent interest since, according to a well-known
counterexample by H. Cartan [4], the whole space & is strongly incomplete even
for the Newtonian kernel |x — y|*™" in R", n = 3.

REMARK 23. Let x be strictly positive definite (hence, perfect). If, more-
over, I= =, then Theorem 7T remains true for &(A) in place of &(A,<a,g)
(compare with Theorem 1). A question still unanswered is whether this is the
case if I™ and I~ are both nonempty. We can however show that this is
really so for the Riesz kernels |x — y|”™", 0 <a<n, in R", n =2 (c¢f [21, Th
1]).  The proof is based on Deny’s theorem [5] stating that, for the Riesz kernels,
& can be completed by making use of distributions of finite energy.

12.2. We start with the lemmas to be used below in the proof of Theorem 7.
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LemMa 12. (A, < a,g) is A-vaguely bounded; hence, it is A-vaguely
relatively compact.

Proor. Fix iel, and let a compact set K < A; be given. Since g; is
positive and continuous, the relation

a5 > jg,- dpl > @ (K) min gi(x),  where jie (A, <a.g),
X€E

yields
sup  p#'(K) < oo.

ueM(A,<a,g)
This implies that (A, < a,g) is A-vaguely bounded, and hence it is A-vaguely
relatively compact by Lemma 1. O

LemMa 13.  Suppose A is closed.  If a net (u,),. ¢ < 6(A, < a,g) is strongly
bounded, then its A-vague cluster set is nonempty and contained in &(A, < a, g).

PrOOF. According to Lemma 12, the A-vague cluster set of (), g is
nonempty, and it is contained in (A, <a,g) in consequence of Lemma 3.
Thus, it is enough to prove that each of its elements has finite energy.

To this end, observe that (Ru), ¢ is strongly bounded by (5). We
proceed by showing that so are the nets (Ru),.¢ and (Ry;) ie.,

ses»

sup || Rt ||> < oo. (53)
seS

Of course, this needs to be proved only when I~ # (¥; then, according to the
standing assumptions, (22) and (23) both hold. Since [g; du! < a;, we get

sug w(X) < agiye  for all iel. (54)
NS

Consequently, by (22),

sup Ruf(X) < Zaigi_,ilnf < .

ses iel

Because of (23), this implies that x(Ru;", Ry, ) remains bounded from above
on S; hence, so do |[Ru||* and |Ru; ||

Now, if (¢7)4cp is @ subnet of (x), ¢ that converges A-vaguely to some
u, then, by Lemma 2, (Ruj),.p and (Ruy),.p converge vaguely to Ru*
and Ru~, respectively. Applying Lemma 3 with Y =X x X and ¢ =, we
conclude from (53) that Rut and Ru~ are of finite energy, which yields
K(p, 1) < oo. O
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COROLLARY 16. If a net (p,),.s < &(A,<a,g) is strongly bounded, then,
for every i€l, ||,ué||2 and x(ul, ;) are bounded on S.

Proor. Fix iel. In view of (53), the required relation
sup [lu])® < oo (55)
seS
will be proved once we establish the inequality

S k(o) = € > —co (56)
/,jel*

with a constant C, independent of s. Since (56) is obvious when x > 0, one can
assume X to be compact. Then x, being lower semicontinuous, is bounded
from below on X (say by —c, where ¢ > 0), while A is finite. Furthermore,
then g, inr > 0 for every / €l and, therefore, (54) holds. This implies

k(ul 1) = —a/ajgzlinfg;ilnfc for all /,jel,

and (56) follows.

These arguments also show that x(u!, Ru) and r(u!, Ru;) are bounded
from below on S. Since these functions of s are bounded from above as
well, which is clear from (53) and (55) by the Cauchy-Schwarz inequality, the
required boundedness of (!, u,) follows. O

12.3. Proof of Theorem 7. Suppose A is closed, and let (y,),.¢ be a strong
Cauchy net in &(A,<a,g). Since such a net converges strongly to each of its
strong cluster points, (4,),.s can certainly be assumed to be strongly bounded.
Then, by Lemma 13, there exists an A-vague cluster point u of (u,),.s and

peé(A <ag). (57)

We next proceed by verifying (52). Of course, there is no loss of
generality in assuming (), to converge A-vaguely to u. Then, by Lemma
2, (Ruf),cs and (Ru; ),.s converge vaguely to Ru™ and Ru~, respectively.
Since, by (53), these nets are strongly bounded in &7, the property (CW) (see
Sec. 2) shows that they approach Ru™ and Ru~, respectively, in the weak
topology as well, and so Ru, — Ru weakly. This gives, by (6),

litg = w* = | Ry = Rul|* = lim w(Ruty — Rpe, Ry — Ru)
and hence, by the Cauchy-Schwarz inequality,

2 L.
letg = pall™ < llptg — pel i inf e — g2,
/eSS
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which proves (52) as required, because ||u, — 1,|| becomes arbitrarily small
when s,/ € S are both sufficiently large.

Suppose now that x is strictly positive definite, while all A4; iel, are
mutually disjoint, and let the net (u,), ¢ converge strongly to some x, € &(A).
Given an A-vague limit point u of (u),.s, we derive from (52) that
llto — 2|l = 0, hence Ry, = Ry since k is strictly positive definite, and finally
Lty = u because all the 4; are mutually disjoint. In view of (57), this means
that u, € (A, <a,g), which is a part of the desired conclusion. Moreover,
has thus been shown to be identical to any A-vague cluster point of (u) -
Since the A-vague topology is Hausdorff, this implies that y, is actually the
A-vague limit of (u,),.¢ (cf. [1, Chap. I, §9, n° 1, cor.]), which completes the
proof. ]

13. Proof of Lemma 9

Fix any (g,),.g and (v,),.; in M(A,a,g). It follows by standard argu-
ments that

li —v]?=0 58

Jim v =0, (58)

where S x T is the directed product of the directed sets S and T (see, e.g.,
[14, Chap. 2, §3]). Indeed, by the convexity of &(A,a,g),

2llE(As a, )l < ey + vell < el + [vell-
Hence, by (25),

im e = 46 (A g)]”
and the parallelogram identity, applied to Ru, and Ry, in &, yields (58).

Relation (58) implies that (u,), g is strongly fundamental. Thus, accord-
ing to Theorem 7, there exists an A-vague cluster point u of (u),.¢ and,
moreover, u € &(A,<a,g) and pu, — u strongly. This means that .Z(A,a,g)
and ./'(A,a,g) are both nonempty and satisfy inclusion (26).

It is left to prove that u, — y strongly, where y € .#'(A,a,g) is arbitrarily
given. But then one can choose a net in M(A, a, g), say (v,),.r, that converges
to x strongly, and repeated application of (58) gives immediately the desired
conclusion. W

14. Proof of Corollary 6

Note that, under the assumptions made in the corollary, all the require-
ments from Sec. 6 hold true, and so Lemma 9 is applicable.
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Fix (u,),.s € M(A,a,g); then, by Lemma 9, its strong and A-vague cluster
sets have some y, € &(A, <a,g) in common. Taking a subnet if necessary, we
assume that g, — g, both strongly and A-vaguely.

Let 4; be closed, C(4;) < oo, and let g; either be bounded or satisfy the
restriction on the growth, mentioned in Remark 8. Then, applying arguments
similar to those from [24] (see the proof of Lemma 13 therein), we get

Jgj dug = Eiergjg; dp],

and consequently g, # 0. Due to the strict positive definiteness of the kernel,
we thus have |[u*> #0. When combined with ||u* = ||€(A,a,g)||%, this
establishes the required inequality cap A < oo. O

15. Potentials of strong cluster points of minimizing nets

15.1. The aim of this section is to provide a description of the potentials of
measures from the class .#'(A,a,g). As usual, we are keeping all our standing
assumptions, stated in Sec. 6.

LemMMA 14. There exist n; € R, i €I, such that, for every ye ./'(A,a,g),

ogairc(x, y) = oingi(x) n.e. in Aj, iel, (59)
S o, = 6(A a8 (60)
iel

These n;, i€l, are uniquely determined and can be given by either of the
formulas

i :K(Civoa (61)

i = Elen:?l K(iu;nus)a (62)

where (e /(A a,8) and (u,),.s € M(A,a,g) are arbitrarily chosen.

Proor. Throughout the proof, we shall assume every net of the class
M(A,a,g) to be strongly bounded, which certainly involves no loss of gen-
erality.

Fix (e ./(A,a,g) and choose (ux,),.; € M(A,a,g) that converges A-
vaguely to {. We begin by showing that, for every ie [,

(', 0) = lim we(py, ). (63)
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Since, by Corollary 16, ||x/|| is bounded from above on T (say by M;), while
wul — ¢' vaguely, the property (CW) yields that u/ approaches (' also weakly.
Hence, for every & > 0,

k(¢ =y Ol <&
if e T is sufficiently large. Furthermore, by the Cauchy-Schwarz inequality,
el O) = refs )| = lre(ptf, RC— Ru)| < My|lC— |, teT.

Since, by Lemma 9, 4, — { strongly, the last two relations combined give (63).
We next proceed by proving that #;, i € I, defined by means of (61), satisfy
both (59) and (60), where y € .#'(A,a,g) is arbitrarily given. Indeed, since

Y a0 =17 = 16(A a,)]1%,
iel

identity (60) follows. To establish (59), we assume, on the contrary, that there
exist jel and a set E; — 4; of interior capacity nonzero such that

waji(x, x) < oy;gi(x)  for all xe E;. (64)

Then one can choose ve ™ with compact support so that S(v) = E; and
[ gj dv=a;. Integrating the inequality in (64) with respect to v gives

%li(%,v) — ;] < 0. (65)
To get a contradiction, for every h e (0,1] we write
ol =kl =) ifi=,
ul otherwise.
Clearly,
/1[ ::Zaiﬂ[iego(Avavg)v teT,
iel
and consequently
16(A 2, g)II1* < N7 = llw1® = 2o (g, 1f —v) + |l —vI|*. (66)

The coefficient of /4% is bounded from above on T (say by M), while,
according to Lemma 9, u, — y strongly. Combining (61), (63) and then
substituting the result obtained into (66) therefore gives

0 < Moh® + 2u5hic(x, v) — 7).

By letting here i — 0, we arrive at a contradiction to (65), which proves (59).
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To establish the uniqueness statement, consider some other #/, i € I, satis-
fying both (59) and (60). Then they are necessarily finite and, for every i,

O‘zal ( 7%) max{alnual}?z}gl( ) n.c. in Ai’ (67)

which is seen from Lemma 10. Since p! is concentrated on A4; and has finite
energy and compact support, [10, Lemma 2.3.1] shows that the inequality in
(67) holds u/-a.e. in X. Integrating it with respect to x' and then summing up
over all iel, in view of [g; dul = a; we have

k(s Z max{o;n;, 01! }, teT.

iel

Passing here to the limit as ¢ ranges over 7, we obtain

ll? = tim we(p ) = Y max{ain, ainy > Yoy = [|6(A,a,g)||”

iel iel

and, hence, max{o#;, a;n/} = a;n; for all i € I, since the extreme left and right
parts of this chain of inequalities are equal. Applying the same arguments
again, but with the roles of #; and 7/ reversed, we get ; =/, i € I, as claimed.

What is left is to show that #; can be written in the form (62), where
(4y)ses € M(A, a,g) is arbitrarily given. By Corollary 16, x(x!, p) is bounded
on S. Choose a cluster point 70 of {rx(u!,u,) : s € S}; then, in consequence of
Lemma 12, one can select an A-vaguely convergent subnet (u;),.p Of (&),cs
such that limgep r(ul, 1) =7n". However, what has already been proved
yields #? =#;. Since this means that any cluster point of the net x(u!, u,),
s € S, coincides with #;, the desired relation (62) follows. O

15.2. From now on, 7, =:%,(A,a,g), i eI, will always denote the numbers
appeared in Lemma 14. They are uniquely determined by relation (59), where
y € /'(A a,g) is arbitrarily chosen, taken together with (60).

This statement on uniqueness can actually be strengthened as follows.

COROLLARY 17. Given y € .#'(A,a,g), choose n/ €R, i€l, so that

> o = 6(A )|
iel

If, moreover, (59) hold for n] in place of n;, then n. =n;(A,a,g) for all iel.

Proor. This follows in the same manner as the uniqueness statement in
Lemma 14. ]

The following assertion is specifying Lemma 14 for a compact condenser
K.
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CoroOLLARY 18. Let A =K be compact. For every Jx € (K, a,g), we
have

ok (X, Ag) = oc,-;c()»]"(,/lK)g,-(x) n.e. in K, (68)
and hence
aix(x, k) = x(Ag, 2x)gi(x) Jx-a.e. in X. (69)

ProOF. It follows from (28) and (61) that #,(K,a,g) = x(Jg, Ak), which
leads to (68) when substituted into (59). Since Ay has finite energy and is
supported by K;, the inequality in (68) holds l{;-a.e. in X. Hence, (69) must
be true, for if not, then we would arrive at a contradiction by integrating the
inequality in (68) with respect to Ag. O

16. Potentials of A-vague cluster points of minimizing nets

In this section we restrict ourselves to measures & of the class .#y(A,a,g).
It is clear from Corollary 8 that their potentials admit all the properties
described in Lemma 14 (see also Corollary 17). Our purpose is to show that,
under proper additional restrictions on x, that description can be sharpened as
follows.

LemMmA 15. In the case where I~ # (J, assume moreover that k(x,y) is
continuous on AT x A=, while k(-,y) — 0 (as y — o) uniformly on compact
sets.  Given &€ My(A,a,g), for all iel we have

wiair(x, &) = (& E)gi(x)  ne. in A, (70)

ogain(x, &) < (&', E)gi(x)  for all xeS(E'), (71)
and hence

aiic(x,&) = k(& E)gi(x)  me. in A;NS(ED.

ProOF. By definition, one can choose ix € ¥ (K, a,g) such that & is an A-
vague cluster point of the net (4k ). k), Since, in consequence of Lemma 6,
this net belongs to M(A,a,g), from (61) and (62) we get

=x(ELE) = i e el
ur K(é vf) Kel{rllg},\ K(/“Kv K)’ L€
Substituting this into (59) with ¢ in place of y gives (70) as required.

To establish (71), we fix i (say ieI*) and xo e S(¢). Without loss of
generality it can certainly be assumed that

Ik — & A-vaguely. (72)
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Because of (69) and (72), there is xk € S(g) with the properties
XK — X0 as KTA, (73)
airc(xg, k) = k(g 2K) i (XK)-

Taking into account that, by [10, Lemma 2.2.1], the map (x,v) — x(x,v) is
lower semicontinuous on the product space X x 9" (where MM is equipped
with the vague topology), we conclude from what has just been shown that the
desired relation (71) will follow once we prove

K(xo, RE™) = lim x(xk, Rig). (74)

Ke{K},
The case we are thus left with is /- # ¢J. Then, according to our
standing assumptions, (22) holds, and therefore there is ¢ € (0, 00) such that
Rig(X) <¢q for all K e {K},. (75)
Since, by (72) and Lemma 2, RA, — RE™ vaguely, from Lemma 3 we also get
RE(X) <q¢. (76)

Fix ¢>0. Under the assumptions of the lemma, one can choose a
compact neighborhood W,, of the point xo in A and a compact neighborhood
F of W,, in X such that F,:= FN A~ is nonempty and

lk(x,y)| < q'e  for all (x,y)e W, xCF. (77)

In the rest of the proof, C and & denote respectively the complement and
the boundary of a set relative to A~ (where A~ is treated as a topological
subspace of X). Having observed that x|, .= is continuous, we proceed by

v\'O

constructing a function ¢ € Co(W,, x A~) that admits the properties

0
Ol xr. = Klw, . (78)
\go(x, y)| < 6]718 for all ()C7 y) IS on % CF* (79)

To this end, we consider a compact neighborhood V, of F, in A~ and
write

f= x on Wy x dF,,
. 0 on Wy, x 5V*.

Note that E := (W,, x 0F,)U (W,, x 0V.) is a compact subset of the Hausdorff
and compact, hence normal, space W, x V, and f is continuous on E. By
using the Tietze-Urysohn extension theorem, we deduce from (77) that there
is a continuous function f: W, x V, — [—eq',eq”"] such that f|, = f|.
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Thus, the function in question can be defined as follows:
Kk on W, xF,,
Q= f on Wy x (ViA\F),
0 on W, x Cv..
Furthermore, since ¢ is continuous on Wy, x 4~ and has compact support,
one can choose a compact neighborhood Uy, of xy in W, so that

lp(x,y) = p(xo,»)| <q~'e  for all (x,y)e Uy, x A~ (80)

Therefore, if ve I (A-) is an arbitrary measure with v(X) < ¢, then, in
consequence of (77)—(80), for all xe U,, we get

(e lgr)| < (81)
(oly) = [0l )= i) (), (82)
ot e ()] < (53)
o630 = ot i) < (54)

Finally, let us choose K, € {K}, so that for all K that follow Ky we have
xk € Uy, and

oo Ry - R )| <
such a Ky exists by reason of (72) and (73).

Applying now (81)—(84) to each of the measures RAx and RE™, which is
possible due to (75) and (76), for all K that follow K, we therefore obtain

(o Rig) — w0, RE)| < ik, Rigl ) — (s, RE )] + 26
< U(p(xk, PR () = [0 y>dR¢—<y>\ vy
< Umxx, ¥) = g, y)]dRzK<y>]

" Hq)m, D(Rig ~ RE)) +4s

< e+ e+ 4e = 6¢,

and (74) follows by letting ¢ — 0. The proof is complete. O
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17. Proof of Theorems 2 and 3

We begin by showing that
cap(A,a,g) < |[T'(A,a,g)[*. (85)

To this end, ||[I'(A,a,g)||* can certainly be assumed to be finite. Then there
are ve I'(A,a,g) and ue &°(A,a,g), the existence of u being clear from (19)
and Corollary 3. By [10, Lemma 2.3.1], the inequality in (29) holds x'-a.e. in
X. Integrating it with respect to #' and then summing up over all i e I, we get

K(Vnu) = ZC,'(V),

iel
hence x(v,u) =1 in consequence of (30), and finally
[

by the Cauchy-Schwarz inequality. The last relation, being valid for arbitrary
veI'(Aa,g) and ue &°(A, a,g), implies (85), which in turn immediately yields
Theorem 2 provided cap A = co.

We are thus left with establishing both Theorems 2 and 3 in the case where
cap A < oo. Then the &(A,acap A,g)-problem can be considered as well.
Taking (8) and (24) into account, we deduce from Lemmas 9 and 14 with a
replaced by acap A that, for every y e .#'(A,acap A, g),

Ix]I> = cap A (86)
and there are unique 7; € R, i eI, such that
ogairc(x, ) = 7,9:(x) n.e. in A4, iel, (87)
Sh=1. (88)
iel
Actually,
7i; = oi[cap A] " '77;(A,a cap A, g), iel, (89)

where 7;(A,acap A,g), i € I, are the numbers uniquely determined in Sec. 15.
Using Lemma 10 and the fact that the potentials of equivalent in &
measures coincide n.e. in X, we conclude from (87) and (88) that

Mz(Aacap A.g) = ['(A,a,g).
Together with (85) and (86), this implies that, for every o € .#;(A,acap A, g),
cap A = [|o|* = | (A, a,g)|* = cap A,

which completes the proof of Theorem 2.
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The last two relations also yield .#;(A,acap A,g) ?(A,a,g). As both
the sides of this inclusion are equivalence classes in & (see Lemma 11), they
must be equal, and (32) follows.

Applying Corollary 17 for acap A in place of a, we deduce from (32)
that ¢;(@), iel, satisfying (29) and (30) for v = e 9(A,a,g), are uniquely
determined, do not depend on the choice of @, and are actually equal to #;.
Therefore, substituting (61) and, subsequently, (62) for acap A in place of a
into (89), we get (33) and (34). This proves Theorem 3. O

18. Proof of Theorem 5

We start by observing that Z(A,a,g) is nonempty, contained in an
equivalence class in &(A), and satisfies the inclusions

I(A,a,g) « M(Aacap A,g) = .//'(A,acap A, g) N (A, <acap A,g). (90

Indeed, this follows from (41), Corollary 8, and Lemma 9, the last two being
taken for a cap A in place of a.

Substituting (39) into (90) gives (42) as required. Since, by (42), every
ye Z(A,a,g) is a minimizer in the I'(A,a,g)-problem, relations (43) and (44)
are obtained directly from Theorems 3 and 4 in view of Definition 6. To show
that C;(A,a,g) can be given by means of (45), one only needs to substitute y
instead of { into (33)—which is possible due to (90)—and to use Corollary 9.

Assume for a moment that, if 7= # ¢J, then the kernel (x, y) is con-
tinuous on 4+ x A, while (-, ) — 0 (as y — o) uniformly on compact sets.
To establish (46), it suffices to apply Lemma 15 (with a cap A in place of a)
to y, which can be done because of (41), and to substitute (45) into the result
obtained.

To prove that Z(A,a,g) is A-vaguely compact, fix (y,),.q < Z(A,a,g).
In consequence of (42) and Lemma 12, this net is A-vaguely relatively compact.
Let y, denote one of its A-vague cluster points, and let (y,),., be a subnet of
(yy);es that converges A-vaguely to y,. In view of (41), the proof will be
completed once we show that

v € Mo(A,acap A, g). (91)

According to (41), for every e T one can choose a subnet (Kj,), s of

the net (K)g(x;, and 4, € #(K,,acap A, g) for all 5, €S, such that (4;), g,
converges A-vaguely to y,. Consider the Cartesian product [[{S;: 1€ T}—
that is, the collection of all functions ¥ on T with (¢) € S, and let D denote

the directed product T x [[{S;: 1€ T} (see, e.g., [14, Chap. 2, §3]). For any
given (#,y) € D, write

Ky =Kyp and Ay y) = Ay
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Then the theorem on iterated limits from [14, Chap. 2, §4] yields that the
net (A(,ﬂ,/,))(tﬁ y)ep converges A-vaguely to y,. Since, as is seen from the above
construction, (K, y))(,y)ep forms a subnet of (K)g.,, . this proves (91).

O

19. Proof of Proposition 2

Consider ve &(A) and f; e R, i e I, satisfying both (47) and (48), and fix
arbitrarily y, € Z(A,a,g) and (y,),.r € M(A,acap A,g). Since u/ is concen-
trated on A4; and has finite energy and compact support, the inequality in (47)
holds y/-a.e. in X. Integrating it with respect to g/ and then summing up over
all iel, in view of (43) and (48) we obtain

2 2
(e, v) Z llyall” + 0I5 1eT.

But (4,),.7 converges to y, in the strong topology of the semimetric space
&(A), which is clear from (90) and Lemma 9 with acap A instead of a.
Therefore, passing in the preceding relation to the limit through 7', we get

2
v =7all" =0,

which is a part of the conclusion of the proposition.

In turn, the last relation implies that the right-hand side in (48) is in fact
equal to 1 and, as well, that ve .#'(A,acap A,g). Since, by Theorem 3, the
latter means that Rv e %(A,a, g), the claimed relation (49) follows. O

20. Proof of Theorem 6

To establish (50), fix u€ &(A,a,g). Then either g; i > 0 for all i, and
consequently #/(X) < oo, or X is countable at infinity; in any case, every A; is
contained in a countable union of u'-integrable sets. Therefore, by Proposi-
tions 4.14.1 and 4.14.6 from [8] (see also Appendix in [26]),

Jgidﬂizlimjgidﬂf;a iel,
neN "

©(u',pl) = lim w(py, ), Gjel

where ,uj;n denotes the trace of x' upon A4!. Applying the same arguments as
in the proof of Lemma 6, but now based on the preceding two relations instead
of (11) and (12), we arrive at (50) as required.

In view of (19) and (50), cap(A,,a,g), n € N, can certainly be assumed to
be nonzero. Suppose moreover that cap(A,a,g) is finite; then, by (9), so is
cap(A,,a,g). Hence, according to Theorem 5, there exists

Vn = yA,, € @(Ana a, g) (92)
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Observe that Ry, is a minimizer in the r (A,,a, g)-problem, which is clear
from (32), (39), and (42). Since, furthemore, I'(A, 1,a,8) < I'(A,,a,g), ap-
plication of Lemma 5 to 2 =1I'(A,,a,g), v=Ry,,,, and 2= Ry, gives

2 2 2
||yn+1 - yn” < ||yn+1|| - ”yn” .

Also note that ||yn||2, n e N, is a Cauchy sequence in R, because, as a result of
(50), its limit exists and is finite. Combined with the preceding inequality, this
proves that (7,),.n is @ strong Cauchy sequence in &(A).

Besides, since cap A, <cap A, (42) yields (y,),.x = 6(A,<acapA,g).
Hence, by Theorem 7, there exists an A-vague cluster point y of (y,),.n and,
moreover, y, — y strongly. Let (y,),., denote a subnet of the sequence
(y),en that converges A-vaguely and strongly to y. We next proceed by
showing that

y€Z(Aa,g). (93)

For every te T, consider the filtering family {K,}, of all compact con-
densers K, < A,. Then, by (92), there exist a subnet (K, ) . 5, of (K, (K} and
s, € S (K, acap K, g) such that (4),.g converges both strongly and A-
vaguely to y,. Consider the Cartesian product [[{S,: 7€ T}—that is, the
collection of all functions Y on T with y(¢) € S;, and let D denote the directed
product T x [[{S,:te T}. Given (t,) € D, write

Koy =Kypy and Ay = Ay

Then the theorem on iterated limits from [14, Chap. 2, §4] yields that the net
(A(t,9)) (1,y) e p converges both strongly and A-vaguely to y. Since (K y))(,y)ep
forms a subnet of (K)k.,,, this proves (93) as required.

What is finally left is to prove (51). By Corollary 14, for every n € N one
can choose a compact condenser K’ < A, so that

|Ci(An,a,8) — Ci(KY,a,g)| <!, iel

This K” can be chosen so large that the sequence obtained, (K"), _x, forms a
subnet of (K)g. (K} therefore, repeated application of Corollary 14 yields

lirrl\lI C,~(K2,a7 g) = Ci(A a,g).
ne

This leads to (51) when combined with the preceding relation. O
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