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Abstract. In this paper, we compute the fundamental group of the complement of

linear torus curves of maximal contact and we show that it is isomorphic to that of

generic linear torus curves. As an application, we give new two Zariski triples.

1. Introduction

Let C be a curve of degree d in P2. We are interested in two important

invariants of C: the Alexander polynomial DCðtÞ and the fundamental group of

the complement p1ðP2nCÞ. A plane curve CHP2 is called a curve of ðp; qÞ
torus type with p > qb 2, if p, q are positive integers that divide d and there

is a defining polynomial F of C of the form F ðX ;Y ;ZÞ ¼ Fd=qðX ;Y ;ZÞq �
Fd=pðX ;Y ;ZÞp where Fd=q, Fd=p are homogeneous polynomials of X , Y , Z of

degree d=q and d=p respectively. This is an important class of plane curves

of degree d. For a given curve of torus type, we consider the intersection

locus fFd=q ¼ Fd=p ¼ 0g ¼ fP1; . . . ;Pkg and the local intersection numbers nj :¼
IðFd=q;Fd=p;PjÞ for j ¼ 1; . . . ; k. By the Bézout theorem, we have the equalityPk

i¼1 ni ¼ d 2

pq
. We call I ¼ fn1; . . . ; nkg the intersection partition of C. Con-

sider the pencil CðtÞ:

CðtÞ ¼ fFðX ;Y ;Z; tÞ ¼ tFd=qðX ;Y ;ZÞq � ð1� tÞFd=pðX ;Y ;ZÞp ¼ 0g; t A C:

We assume that the curve fFd=q ¼ 0g is non-singular at each Pj for j ¼ 1; . . . ; k.

A singular point P A C is called inner if P A fFd=q ¼ Fd=p ¼ 0g. Otherwise, P is

called an outer singularity. We say that C is a tame torus curve if C has no

outer singularities. By the Bertini theorem (p. 137 in [3]), CðtÞ is a tame curve

for a generic t (namely except for a finite number of exceptional values of t 0s)

and the topology of ðP2;CðtÞÞ does not depend on the particular choice of a

generic t.
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We say that a curve C of ðp; qÞ torus type is a torus curve of a maximal

contact if fFd=q ¼ Fd=p ¼ 0g ¼ fx0g and fFd=q ¼ 0g is smooth at x0. In this

case, the singularity ðC; x0Þ is topologically equivalent to the Brieskorn-Pham

singularity Bd 2=q;q where we use the notation Bm;n :¼ fðx; yÞ A C2 j xm þ yn ¼ 0g.
Now we are interested in the Alexander polynomial DCðtÞ and the

fundamental group p1ðP2nCÞ. These two invariants are di‰cult to compute

in general but there is a convenient criterion for their computation. Suppose

there is a family of reduced curves CðsÞ, s A U HC of degree d (U is an open

neighborhood of the origin) such that for s0 0, the topology of CðsÞ is inde-

pendent of s but Cð0Þ has a bigger singularities. (See [7] for the definition.)

Then we have a degeneration principle: DCðsÞðtÞ jDCð0ÞðtÞ and p1ðP2nCð0ÞÞ is

mapped surjectively onto p1ðP2nCðsÞÞ.
Let Mðp; q; d;IÞ be the space of pairs of polynomials ðFd=q;Fd=pÞ such

that the intersection partition of fFd=q ¼ Fd=p ¼ 0g is equal to I ¼ fn1; . . . ; nkg
and the curve fFd=q ¼ 0g is smooth at each intersection points. To such a

pair, we associate a generic torus curve

CðtÞ ¼ ftFd=qðX ;Y ;ZÞq � ð1� tÞFd=pðX ;Y ;ZÞp ¼ 0g; t A C:

This moduli space Mðp; q; d;IÞ has a canonical topology and a structure of

an algebraic variety. (In fact, let PðnÞ be the a‰ne space of the homogeneous

polynomials of degree n in three variables X , Y , Z. Then we can identify

CðtÞ as a point ðFd=q;Fd=p; tÞ A Pðd=qÞ � Pðd=pÞ � C so that the moduli space

can be considered as an algebraic subset of Pðd=qÞ � Pðd=pÞ � C.) Putting

the degeneration principle into the consideration, we have the following basic

problems.

(1) Is Mðp; q; d;IÞ connected? (Or equivalently is the corresponding

moduli space irreducible?)

(2) For a given two partition I, I 0 such that I 0 is a finer partition than

I, and two generic curves C A Mðp; q; d;IÞ and C 0 A Mðp; q; d;I 0Þ,
is there a degeneration family CðsÞ, s A U such that CðsÞ ¼ C 0 and

Cð0Þ ¼ C?

(3) (Sandwich principle) Let C be a generic curve in Mðp; q; d;IÞ.
We consider two particular partitions: Ig ¼ f1; . . . ; 1g and Im ¼
fd 2=pqg. Are there families of degenerations CðsÞ, s A U and DðsÞ,
s A U with the following properties?

(a) CðsÞ A Mðp; q; d;IgÞ for s0 0 and Cð0Þ ¼ C.

(b) DðsÞ A Mðp; q; d;IÞ for s0 0, Dð1Þ ¼ C and Dð0Þ A
Mðp; q; d;ImÞ.

(c) Let Cg ¼ Cð1Þ A Mðp; q; d;IgÞ and Cm ¼ Dð0Þ A Mðp; q; d;ImÞ.

DCg
ðtÞ ¼ DCm

ðtÞ; p1ðP2nCgÞG p1ðP2nCmÞ:
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If these properties are satisfied, we have

DCðtÞ ¼ DCg
ðtÞ; p1ðP2nCÞG p1ðP2nCgÞ:

We call the above two partitions Ig and Im are called the generic partition and

the maximal partition. The generic partition Ig means geometrically that the

associated curves intersect transversely at each intersection point. On the other

hand, the maximal partition Im means that the associated curves intersect only

one point.

So far, there exist very few known results. In fact, we only know the

following.
� For the generic partition Ig, the moduli space Mðp; q; d;IgÞ is irre-

ducible and for a generic C A Mðp; q; d;IgÞ,

DCðtÞ ¼
ðtpq=r � 1Þrðt� 1Þ
ðtp � 1Þðtq � 1Þ

where r ¼ gcdðp; qÞ and the fundamental group is given by:

p1ðP2nCÞGGðp; q; d=pÞ:

The group Gðp; q; d=pÞ was introduced in [5]. It is known that

Gðp; q; d=pÞ has a cyclic group Z :¼ Z=aZ, a ¼ dr
pq

as the center and

the quotient group Gðp; q; d=pÞ=Z is isomorphic to ðZ=ðp=rÞZÞ �
ðZ=ðq=rÞZÞ � F ðr� 1Þ where F ðnÞ is the free group of rank n (Oka

[5]. See also [1, 2]).
� For the case of curves of ð3; 2Þ torus type of degree 6, the moduli spaces

Mð3; 2; 6;IÞ are irreducible for any intersection partition I and the

above properties (1), (2) and (3) hold true and we have isomorphisms:

DCðtÞ ¼ t2 � tþ 1; p1ðP2nCÞGZ=2Z � Z=3Z

for any generic C A Mð3; 2; 6;IÞ ([9]).
� Let N

d=p
d=p ðp; q; dÞ be the subspace of Mðp; q; d;ImÞ defined by the

following: ðFd=q;Fd=pÞ A N
d=p
d=p ðp; q; dÞ if and only if ðFd=q;Fd=pÞ A

Mðp; q; d;ImÞ and IðTx0 ;Fd=p; x0Þ ¼ d=p where x0 is the intersection

point fFd=q ¼ Fd=p ¼ 0g and fFd=p ¼ 0g is smooth at x0 and Tx0 is the

tangent line of fFd=p ¼ 0g at x0 ([1]). The moduli space N
d=p
d=p ðp; q; dÞ

is irreducible and the normal forms are explicitly obtained (Lemma 2 of

[1]). Take a generic curve C A N
d=p
d=p ðp; q; dÞ. Then

DCðtÞ ¼
ðtpq=r � 1Þrðt� 1Þ
ðtp � 1Þðtq � 1Þ :
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A typical such curve can be

C : ðyd=q þ y� xd=pÞq þ tðy� xd=pÞp ¼ 0; t A C�:

It is also shown that the moduli space Mðd=2; q; d;ImÞ ¼ N2
2 ðd=2; q; dÞ

is irreducible where q divides d (Lemma 2 of [1]).

We can ask the next question: Is Mðp; q; d;ImÞ is irreducible? If this is true,

the above result of [1] determines the Alexander polynomial DCðtÞ for any

generic C A Mðp; q; d;ImÞ.
In this paper, we consider the following special class of torus curves of

torus type ðpq; qÞ and of degree pq. The defining polynomial of C in the

a‰ne coordinates takes the following form:

C : f ðx; yÞ ¼ fpðx; yÞq � lðx; yÞpq ¼ 0

where lðx; yÞ is a linear form. We say such a curve C a linear torus curve of

type ðpq; qÞ. We associate to C the following two curves Cp :¼ f fp ¼ 0g and

L :¼ fl ¼ 0g. If C is a linear torus curve of type ðpq; qÞ, then C generically

consists of q smooth irreducible curves of degree p as

f ¼
Yq
j¼1

ð fp � z jlpÞ; where z :¼ exp
2p

ffiffiffiffiffiffiffi
�1

p

q

 !

and the inner singularities of C are situated at the intersection Cp VL. For the

generic partition Ig and C A Mðpq; q; pq;IgÞ, we call C a generic linear torus

curve. If C is a generic linear torus curve of type ðpq; qÞ, the fundamental

group is given by

p1ðP2nCÞGF ðq� 1Þ � Z=pZ

and the Alexander polynomial DCðtÞ is given by ([5, 1])

DCðtÞ ¼
ðtpq � 1Þq�1ðt� 1Þ

tq � 1
:

Let C be a tame ðpq; qÞ linear torus curve of a maximal contact with

degree pq. Then C has q components of degree p which intersect at one point

with intersection multiplicity p2 each other. In this paper, we compute that

fundamental groups of P2nC and C2nC and also the Alexander polynomial

DCðtÞ.
Our main result is the following:

Theorem 1. Let C be a tame ðpq; qÞ linear torus curve of a maximal

contact. Then the fundamental group p1ðP2nCÞ is isomorphic to that of generic

linear torus curves. Namely
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p1ðC2nCÞG hg1; . . . ; gq;o jo ¼ g1 . . . gq; ½gj;op� ¼ e; j ¼ 1; . . . ; qi

p1ðP2nCÞG hg1; . . . ; gq;o jop ¼ e;o ¼ g1 . . . gqiGFðq� 1Þ � Z=pZ

where ½gj;op� is the commutator of gj and op. The Alexander polynomial DCðtÞ
is equal to that of the generic curve. Namely it is given by the following:

DCðtÞ ¼
ðtpq � 1Þq�1ðt� 1Þ

tq � 1
:

We also show the irreducibility of the moduli space Mðpq; q; pq;IÞ for an

arbitrary intersection partition I (Proposition 2). Thus one of the important

application of Theorem 1 is the following.

Corollary 1. Let C be a generic curve in Mðpq; q; pq;IÞ for an

arbitrary partition I. Then the fundamental group p1ðP2nCÞ is isomorphic

to Fðq� 1Þ � Z=pZ and the Alexander polynomial DCðtÞ is given by the

following:

DCðtÞ ¼
ðtpq � 1Þq�1ðt� 1Þ

tq � 1
:

As a second application, we will give new two Zariski triples. See § 4.

2. Preliminaries

2.1. Van Kampen-Zariski Pencil method. Let C be a reduced plane curve of

degree d in P2. To compute the fundamental groups p1ðP2nCÞ and p1ðC2nCÞ,
we use the so-called van Kampen-Zariski pencil method. We recall it briefly

in the following ([7]). We fix a point B0 A P2nC and we consider the set of

lines L ¼ fLs j s A P1g through B0 and L is called a pencil. Taking a linear

change of coordinates if necessary, we may assume that B0 ¼ ½1 : 0 : 0� and Ls

is defined by Ls ¼ fY � sZ ¼ 0g in P2 where ðX ;Y ;ZÞ is the fixed homoge-

neous coordinates. Take Ly ¼ fZ ¼ 0g as the line at infinity and assume that

Ly intersects transversely C. We consider the a‰ne coordinates ðx; yÞ ¼
ðX=Z;Y=ZÞ on C2 ¼ P2 � Ly. Let FðX ;Y ;ZÞ be the defining homogeneous

polynomial of C and let f ðx; yÞ ¼ Fðx; y; 1Þ be the a‰ne equation of C. We

use the following notations:

Ca ¼ C VC2; La
s ¼ Ls VC2:

We identify Ls and La
s with P1 and C respectively and the pencil line La

s

is defined by fy ¼ sg in the a‰ne coordinates ðx; yÞ. We use x as the

coordinates of La
s .
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A pencil line Ls is called singular with respect to C if Ls passes through a

singular point of C or Ls is tangent to C. Otherwise, we call Ls is generic.

Hereafter we assume that Ly is generic and B0 is not contained in C.

Let Cy be the space of the parameters of the pencil with coordinates

y and let S ¼ fs A Cy jLs is a singular pencil lineg and suppose that S ¼
fs1; . . . ; skgHCy. We fix a generic pencil line Ls0 (so s0 A CynS) and put

La
s0
VCa ¼ fQ1; . . . ;Qdg where d is the degree of C. We take a base point

�0 A La
s0
nLa

s0
VCa on the real axis that is su‰ciently near to B0 and �0 0B0.

We take a large disk DR HLa
s0
such that La

s0
VCa HDR and �0 B DR. We may

assume that DR ¼ fðx; s0Þ A La
s0
j jxjaRg with a su‰cient large R. We orient

the boundary of DR counter-clockwise and we put X ¼ qDR. Join the circle

X to the base point by a line segment L connecting �0 and X along the real

axis. Let W be the class of this loop L � X � L�1 in p1ðLa
s0
nLa

s0
VC; �0Þ. We

take free generators g1; . . . ; gd of p1ðLa
s0
nLa

s0
VC; �0Þ so that gi goes around Qi

counter-clockwise along a small circle and we assume that o ¼ gd . . . g1, taking

a suitable ordering of g1; . . . ; gd if necessary.

Hereafter we denote a small lasso oriented in the counter clockwise

direction by a bullet with a path in the following figures. Thus �

indicates

m

.

The fundamental group p1ðCynS; s0Þ acts on p1ðLa
s0
nLa

s0
VC; �0Þ. We call

this action the monodromy action of p1ðCynS; s0Þ. For details, we refer to [7,

6]. Note that p1ðLa
s0
nLa

s0
VC; �0Þ is a free group of rank d with generators

g1; . . . ; gd . The result of the action of s A p1ðCynS; s0Þ on g A p1ðLa
s0
nLa

s0
VC; �0Þ

is denoted by gs.

Let M be the normal subgroup of p1ðLa
s0
nLa

s0
VC; �0Þ that is normally

generated by

R ¼ fg�1gs j g A p1ðLa
s0
nLa

s0
VC; �0Þ; s A p1ðCynS; s0Þg

and we call M the group of the monodromy relations. Put

MðsiÞ ¼ fg�1
j gsi

j j j ¼ 1; . . . ; dg:

Fig. 1. Ls0 VC
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Then it is easy to see that the group M is normally generated by 6k

j¼1
MðsiÞ.

By the definition, we have the relation

gj ¼ gsi
j RðsiÞ

in the quotient group p1ðLa
s0
nLa

s0
VC; �0Þ=M. We call RðsiÞ the monodromy

relation for si. Let j : La
s0
nLa

s0
VC ! C2nCa and i : C2nCa ! P2nC be the

respective inclusions.

Proposition 1 ([12, 11, 10]). Under the above situations, the following

hold.

(1) The canonical homomorphism ja : p1ðLa
s0
nLa

s0
VC; �0Þ ! p1ðC2nCa; �0Þ

is surjective and the kernel Ker ja is equal to M. Thus we have the

isomorphism:

p1ðC2nCa; �0ÞG p1ðLa
s0
nLa

s0
VC; �0Þ=M:

(2) ([4]) The canonical homomorphism ia : p1ðC2nCa; �0Þ ! p1ðP2nC; �0Þ
is surjective and the kernel Ker ia is generated by a single element

o ¼ gd . . . g1 which is in the center of p1ðC2nCaÞ and Ker ia ¼
hoiGZ. Thus we have an isomorphism

p1ðP2nC; �0ÞG p1ðC2nCa; �0Þ=hoi

3. Proof of Theorem 1

Let ðx; yÞ be a‰ne coordinates such that x ¼ X=Z; y ¼ Y=Z on C2 :¼
P2nfZ ¼ 0g.

3.1. Construction of curves. In this section, we construct a linear torus curve

C of a maximal contact and investigate its local properties. First we introduce

a plane curve Da ¼ fgaðx; yÞ ¼ 0g of degree p where the defining polynomial

gaðx; yÞ is defined by

gaðu; yÞ ¼ u� cðy; aÞ; cðy; aÞ ¼ y� ayp; a A C�:

Now we consider the p-fold cyclic covering ([6]) defined by

jp : C
2 ! C2; jpðx; yÞ ¼ ðu; yÞ; u ¼ xp:

To distinguish two a‰ne planes, we denote the source space of jp by C2
s

with coordinates ðx; yÞ and the target space of jp by C2
t with coordinates

ðu; yÞ. Hereafter we simply denote C2 instead of C2
s .

Let Ca :¼ j�1ðDaÞ be the pull-back of Da by jp and let faðx; yÞ ¼ gaðxp; yÞ
be the defining polynomial of Ca. Note that

faðx; yÞ ¼ xp � cðy; aÞ:
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By the defining equation of Ca, we see that the set of parameters that

correspond to the singular pencil lines for Ca is given by

Sa :¼ fy A Cy jcðy; aÞ ¼ 0g

(cf. [5]). Fix a complex number g such that gp�1 ¼ 1=a. Then we factorize

cðy; aÞ as follows:

cðy; aÞ ¼ ay
Yp�2

k¼0

ðgxk � yÞ; x :¼ exp
2p

ffiffiffiffiffiffiffi
�1

p

p� 1

 !
:

Then we can see that O ¼ ð0; 0Þ and Qk ¼ ð0; gxkÞ for k ¼ 0; . . . ; p� 2 are flex

points of Ca of flex order p� 2 and their tangent lines are nothing but the

singular pencil lines through these points and they are given by y ¼ 0 and

y ¼ gxk respectively.

Now we are ready to define a reduced curve C. Take q non-zero mutually

distinct complex numbers a1; . . . ; aq and put Dj ¼ fgaj ðx; yÞ ¼ 0g for j ¼ 1; . . . ; q

and put D ¼ 6q

i¼1
Dj. Then put Cj ¼ j�1

p ðDjÞ for ¼ 1; . . . ; q and finally we

define

C ¼ j�1
p ðDÞ ¼ C1 U � � �UCq:

The defining polynomials fjðx; yÞ and f ðx; yÞ of Cj and C respectively are

given as follows.

fjðx; yÞ ¼ xp � cðy; ajÞ; f ðx; yÞ ¼
Yq
j¼1

fjðx; yÞ:

Put U ¼ fða1; . . . ; aqÞ A C� q j ai 0 aj; for any i0 jg. It is known that the em-

bedded topology of CHC2 does not depend on the choice of ða1; . . . ; aqÞ A U

(see [2]).

Lemma 1. The reduced curve C can be a ðpq; qÞ linear torus curve of a

maximal contact for a certain choice of ða1; . . . ; aqÞ.

Proof. We take ða1; . . . ; aqÞ ¼ ð1; z; . . . ; zp�1Þ A U , then we claim that C ¼
f f ðx; yÞ ¼ 0g is a ðpq; qÞ-linear torus curve of a maximal contact. Indeed,

f ðx; yÞ takes the form:

f ðx; yÞ ¼
Yq
j¼1

ðz j�1yp � yþ xpÞ

¼ ðypÞq � ðy� xpÞq

¼ ypq � ðy� xpÞq:
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This expression shows that C is a ðpq; qÞ linear torus curve of a maximal

contact. r

For practical computations, we suppose hereafter that a1; . . . ; aq are real

numbers such that a1 > � � � > aq > 0. Let gj be a real positive number such

that g
p�1
j ¼ 1=aj for j ¼ 1; . . . ; q. By the assumption a1 > � � � > aq > 0, we

have

0 < g1 < � � � < gq:

As Cj VCi ¼ fOg for any j0 i, the possible singular pencil Ls ¼ fy ¼ sg is

either fy ¼ 0g or Ls is tangent to one of Cj outside of O.

Lemma 2. Under the above situation, the local data of C for the calculation

of the fundamental group of P2nC is the following.

(1) Singular pencil lines are y ¼ 0 and y ¼ gjx
k for j ¼ 1; . . . ; q and

k ¼ 0; . . . ; p� 2. The pencil lines y ¼ gjx
k is tangent to Cj at Qj;k :¼

ð0; gjxkÞ.
(2) Two curves Cj and Ci ð j0 iÞ intersect only at O A C2 and

IðCj;Ci;OÞ ¼ p2.

(3) The singularity type C at O is given by ðC;OÞ@Bp2q;q.

3.2. Calculation of the fundamental group p1ðP2nCÞ and p1ðC2nCÞ. For the

calculations of the fundamental groups p1ðP2nCÞ and p1ðC2nCÞ, we use the

van Kampen-Zariski pencil method. We take the base point B0 ¼ ½1 : 0 : 0� in
P2 and consider the pencil L ¼ fLs j s A Cg through B0 with Ls ¼ fY ¼ sZg.
The line at infinity Ly is given by fZ ¼ 0g. Then Ly is generic with respect

to C. A‰ne pencil is La ¼ fLa
s gs AC with La

s ¼ fy ¼ sg. (By abuse of nota-

tion, we consider this pencil L ¼ fLs j s A Cg in C2
t and C2

s .) By Lemma 2,

the set SHCy of parameters that correspond to singular pencil lines for C is

given as follows:

S :¼ f0; gjxk A Cy j k ¼ 0; . . . ; p� 2; j ¼ 1; . . . ; qg:

Take the base point g0 of CynS on the real axis so that 0 < g0 < g1. As

cðg0; ajÞ � cðg0; aiÞ ¼ ðai � ajÞgp0 > 0 if i < j;

we have

0 < cðg0; a1Þ < cðg0; a2Þ < � � � < cðg0; aqÞ:

We take the base point �0 ¼ ðt0; g0Þ where t0 is a su‰ciently large positive

number. As C is the pull-back of D by the p-fold cyclic covering jp : ðx; yÞ 7!
ðxp; yÞ, the monodromy relations for p1ðLa

g0
nLa

g0
VC; �0Þ are essentially obtained

by taking lifting the monodromy relations for p1ðLa
g0
nðLa

g0
VDÞU f0g; �tÞ by jp
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where the base point �t is a real point defined by �t ¼ ðtp0 ; g0Þ ([6]). This is the

basic idea for the computation of the fundamental groups.

We first take loops b1; . . . ; bq of p1ðLa
g0
nðLa

g0
VDÞU f0g; �tÞ and put t :¼

b1 . . . bq as in Figure 2.

Let a 0
i; j and o 0

i be the pull-back of bj and t by jp respectively starting from

�i :¼ ðh it0; g0Þ with i ¼ 0; . . . ; p� 1 where h :¼ expð2p
ffiffiffiffiffiffiffi
�1

p
=pÞ and let ai; j and

oi be the loop li � a 0
i; j � l�1

i and li � o 0
i � l�1

i where li is the arc of the circle

jxj ¼ t0 from �0 to �i as in Figure 3. Hereafter we identify a 0
i; j and ai; j in this

way.

First we see the monodromy relations on the real axis in Cy that cor-

respond to singular pencil lines y ¼ 0 and y ¼ gj for j ¼ 1; . . . ; q. To see these

monodromy relations, we consider following loops s0 and sj in Cy for j ¼
1; . . . ; q. First we define the loop s0. Let K0 be the line segment from g0 to

0� e on the real axis and let S0 be the circle jyj ¼ e where the circle is always

oriented counter-clockwise. Then s0 is defined as the loop (see Figure 4)

s0 :¼ K0 � S0 � K�1
0 :

Fig. 2. The loops b1; . . . ; bq in fy ¼ g0gVC2
t

Fig. 3. The loops ai; j and oi in fy ¼ g0gVC2
s
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Next we define loops sj for j ¼ 1; . . . ; q. Let Sj be the loop that is represented

by the circle jy� gjj ¼ e oriented counter clockwise. Let Kj be the modified

line segment from g0 to gj � e. The segment ½gi � e; gi þ e� is replaced by the

lower half circle of Si. Then sj is defined as the loop (see Figure 4)

sj :¼ Kj � Sj � K�1
j :

Case 1: First we see the monodromy relations at y ¼ 0. By the definitions of

Cj’s and Lemma 2, the origin O is a flex point of Cj such that fy ¼ 0g is the

tangent line for j ¼ 1; . . . ; q and Ci and Cj intersect with intersection multi-

plicity p2 at O for each i0 j and the topological type of C at O is Bp2q;q. To

see that monodromy relations, we look at the Puiseux parametrization of

each component Cj at O. Consider that curves Dj and D whose defining

polynomials are gjðx; yÞ ¼ x� cðy; ajÞ and gðx; yÞ ¼
Qq

j¼1 gjðx; yÞ respectively.

By the definitions, cðy; ajÞ ¼ yðy� ajy
p�1Þ, fjðx; yÞ ¼ gjðxp; yÞ, we have xp ¼

yð1� ajy
p�1Þ. By the generalized binomial theorem, we can solve xp ¼

yð1� ajy
p�1Þ as follows.

(1) Cj :
x ¼ jjðtÞ; jjðtÞ ¼ t 1� aj

p
tpðp�1Þ þ � � �

� �
; j ¼ 1; . . . ; q:

y ¼ tp;

8<
:

(2)
jjðtÞ
t

� jiðtÞ
t

¼ 1

p
ðai � ajÞtpðp�1Þ þ � � � , j0 i:

Note that the leading term of jjðtÞ is t which is independent of index j ¼
1; . . . ; q. The topological behavior of the centers of the generators, pq points

C V fy ¼ e expð
ffiffiffiffiffiffiffi
�1

p
yÞg, looks like the movements of satellites around planets

with 0a ya 2p. For a fixed y, there are p choices of t so that y ¼ tp. We

take t so that 0a arg ta 2p=p. Thus planets are the points Pi ¼ ðth i; tpÞ
for i ¼ 0; . . . ; p� 1 and the satellites around Pi are fðjjðth iÞ; tpÞ j j ¼ 1; . . . ; qg
where h ¼ expð2p

ffiffiffiffiffiffiffi
�1

p
=pÞ.

Above conditions ð1Þ and ð2Þ say that p planets moves an arc of the angle

2p=p centered at the origin when t ¼ e1=p expð
ffiffiffiffiffiffiffi
�1

p
y=pÞ moves from y ¼ 0 to

2p. Then the satellites, which are the center of loops fai; j j j ¼ 1; . . . ; qg, are

Fig. 4. Loops in Cy
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rotated ðp� 1Þ-times around Pi simultaneously for i ¼ 0; . . . ; p� 1. Hence we

have the monodromy relations:

ð1-1Þ ai; j ¼ as0
i; j ¼

o
p�1
iþ1 aiþ1; jo

�ðp�1Þ
iþ1 0a ia p� 2;

Wo
p�1
1 a0; jðWo

p�1
1 Þ�1

i ¼ p� 1;

(
j ¼ 1; . . . ; q

where as0
i; j is the monodromy action by s0 on ai; j. See Figure 5 for the case

p ¼ 3 and q ¼ 2.

On the other hand, we get the relation o1 ¼ o2 ¼ � � � ¼ op when y ¼
e expð2p

ffiffiffiffiffiffiffi
�1

p
yÞ moves around the origin once. Hence we have

W ¼ op; o :¼ o1 ¼ o2 ¼ � � � ¼ op:

We can rewrite the relations ð1-1Þ as follows:

ð1-2Þ ai; j ¼
op�1aiþ1; jo

�ðp�1Þ 0a ia p� 2;

o2p�1a0; jo
�ð2p�1Þ i ¼ p� 1;

�
j ¼ 1; . . . ; q:

Case 2: Next we consider the monodromy relations at y ¼ gj for jb 1. In

this case, the pencil line Lgj is tangent to Cj and Cj VLgj ¼ fQj;0g ¼ fð0; gjÞg is

a flex point of Cj of flex order p� 2. On the other hand, the pencil line Lgj is

generic with respect to other Ci for i0 j.

First we consider the case j ¼ 1. Recall that the defining polynomial of

Ci is

fiðx; yÞ ¼ xp � cðy; aiÞ ¼ xp � y
Yp�2

k¼0

ðgixk � yÞ; i ¼ 1; . . . ; q:

Fig. 5. The case p ¼ 3 and q ¼ 2
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We take the local coordinates ðx; y1Þ :¼ ðx; y� g1Þ centered at Q1;0. By an

easy calculation,

fiðx; y1 þ g1Þ ¼ 0 , xp ¼
ð1� pÞy1 þH1ðy1Þ; i ¼ 1;
g1
a1
ða1 � aiÞ þHiðy1Þ i0 1

(
ð1Þ

and a1 � ai > 0 where ordy1 H1 b 2 and ordy1 Hi b 1 for ib 2. The first

coe‰cients 1� p and
g1
a1
ða1 � aiÞ are obtained from the equalities:

cðy1 þ g1; a1Þ ¼ �ðy1 þ g1Þy1
Q

kb1ðg1x
k � y1 � g1Þ;

cðy1 þ g1; aiÞ ¼ ðy1 þ g1Þ � aiðy1 þ g1Þ
p

�

and

dcðy1 þ g1; a1Þ
dy1

����
y1¼0

¼ dcðy; a1Þ
dy

����
y¼g1

¼ 1� p;

cðg1; aiÞ ¼
g1
a1
ða1 � aiÞ:

8><
>:

Now we consider the monodromy relations at y ¼ g1. First, the action of

s1 on b1; . . . ; bq is sketched as in Figure 6. Thus we see that the generators

that are topologically deformed are fai;1 j i ¼ 0; . . . ; p� 1g under the rotation

y1 ¼ �e expð
ffiffiffiffiffiffiffi
�1

p
yÞ with 0a ya 2p. The other generators are unchanged.

Namely as1
i; j ¼ ai; j for i ¼ 0; . . . ; p� 1 and jb 2. To simplify the monodromy

relations, we introduce an element g1 :¼ b2 . . . bq. Then t ¼ b1g1. See Figure

6.

Let gi;1 be the pull-back of g1 starting from �i for i ¼ 0; . . . ; p� 1.

More precisely, gi;1 ¼ ai;2 . . . ai;q and oi ¼ ai;1gi;1. When y1 ¼ y� g1 ¼
�e expð

ffiffiffiffiffiffiffi
�1

p
yÞ moves from y ¼ 0 to 2p, the generators a0;1; . . . ; ap�1;1 moves

an arc of the angle 2p=p centered at the origin (the lifts of bs1
1 ) and the other

generators do not move. Thus we have following monodromy relations:

ð2-1Þ ai;1 ¼ as1
i;1 ¼

g�1
iþ1;1aiþ1;1giþ1;1 0a ia p� 2;

Wg�1
0;1a0;1ðWg�1

0;1Þ
�1

i ¼ p� 1

(

and gs1
i;1 ¼ gi;1 for i ¼ 0; . . . ; p� 1. See Figure 7.

Fig. 6. fy ¼ g1 � egVC2
t
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By the previous argument, we have o1 ¼ o and W ¼ op. Hence we can

rewrite the relations ð2-1Þ as follows:

ð2-2Þ ai;1 ¼ as1
i;1 ¼

o�1aiþ1;1o 0a ia p� 2;

op�1a0;1o
�ðp�1Þ i ¼ p� 1:

�

Now we consider the case jb 2. First we deform the pencil from g0 to

gj � e along Kj. Note that

cðy; akÞ
<0 k < j;

>0 k > j

�

where y A ½gj�1 þ e; gj � e�. Thus the generators b1; . . . ; bq are deformed as in

Figure 8 where cj :¼ cðy; ajÞ.

When y moves along Sj : jy� gjj ¼ e, the single root of gaj ðx; yÞ ¼ 0 that

is near the origin goes around the origin once and the other roots gak ðx; yÞ ¼ 0

ðk0 jÞ do not move as in Figure 9 where cj :¼ cðy; ajÞ.

Fig. 8. fy ¼ gj � egVC2
t

Fig. 9. fy ¼ gj � egVC2
t

Fig. 7. The action of s1
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This implies, by taking p-fold covering, the corresponding generators

a0; j; . . . ; ap�1; j of bj moves an arc of the angle 2p=p centered at the origin. To

see it more precisely, we put new loops:

hj ¼
e j ¼ 1;

b1 . . . bj�1 2a ja q

�
; gj ¼

bjþ1 . . . bq 1a ja q� 1;

e j ¼ q:

�

By the definitions, we have t ¼ hjbjgj . See Figure 10.

We take the local coordinates ðx; yjÞ :¼ ðx; y� gjÞ centered at Qj;0. Then

fiðx; yj þ gjÞ ¼ 0 , xp ¼
ð1� pÞyj þHjðyjÞ i ¼ j;
gj
aj
ðaj � aiÞ þHiðyjÞ i0 j

(

where ordyj Hj b 2 and ordyj Hi b 1 for i0 j. By the assumption, we have

aj � ai > 0 or aj � ai < 0 corresponding to either i > j or i < j respectively.

Thus we can see that the generators that are deformed under this monodromy

are fai; j j i ¼ 0; . . . ; p� 1g when yj moves around the circle jyjj ¼ e. Thus

a
sj
i;k ¼ ai;k for k0 j. Let hi; j and gi; j be the pull-back of hj and gj re-

spectively. By the definition, we have

hi; j ¼ ai;1 . . . ai; j�1

gi; j ¼ ai; jþ1 . . . ai;q

where hi;1 ¼ e and gi;q ¼ e and we put oi ¼ hi; jai; jgi; j.

When y moves around the circle jy� gjj ¼ e once, the generators a0; j; . . . ;

ap�1; j moves an arc of the angle 2p=p centered at the origin. Thus we have

following monodromy relations:

ð2-3Þ ai; j ¼ a
sj
i; j ¼

ðgiþ1; jhi; jÞ�1
aiþ1; jgiþ1; jhi; j 0a ia p� 2;

h�1
p�1; jWg�1

0; ja0; jðh�1
p�1; jWg�1

0; jÞ
�1

i ¼ p� 1

(

and g
sj
i; j ¼ gi; j and h

sj
i; j ¼ hi; j for i ¼ 0; . . . ; p� 1. See Figure 11.

Fig. 10. New loops
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Other cases: Finally we read the monodromy relations at y ¼ g where g A S

with g0 0, g1; . . . ; gq. Recall that the set SHCy of parameters that corre-

spond to singular pencils are given by

S ¼ f0; gjxk A Cy j k ¼ 0; . . . ; p� 2; j ¼ 1; . . . ; qg; x ¼ exp
2p

ffiffiffiffiffiffiffi
�1

p

p� 1

 !
:

Then the pencil line Lgjx
k ¼ fy ¼ gjx

kg is singular with respect to Cj and

Cj VLgjx
k ¼ fQj;kg ¼ fð0; gjxkÞg is a flex point of Cj of flex order p� 2 for

k ¼ 1; . . . ; p� 2. Note that the pencil line Lgjx
k is generic with respect to other

Ci for i0 j.

First we consider the case k ¼ 1. That is, we consider the monodromy

relations at y ¼ gjx. We take a path L1 which connects g0 and g0x as in

Figure 12.

Then the loops b1; . . . ; bq are deformed as in the left side of Figure 13.

We take new loops c1; . . . ; cq as in the right side of Figure 13. Here x�t ¼
ðxop

0; xg0Þ.

Fig. 12. The loop L1

Fig. 13. New loops c1; . . . ; cq

Fig. 11. The action of sj
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They are related by the following.

cj ¼ t�1bjt; j ¼ 1; . . . ; q: ð2Þ

Let d0; j; . . . ; dp�1; j be the pull-back of cj by jp for j ¼ 1; . . . ; q. Then the

relation (2) implies

di; j ¼ o�1ai; jo: ð3Þ

Now we consider the loops s
ð1Þ
1 ; . . . ; s

ð1Þ
q in Cy with base point g0x as in Figure

14.

We will see that the monodromy relations are exactly as ð2-3Þ. To see

this assertion, we take the modified coordinates ð~xx; ~yyÞ defined by

~xx :¼ exp
�2p

ffiffiffiffiffiffiffi
�1

p

pðp� 1Þ

 !
x; ~yy :¼ xy:

In these coordinates, the loops s
ð1Þ
1 ; . . . ; s

ð1Þ
q coincide with s1; . . . ; sq and Cj is

defined by the same equality:

Cj : ~xx
p ¼ ~yyð1� aj ~yy

p�1Þ:

The situation of loops c1; . . . ; cq are the same with that of b1; . . . ; bq and the

situation of loops di; j , i ¼ 0; . . . ; p� 1, j ¼ 1; . . . ; q are the same with that of

ai; j , i ¼ 0; . . . ; p� 1, j ¼ 1; . . . ; q. Therefore we obtain the relations

ð2-3Þ0 di; j ¼
ð~ggiþ1; j

~hhi; jÞ�1
diþ1; j ~ggiþ1; j

~hhi; j 0a ia p� 2

~hh�1
p�1; j

~WW~gg�1
0; jd0; jð~hh�1

p�1; j
~WW~gg�1

0; jÞ
�1

i ¼ p� 1

(
; j ¼ 1; . . . ; q

where ~hhi; j :¼ di;1 . . . di; j�1, ~ggi; j :¼ di; jþ1 . . . di;q and ~WW :¼ o�1Wo. Now we

claim the following.

Lemma 3. The relation ð2-3Þ0 is the same with the relation ð2-3Þ.

Proof. First we consider the relation di; j ¼ ð~ggiþ1; j
~hhi; jÞ�1

diþ1; j ~ggiþ1; j
~hhi; j in

ð2-3Þ0. By the relation (3), we have

Fig. 14. The loop s
ð1Þ
j
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~hhi; j ¼ o�1hi; jo; ~ggi; j ¼ o�1gi; jo:

Thus di; j ¼ ð~ggiþ1; j
~hhi; jÞ�1

diþ1; j ~ggiþ1; j
~hhi; j can be translated as follows

di; j ¼ o�1ai; jo ¼ ð~ggiþ1; j
~hhi; jÞ�1

diþ1; j ~ggiþ1; j
~hhi; j

¼ ððo�1giþ1; joÞðo�1hi; joÞÞ�1ðo�1aiþ1; joÞðo�1giþ1; joÞðo�1hi; joÞ

¼ o�1ðgiþ1; jhi; jÞ�1
aiþ1; jgiþ1; jhi; jo

which implies (2-3). For the relation di; j ¼ ~hh�1
p�1; j

~WW~gg�1
0; jd0; jð~hh�1

p�1; j
~WW~gg�1

0; jÞ
�1, the

argument is the same. This completes the proof. r

Next we consider general cases kb 2. That is, we consider the mono-

dromy relations at y ¼ gjx
k. Then we take a path Lk which connects g0 and

g0x
k:

By the exact same arguments as in the case k ¼ 1, we see that no new

monodromy relations are necessary.

3.3. The group structures of p1ðC2nCÞ and p1ðP2nCÞ. In this section, we

consider the group structures of p1ðP2nCÞ and p1ðC2nCÞ. First by previous

considerations, we have proved that

p1ðC2nCÞ ¼ ho; ai; j; i ¼ 0; . . . ; p� 1; j ¼ 1; . . . ; q; j ð1-2Þ; ð2-3Þ; ðSÞi ð4Þ

where

ð1-2Þ ai; j ¼
op�1aiþ1; jo

�ðp�1Þ 0a ia p� 2;

o2p�1a0; jðo2p�1Þ�1
i ¼ p� 1;

(
; j ¼ 1; . . . ; q

ð2-3Þ ai; j ¼
ðgiþ1; jhi; jÞ�1

aiþ1; jgiþ1; jhi; j 0a ia p� 2

h�1
p�1; jWg�1

0; ja0; jðh�1
p�1; jWg�1

0; jÞ
�1

i ¼ p� 1

(
; j ¼ 1; . . . ; q

o ¼ a0;1 . . . a0;q: ðSÞ

Fig. 15. The loop Lk
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Note that last relations in ð1-2Þ and ð2-3Þ are unnecessary as they follow from

previous relations. By the definitions of gi; j and hi; j and ð1-2Þ, we have the

following inductive relations.

hiþ1; j ¼ o�ðp�1Þhi; jo
p�1; giþ1; j ¼ o�ðp�1Þgi; jo

p�1

giþ1; jhi; j ¼ o�ðp�1Þgi; jo
p�1hi; j

�
ð5Þ

First we examine the relation ð2-3Þ for a fixed ia p� 2 using ð1-2Þ. The case

j ¼ 1 gives the equality:

ai;1 ¼ ðgiþ1;1Þ�1
aiþ1;1giþ1;1 ðas hi;1 ¼ eÞ

¼ ðo�ðp�1Þgi;1o
p�1Þ�1ðo�ðp�1Þai;1o

p�1Þðo�ðp�1Þgi;1o
p�1Þ

¼ o�ðp�1Þg�1
i;1ai;1gi;1o

p�1

¼ o�pai;1o
p:

This implies op and ai;1 commute. Now by the induction on j, we show that

½ai; j;op� ¼ e; j ¼ 1; . . . ; q ðRiÞ

where ½a; b� ¼ aba�1b�1. In fact, assuming ai;1; . . . ; ai; j�1 commute with op,

we get

ai; j ¼ ðgiþ1; jhi; jÞ�1
aiþ1; jgiþ1; jhi; j

¼ ðo�ðp�1Þgi; jo
p�1hi; jÞ�1ðo�ðp�1Þai; jo

p�1Þðo�ð p�1Þgi; jo
p�1hi; jÞ

¼ h�1
i; jo

�ðp�1Þg�1
i; j ai; jgi; jo

p�1hi; j

¼ h�1
i; jo

�ðp�1Þg�1
i; j ðh�1

i; j hi; jÞai; jgi; jop�1hi; j

¼ h�1
i; jo

�phi; jai; jh
�1
i; jo

phi; j ðas ½hi; j;op� ¼ eÞ

¼ o�pai; jo
p:

Thus we get ½ai; j;op� ¼ e for all j ¼ 1; . . . ; q.

The relation ðRiÞ for i ¼ 0; . . . ; p� 1 implies op is in the center of

p1ðC2nCÞ. Using relations ð1-2Þ and ðRiÞ, we have

aiþ1; j ¼ oai; jo
�1; i ¼ 0; . . . ; p� 2; j ¼ 1; . . . ; q:

Thus we get

ai; j ¼ o ia0; jo
�i; i ¼ 0; . . . ; p� 1; j ¼ 1; . . . ; q: ð6Þ

93On the fundamental group of linear torus curves



Hence we can take a0;1; . . . ; a0;q as generators. They satisfy the relations

½a0; j;op� ¼ e; j ¼ 1; . . . ; q: ðR0Þ

It is easy to see (and we have seen implicitly in the above discussions) that the

relations ð1-2Þ and ð2-3Þ follow from ðR0Þ, ðSÞ and ð5Þ. Thus we have shown

p1ðC2nCÞ ¼ hai; jði ¼ 0; . . . ; p� 1; j ¼ 1; . . . ; qÞ;o j ð1-1Þ; ð2-3Þ; ðSÞ; ð5Þi

G ha0;1; . . . ; a0;q;o j ðR0Þ; ðSÞi

p1ðP2nCÞG ha0;1; . . . ; a0;q;o jop ¼ e; ðR0Þ; ðSÞi

G ha0;1; . . . ; a0;q;o jop ¼ e; ðSÞi

G ha0;1; . . . ; a0;q�1;o jop ¼ ei

GF ðq� 1Þ � Z=pZ:

This completes the proof of Theorem 1.

4. Applications

This section is a joint work with Mutsuo Oka. We give some applications

of the main result.

4.1. Degeneration of linear torus curve. Consider a linear torus curve

C : fpðx; yÞq þ lðx; yÞpq ¼ 0 ð7Þ

where ð fp; lÞ A Mðpq; q; pq;IÞ. We assume that C is a generic member of the

linear system CðtÞ defined by

t fpðx; yÞq þ ð1� tÞlðx; yÞpq ¼ 0:

Let Cp VL ¼ fP1; . . . ;Pkg and put mi ¼ IðCp;L;PiÞ for i ¼ 1; . . . ; k so that

I ¼ fm1 . . . ;mkg. We always assume that Cp is smooth at each Pi for

i ¼ 1; . . . ; k.

Proposition 2. The moduli space Mðpq; q; pq;IÞ is irreducible.

Proof. We may assume that L ¼ fy ¼ 0g. Then by the assumption on

the intersection partition, we can write

fpðx; 0Þ ¼ ðx� a1Þm1 . . . ðx� akÞmk
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with mutually distinct complex numbers a1; . . . ; ak up to a multiplication of a

non-zero constant. Thus fp takes the form

fpðx; yÞ ¼ yfp�1ðx; yÞ þ ðx� a1Þm1 . . . ðx� akÞmk ;

where fp�1ðx; yÞ is a polynomial of degree p� 1. By the assumption,

qfp

qy
ðai; 0Þ ¼ fp�1ðai; 0Þ0 0; if mi b 2:

By a small perturbation of fp�1ðx; yÞ, we may also assume that fp�1ðx; 0Þ is

a polynomial of degree p� 1. This description implies the irreducibility of

Mðpq; q; pq;IÞ. In fact, we only show the connectivity of the moduli space

Mðpq; q; pq;IÞ. Take another linear torus curve

C 0 : gpðx; yÞq � ypq ¼ 0 where

gpðx; yÞ ¼ ygp�1ðx; yÞ þ ðx� b1Þ
m1 . . . ðx� bkÞ

mk ;

with ðgp; yÞ A Mðpq; q; pq;IÞ. We consider the linear family

fpðx; y; sÞ ¼ yðsfp�1ðx; yÞ þ ð1� sÞgp�1ðx; yÞÞ

þ
Yk
i¼1

ðx� ðsai þ ð1� sÞbiÞÞ
mi ; s A C:

Consider the polynomial

hiðsÞ ¼ sfp�1ðsai þ ð1� sÞbi; 0Þ þ ð1� sÞgp�1ðsai þ ð1� sÞbi; 0Þ:

As hið0Þ ¼ gp�1ðbi; 0Þ and hið1Þ ¼ fp�1ðai; 0Þ, hiðsÞ is a non-zero polynomial

in s. Consider the set Ai HC define by Ai ¼ fs A C j hiðsÞ ¼ 0g. As hiðsÞ is

a non-zero polynomial in s, Ai is a finite set. Put A ¼ 6k

i¼1
Ai. Thus we

can take a path in the parameter space C from s ¼ 1 to s ¼ 0 avoiding

the exceptional set A. This shows the connectedness of the moduli space

Mðpq; q; pq;IÞ. r

Lemma 4. For any ð fp; lÞ A Mðpq; q; pq;IÞ, there is a degeneration family

Ct, t A U with 1 A U so that C1 is the linear torus curve that corresponds to

ð fp; lÞ and C0 is a linear torus curve of the maximal contact.
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Proof. We assume that L ¼ fy ¼ 0g. The assumption implies that

fpðx; yÞ ¼ yfp�1ðx; yÞ þ ðx� a1Þm1 . . . ðx� akÞmk :

We may assume for simplicity that fp�1ð0; 0Þ0 0 and we consider the family of

curves Cp; t defined by f fpðx; y; tÞ ¼ 0g where

fpðx; y; tÞ :¼ yfp�1ðx; yÞ þ ðx� ta1Þm1 . . . ðx� takÞmk ; t A C:

Then Cp;0 is defined by

fpðx; y; 0Þ ¼ yfp�1ðx; yÞ þ xp ¼ 0

and we see that ð fpðx; y; 0Þ; yÞ A Mðpq; q; pq;ImÞ. Consider the corresponding

linear torus curve

Ct : fpðx; y; tÞq � c1y
pq ¼ 0; c1 A C�:

First choosing a generic c1 and fixing c1, we may assume that C1 and C0 have

only smooth components. There exists at most a finite number of t ¼ t1; . . . ; ts
such that Ct has some singular points by the Bertini theorem ([3]). Then we

may simply consider the restriction of the family over U :¼ Cnft1; . . . ; tsg.
This gives a desired degeneration. r

It is easy to show that we can also degenerate a linear torus curve with the

generic partition ð1; . . . ; 1Þ to our curve C. (Essentially we use the degener-

ation gðx; sÞ ¼ g1ðx; sÞ . . . gkðx; sÞ where gjðxÞ ¼ ðx� aiÞmi � es, i ¼ 1; . . . ; k for a

su‰ciently small e > 0.) Thus by the degeneration principle ([7]) and Theorem

1, we obtain Corollary 1.

4.2. Zariski triples. Consider a pair of smooth curves C1, C2 of degree p

and let I be the intersection partition fIðC1;C2;PÞ jP A C1 VC2g of p2. The

topology of C1 UC2 is not determined by I. For example, consider the case

I ¼ fp2g. In [1], they showed that there are at least b configurations with

di¤erent topologies where b is the number of positive integers n such that

1a n < p and n divides p. The defining polynomial of C ðnÞ can be written as

C ðnÞ : f 2p=n
n ðx; yÞ þ f 2p ðx; yÞ ¼ 0:

These curves fC ðnÞ j 1a n < p; n j pg come from torus curves of di¤erent types.

More precisely, the curve C ðnÞ belongs to the moduli space Mð2p=n; 2; 2p; fpngÞ
where n is an positive integer such that 1a n < p and n divides p. (In [8],

Oka has proved that there exists another configuration whose complement has

an abelian fundamental group for p ¼ 3; 4; 5.)

The same discussion works for non-maximal partitions. For simplicity,

we consider the case p ¼ 6.
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Suppose that the intersection partition I is f18; 18g of 36. First we

consider a linear torus curve C ð1Þ A Mð12; 2; 12;JÞ with J ¼ f3; 3g that is

associated with ð f ð1Þ6 ;LÞ A Mð12; 2; 12;JÞ with

C ð1Þ : f
ð1Þ
6 ðx; yÞ2 � Lðx; yÞ12 ¼ 0 where

f
ð1Þ
6 ðx; yÞ ¼ ðx2 � 1Þ3 þ yþ y6; Lðx; yÞ ¼ y:

Then the Alexander polynomial of C ð1Þ is given by:

DC ð1Þ ðtÞ ¼ ðt12 � 1Þðt� 1Þ
t2 � 1

:

Next we consider a ð2; 6Þ torus curve C ð2ÞðsÞ A Mð6; 2; 12; 2JÞ of degree 12

defined by

C ð2ÞðsÞ : f ð2Þ6 ðx; y; sÞ2 � f2ðx; yÞ6 ¼ 0 where

f
ð2Þ
6 ðx; y; sÞ ¼ ðy� sÞ6 þ y� x2; f2ðx; yÞ ¼ y� x2; s A C:

This family degenerates into a maximal contact curve C ð2Þð0Þ. Thus by the

sandwich principle, the Alexander polynomial of C ð2ÞðsÞ is given by

DC ð2ÞðsÞðtÞ ¼
ðt6 � 1Þðt� 1Þ

t2 � 1
:

The third one is a ð2; 4Þ torus curve C ð3ÞðsÞ A Mð4; 2; 12; 3JÞ defined by

C ð3ÞðsÞ : f ð3Þ6 ðx; y; sÞ2 � f3ðx; y; sÞ4 ¼ 0 with

f
ð3Þ
6 ðx; y; sÞ ¼ y6 � 3s2xy5 þ 6s4x2y4 � 5xs6ð2x2 � 3s2Þy3

þ s10ð7s2x� 6yÞx2y� s14ð8x2 � 9s2Þx2 � s18 � f3ðx; y; sÞ;

f3ðx; y; sÞ ¼ y� xðx� sÞðxþ sÞ:

This family degenerates into a maximal contact curve C ð3Þð0Þ. Thus by the

sandwich principle, the Alexander polynomial of C ð3ÞðsÞ is given by

DC ð3ÞðsÞðtÞ ¼
ðt4 � 1Þðt� 1Þ

t2 � 1
:

Therefore the triple fC ð1Þ;C ð2Þð1Þ;C ð3Þð1Þg is a Zariski triple which are distin-

guished by the Alexander polynomials. Their graphs are as in Figure 16.

In Figure 16, C ð1Þ, C ð2Þð1Þ and C ð3Þð1=2Þ have two irreducible components

which are tangent at ðG1; 0Þ, ðG1; 1Þ and ðG1=2; 0Þ with the respective inter-

section number 18 respectively.
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Case 2. Next we consider the case I ¼ f12; 12; 12g. We consider

the following three torus curves: ðDð1ÞðsÞ;Dð2ÞðsÞ;Dð3ÞðsÞÞ where Dð1ÞðsÞ A
Mð12; 2; 12;JÞ, Dð2ÞðsÞ A Mð6; 2; 12; 2JÞ and Dð3ÞðsÞ A Mð4; 2; 12; 3JÞ where

J ¼ f2; 2; 2g. They are defined by

Dð1ÞðsÞ : gð1Þ6 ðx; y; sÞ2 � Lðx; yÞ12 ¼ 0 with

g
ð1Þ
6 ðx; y; sÞ ¼ y6 � yþ x2ðx� sÞ2ðxþ sÞ2; Lðx; yÞ ¼ y;

Dð2ÞðsÞ : gð2Þ6 ðx; y; sÞ2 � g2ðx; y; sÞ6 ¼ 0 with

g
ð2Þ
6 ðx; y; sÞ ¼ y6 þ s2ð2y2 � ys2 þ s4Þx2y2 � s8ðx2 � s2Þy� g2ðx; yÞ

g2ðx; y; sÞ ¼ y� x2 þ s2;

Dð3ÞðsÞ : gð3Þ6 ðx; y; sÞ2 � g3ðx; y; sÞ4 ¼ 0 with

g
ð3Þ
6 ðx; y; sÞ ¼ y6 þ g3ðx; yÞ; g3ðx; y; sÞ ¼ y� x3 þ s2x:

Fig. 16.
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As three families degenerate into maximal contact curves in N1
1 ð12; 2; 12Þ,

N2
2 ð6; 2; 12Þ and N3

3 ð4; 2; 12Þ respectively, their topology are distinguished

by the Alexander polynomials. Thus the triple fDð1Þð1Þ;Dð2Þð1Þ;Dð3Þð1Þg is a

Zariski triple.
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