HirosHIMA MATH. J.
40 (2010), 1-15

A note on the sheet numbers of twist-spun knots
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ABSTRACT. The sheet number of a 2-knot is a quantity which reflects the complexity of
the knotting in 4-space. The aim of this note is to determine the sheet numbers of the
2- and 3-twist-spun trefoils. For this purpose, we give a lower bound of the sheet
number by the quandle cocycle invariant of a 2-knot, and an upper bound by the
crossing number of a 1-knot.

1. Introduction

An n-knot is an n-sphere smoothly embedded in the Euclidian (n + 2)-
space. We have two kinds of quantities for a 2-knot K which are analogous to
the crossing number of a 1-knot. The triple point number t(K) and the sheet
number sh(K) are the minimal numbers of triple points and sheets for all
diagrams of K. There are several studies on these invariants, for example,
[9, 13, 14, 15, 19, 20, 21] for t(K), and [12, 16, 17, 18] for sh(K). In
particular, we have a table of these numbers for “elementary” 2-knots as shown
in the following.

K: 2-knot t(K) | sh(K)
trivial 2-knot 1
spun trefoil 4
spun figure-eight knot 0 5
spun 5;-knot 6
2-twist-spun trefoil 4
3-twist-spun trefoil 6

Moreover, it is known that
e t(K) =0 if and only if K is a ribbon 2-knot [21],
e sh(K) =1 if and only if K is a trivial 2-knot [17],
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* t(K) >4 for any non-ribbon 2-knot K [15], and

* sh(K) >4 for any non-trivial 2-knot K [17, 18].

The first four 2-knots in the above table satisfy t(K) = 0, that is, they are
ribbon 2-knots. Hence, it is natural to ask the sheet numbers of non-ribbon
2-knots, in particular, the 2- and 3-twist-spun trefoils.

In this paper, we first review the definitions of the quandle homology and
cohomology groups in Section 2 and the quandle cocycle invariants of 2-knots
in Section 3. In Section 4, we give a lower bound of the sheet number by
using the quandle cocycle invariant (Theorem 4.5). We remark that the
quandle cocycle invariant is trivial for the family of ribbon 2-knots. Section
5 is devoted to giving an upper bound of the sheet number of a twist-spun knot
in terms of the crossing number of a 1-knot (Lemma 5.2 and Theorem 5.3).
Combining these results, we determine the sheet numbers of the 2- and 3-twist-
spun trefoils to be four and five, respectively (Theorem 6.1).

This research is partially supported by the Japan Society for the Promotion
of Science.

2. Quandle (co)homology group

A non-empty set X with a binary operation (a,b) — axb is a quandle
[10, 11] if it satisfies the following:
(i) For any element a € X, it holds that axa = a.
(ii) For any elements @ and b € X, there is a unique element x € X which
satisfies a = x * b.
(i) For any elements @, b, and ¢ € X, it holds that (a*b) x ¢ = (a* ¢)*
(bxc).

DerFiNITION 2.1, A quandle X is active if there is no distinct pair of
elements ¢ and be X with axb =a.

ExampLE 2.2. (i) The set Z, = {0,1,...,n — 1} with the binary operation
axb=2b— a modulo n is called the dihedral quandle of order n, and denoted
by R,. The quandle R, is active if and only if n is odd.

(i) The set {0,1,2,3} with the binary operation given in the following
table is a quandle which is denoted by Ss. It is easy to see that Ss is active.

0x0=0, 0x1=2, 0%x2=3, 0x3=1,

1x0=3, 1x1=1, 1x2=0 1«3=2

) )

2%0=1, 2%1=3, 2%2=2, 2%3=0,
350=2, 3x1=0, 3x2=1, 3x3=3.
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The associated group of a quandle X [7, 10], denoted by G(X), is the
group which has a presentation

GX)=<(xeX|x*y=ylxy for x,yeX>.

For a quandle X, an X-set [7, 8] is a non-empty set S equipped with a
right action (s,g) — s-¢ by the associated group G(X); that is,

sce=s and  s-(g9')=(s-9) ¢
for any se S, the identity element e of G(X), and any g¢,¢’ € G(X).

ExaMpLE 2.3. (i) For any quandle X, the set S = {0} with the right
action 0-¢g =0 for any g € G(X) is an X-set.

(i) For any quandle X, the set S =7Z,={0,1} with the right action
0-x=1and 1-x=0 for any generator x € X of G(X) is an X-set.

Let X be a quandle, and S an X-set.
(i) The chain group CR(X)g is given by

Z[Sx X" n>0,
Crx)s={zls]  n-o,
{0} n <0,

where Z[M] denotes the free Abelian group generated by a set M. The
boundary operation 0, : CR(X)s — CR | (X)g is given by

n

On(sxt, X)) = Y (=D)(six1,. ., Ry, X)

i=1
— (8 X5 X1 F Xy ooy Xim] K Xy Xiy Xig Dy e ooy Xn) }

for n>0, and 3, =0 for n<0. Then CR(X);={CR(X)g,0,} is a chain
complex.
(i) Forn =2, let (S x X"), denote the subset of S x X" whose elements

are (s8;X1,...,X,)’s with x; = x;4; for some i. The chain group D.(X)y is
given by
Z[(Sx X", n=2,
Dn(X)S = { {O} 0 n<l.

Since 0,(D,(X)g) < Dy—1(X)g, the pair D.(X)s = {Dy(X)s,0,} is a subcom-
plex of CR(X)s.

(ili) The chain complex CQ(X) is given by CR(X)¢/D.(X)g as a
quotient.
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(iv) For an Abelian group A, the chain and cochain groups

CR(X,A)g=CoX)s®A, and
C(X, A)g = Hom(CR(X)s, A),

with the coefficient 4 induce the homology and cohomology groups HQ(X, A) s
and H(’S(X ,A)g, respectively. They are called the quandle homology and
cohomology groups, respectively (cf. [2, 3]).

REMARK 2.4. (i) If 4 =7Z, then we abbreviate 4 such as H2(X), and
Hg(X)g.

(i) If S ={0} as given in Example 2.3(i), then we abbreviate S such as
HQ(X,A) and Hé(X ,A), which are the original quandle (co)homology groups
introduced in [1].

DEFINITION 2.5. (i) By definition, any n-chain y € CR(X)g (n > 1) can be
uniquely represented by

Y= st;xl‘..qxn (S; Xlye-- axn)v

where my. \, .y, s are integers and all zero except a finite number of them. The
sum is taken for all (s;xj,...,x,) €S x X" with x; #x;41 (i=1,...,n—1).
The length of y is defined by

(i) For an nth homology class [y] € HR(X)g, the length of [y] is defined
by

¢(p]) = min{/(y") [ e CA(X)s with ['] = [)]}.
(iii) For an nth cohomology class [0] € Hy(X, A)g, the length of [0] is
defined by
£(10) = min{/([)]) | )] € H2(X)s with <[], [0]> # 0},

where {(,>: HQ(X)g x HS(X,A)S — A is the Kronecker product defined by
{W),10)> = 0(y) by regarding 0 as a map C2(X)s — A.

3. Quandle cocycle invariant

A 2-knot K is a 2-sphere embedded in the Euclidian 4-space R*
smoothly. In this paper, we always assume that K is oriented. Many notions
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used in 1-knot theory can be extended to the study of 2-knots. The readers
who are not familiar with 2-knot theory may refer to [4, 5], for example.

A diagram of a 2-knot is the projection image 7(K) = R? equipped with
crossing information, where 7 : R* — R? is a fixed projection, and any point on
n(K) may be assumed to be a regular point, double point, an isolated triple
point, or an isolated branch point. Usually, we indicate crossing information
by dividing the lower disk into two pieces near a double point, and this
modification can be extended to neighborhoods of a triple point and a branch
point naturally. See Figure 1.

— Y

double point triple point branch point

Figure 1

Any 2-knot diagram D is regarded as a disjoint union of compact,
connected surfaces, each of which is called a sheet. We denote by sh(D)
and (D) the numbers of sheets and triple points of D, respectively.

The sheet number and triple point number of a 2-knot K is the minimal
number of sh(D)’s and #(D)’s for all diagrams which represents (the ambient
isotopy class of) K, and denoted by sh(K) and t(K), respectively.

Let X be a quandle, and S an X-set. A pair of maps C = (Cj, (),

C) : {the sheets of D} — X,
C; : {the connected regions of R¥*\n(K)} — S,

is an Xg-coloring for D if it satisfies the following two conditions:

(1) Cy(H)=C\(H")= C(H") holds near every double point, where H
and H" are the lower sheets and H' is the upper sheet such that the
orientation of H’ points from H to H”.

(2) Cy(R)-C\(H) = Cy(R’) holds near every regular point, where R and
R’ are the regions adjacent to the sheet H such that the orientation of
H points from R to R’.

See Figure 2. The elements C)(H) € X and Cy(R) € S are called the colors of
a sheet H and a region R with respect to C, respectively. An Xg-coloring
C = (C1, (y) is called trivial if Cy is a constant map, and otherwise non-trivial.
For S = {0}, we call an Xs-coloring an X-coloring simply.
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Figure 2

Let ¢ be a triple point of a diagram D with an Xg-coloring C. Among the
eight regions near ¢, the specified region R is the one such that all the
orientations of the sheets adjacent to R point away from R.

The color of t with respect to C is the element (s;a,b,c) € S x X3, where s
is the color of the specified region R, and «, b, and ¢ are the colors of the
bottom, middle, and top sheets adjacent to R, respectively. See Figure 3.

Figure 3

The sign of ¢ is positive if the ordered triple of the orientations of the top,
middle, and bottom sheets matches with the orientation of R®, and otherwise
negative. We denote it by &(¢) e {£1}.

For a diagram D with an Xg-coloring C, the 3-chain yp  is defined by

Vp,c = ZS(I) ) (S;a,b,C) € C?F(X)S - Z[S X XS],

1

where the sum is taken for all triple points ¢ of D and (s;a,b,c) is the color
of 1.

We remark that the 3-chain y, - is a 3-cycle, that is, d3(yp ) =0.
Hence, it defines a third homology class [yp (] eH3Q(X )s-

THEOREM 3.1 (cf. [1, 3, 7]). (i) For a diagram D of a 2-knot K, the multi-
set

V(D) =A{lyp.cl e H3Q(X)S | C : Xs-colorings for D}

is independent of a particular choice of D.
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(i) For a third cohomology class [0] € Hé(X ,A)g, the multi-set
@y(D) = {<lyp.cl,[0]> € A| C : Xs-colorings for D}
is independent of a particular choice of D.

The multi-set @y(D) in Theorem 3.1 is called the quandle cocycle invariant
of K associated with [0] € Hé(X ,A)g, and denoted by @y(K).

DermNiTION 3.2.  Let ¢ be a triple point of D with an Xg-coloring C, and
(s;a,b,c) e S x X3 the color of t. We say that ¢ is non-degenerated with
respect to C if a # b # ¢, and degenerated if a=>b or b= c.

Let ¢(D, C) denote the number of non-degenerated triple points of D with
respect to an Xg-coloring C.

ProposITION 3.3. Let [0] € Hé(X ,A)g be a third cohomology class.
Assume that the quandle cocycle invariant @y9(K) of a 2-knot K contains a non-
zero element. Then for any diagram D of K, it holds that t(D,C) > /([0)).

Proor. By assumption, there is an Xg-coloring C for D such that
{yp.cl;[0]> #0. Hence, it holds that /([yp ¢]) = 7([0]). On the other hand,
it follows by definition that #(D,C) = /([yp ¢]). Hence, we have #(D,C) >
2([0)). O

We remark that the number ¢(D, C) is originally introduced to give a lower
bound of the triple point number as follows.

THEOREM 3.4 ([20]). If ®p(K) contains a non-zero element, then it holds
that

t(K) = /((0))-

PrOOF. Any diagram D of K satisfies #(D) > #(D, C) > /([0]) by Prop-
osition 3.3. O

4. Lower bound of sheet number

Recall that a diagram D of a 2-knot K is the projection image n(K)
equipped with crossing information. For a double point p, the preimage
(7| K)_l( p) consists of a pair of points, which are called the lower and upper
points with respect to the height function of the projection. Let A_ = A_(D)
denote the closure of the lower points in K. The set A_ is regarded as a
disjoint union of a graph and a finite number of circles embedded in K. In
particular, every vertex of A4_ has degree 1 or 4. More precisely, a branch
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point b of D gives a 1-valent vertex b* = (n|) "' (b) of A_, and a triple point 7
gives a 4-valent vertex ¢* on the bottom disk. We call ¢* the bottom point of t.
See Figure 4, where the solid and dotted lines mean A_ and the closure of the
set of upper points in K, respectively.

b*T

bottom middle top

Figure 4

REMARK 4.1. (i) The set of the connected regions of the complement
K\A_ has a one-to-one correspondence to the set of the sheets of D.

(i) If D is Xs-colored, then we give each region of K\A_ the color
assigned to the corresponding sheet of D naturally.

Let C be an Xgs-coloring for a diagram D. We define the subgraph
A_(C) of A_ whose edges and circles satisfy the following condition: The
regions of K\/A_(C) on both sides of an edge/circle have different colors with
respect to C. In particular, any 1-valent vertex »* of 4_ and the edge incident
to b* do not belong to A_(C).

LemMMaA 4.2. Let X be an active quandle, C an Xs-coloring for a diagram
D, and t a triple point of D.

(i) If't is a degenerated triple point with respect to C, then the bottom point
t* has degree 2 or 4 in A_(C), or does not belong to A_(C).

(i) If t is a non-degenerated triple point, then t* has degree 3 or 4 in
A_(C).

Proor. Let a; (i=1,2,3,4), b; (j=1,2), and ¢ be the colors of the
bottom, middle, and top sheets, respectively, and e, (k =1,2,3,4) the edges
incident to ¢* in A_ as shown in Figure 5.

€2

as ag
€3 €4

a az
€

Figure S
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(i) If @y =b;=c, then we have a; =ay = a3 =as. Hence, the four
edges ej,...,es, and the bottom point t* do not belong to A_(C).

If ay = by # ¢, then we have a; = a; # a3 = a4. Hence, the edges e; and
e4 belong to A_(C) and e; and e, do not belong to A_(C). In particular, ¢*
has degree 2 in A_(C).

If a; #b; =c, then a; # a; = a3 # a5. Hence, the four edges ej,...,e4
belong to A_(C), and ¢* has degree 4 in A_(C).

(i) Since a; # by # ¢, we have a; # a> and a3 # a5. Hence, the edges ¢;
and e, belong to A_(C). Assume that neither edge of e; nor es belong to
A_(C), that is, a; = a3 and a, = a4. Since a; *xc = a3, ay xc = ag, and X is
active, we have ¢ = a; = ap. This contradicts to a; # a,. Hence, at least one
of e; and e4 belongs to A4_(C), and ¢* has degree 3 or 4 in A_(C). O

Assume that A_(C) is a disjoint union of m connected graphs and n
circles. Let v; (i =3,4) denote the number of vertices of degree i, and r
the number of the connected regions of K\A_(C). The following is easily
obtained by the calculation of the Euler characteristic of a 2-sphere. See

Figure 6.

r=11, v3=6, v, =2, m=2, n=3

Figure 6

LEmMMA 43. r=3vs+u+m+n+1.

PROPOSITION 4.4.  Let X be an active quandle, and C an Xs-coloring for a
diagram D. If (D, C) >0, then it holds that sh(D) > 1¢(D,C)+2.

ProOF. Recall that sh(D) is coincident with the number of the connected
regions of the complement K\A_. Since 4_(C) = A_, it holds that si(D) > r.
On the other hand, it follows by Lemma 4.2 that %v3+v4 > %(v3+v4) >
14(D,C). Furthermore, it holds that m >1 by #D,C) >0. By n>0 and

Lemma 4.3, we have sh(D) > 14(D, C) + 2 immediately. O

THEOREM 4.5. Let X be an active quandle, and [0) eHé(X,A)S a third
cohomology class. If the quandle cocycle invariant ®y9(K) of a 2-knot K
contains a non-zero element, then it holds that

sh(K) > = /(]0]) + 2.

2
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Proor. It follows by Propositions 3.3 and 4.4 that any diagram D of K
satisfies sh(D) > 1¢(D,C) +2 > 1/([0]) + 2. O

5. Upper bound of sheet number

Let k be a 1-knot, and r a non-negative integer. We take a tangle T in
the upper-half space Ri ={(x,»,2,0)|x,y e R,z > 0} whose knotting repre-
sents the 1-knot k. By spinning R* about the axis R> = {(x, »,0,0) | x, y € R},
we recover the 4-space R* = {(x, y,zcos 0,zsin0)|x,yeR,z>0,0eS'}.

We take a 3-ball B in Rf’r such that the knotting part of 7' is entirely
contained in B. In the spinning process of Ri, we simultaneously rotate B r
full twists with keeping the points 77N dB. The trace of T provides a 2-knot.
We call it the r-twist-spun knot, and denote it by "k [22]. See Figure 7.

0|

s RS

Figure 7

REMARK 5.1. (i) The O-spun knot 7k is called the spun knot simply.
The spun knot has a diagram which is obtained from a tangle diagram of k in
the upper-half plane by spinning it about the axis. The diagram has neither
triple point nor branch point. Hence, we have t(:’k) =0 and sh(z%) <
c(k) + 1, where c(k) is the crossing number of the 1-knot k.

(i) Every I-twist-spun knot is a trivial 2-knot; that is, it bounds a 3-ball
embedded in R* [22].

(iii) If r > 2 and k is a non-trivial 1-knot, then 7"k is always non-ribbon
[6]. Moreover, any diagram of 7"k must have at least four triple points [15].

To construct a diagram of a twist-spun knot 7"k, we consider the sequence
of Reidemeister moves for a tangle diagram 7 of k in the upper-half plane Ri
as shown in the upper row of Figure 8. Assume that 7 has n crossings.
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1 2 3 4 5 6 7

Figure 8

1 — 2: The deformation is realized by an ambient isotopy of Ri.
2 — 3: The tangle goes over the terminal path with several Reidemeister
moves Il and n Reidemeister moves 111
3 —4: A single Reidemeister move I is performed.
4 — 5: The deformation is realized by an ambient isotopy of Ri.
5 — 6: The tangle goes under the initial path with several Reidemeister moves
IT and » Reidemeister moves III.
6 — 7. A Reidemeister move II and a Reidemeister move I are performed.
It is known that the sequence represents a full twist of the tangle (cf. [20]).
We take r copies of the sequence in a pile to obtain a diagram D of 7’k in R?
with open book structure. In particular, Reidemeister moves I and III in the
sequence correspond to a branch point and a triple point of D, respectively.
To obtain the set 4_ from D, we arrange the lower crossings in a line at
each stage of the sequence. See the lower row of Figure 8. Here, T indicates
the immersed curve obtained from the diagram 7 by ignoring crossing
information, and the number of the parallel curves is equal to n. We put
r copies of the trace in a pile to obtain the set 4 on a 2-sphere. See Figure 9.

n circles/

n crossings

Figure 9
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LeEmMmA 5.2. For a non-trivial 1-knot k and r > 2, it holds that
sh(t'k) < {2c(k) — 1}r+2.

Proor. We take a tangle diagram of k& which realizes the crossing number
n =c(k). For the graph A_ constructed as above, it is not difficult to count
the number of the connected regions of the complement t"k\A_ as follows;

sh(D)=14+mn—1)r+nm+1=02n—1)r+2.
Since sh(t"k) < sh(D), we have the conclusion. O

Assume that a tangle diagram 7 has a particular pair of crossings labeled
a and b as shown in the top-left of Figure 10, where the boxed sub-tangle 7'’

App Bt

/——Q

(

—

N—
a
P —

(N

—

;
w
N
o1
o
\‘

AniEN

O
N

(o))
~

1 2 3 4 5

Figure 10
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has n — 2 crossings. We consider the sequence of Reidemeister moves for 7" as
in the top row of the figure.

The sequence is similar to the previous one, and the differences are as
follows:

2 — 3: The sub-tangle 7’ goes over the terminal path with several Reide-
meister moves II and n — 2 Reidemeister moves III.

3 —4: A Reidemeister move II and a Reidemeister move I are performed.

5 — 6: The sub-tangle 7' goes under the initial path with several Reidemeister
moves Il and n —2 Reidemeister moves III.

6 — 7. A pair of Reidemeister moves Il and a Reidemeister move 1 are
performed.

It is known that the sequence also represents a full twist of the tangle (cf.
[20]). In the middle and bottom rows of Figure 10, we illustrate the trace of
the lower crossings arranged in a line at each stage, where the middle row is the
case that the under-crossing of @ comes before the over-crossing of b with
respect to the orientation of 7', and the bottom row is the opposite case.

THEOREM 5.3.  Suppose that a non-trivial 1-knot k has a minimal diagram
which contains the portion XX or ¥A. Then for r > 2, it holds that

sh(z'k) < {2c(k) — 5}r+ 2.

Proor. We may assume that & has a tangle diagram which contains a
sub-tangle 7’ with n — 2 crossings as above, where n = c(k).

We consider the case that the set 4_ is obtained by taking r copies of the
traces in the middle row of Figure 10. The case in the bottom row can be
similarly proved. By observing A_ as shown in Figure 11, we count the
number of the connected regions of the complement t"k\A_ as follows;

sh(D)y=1+n—-2)r+(n—3)r+1=02n—5r+2.

Since sh(z"k) < sh(D), we have the conclusion. O

n-2 crossings

Figure 11
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6. 2- and 3-twist-spun trefoils

Let k be the trefoil knot. It follows by Theorem 5.3 that sh(z"k) < r+ 2.
In particular, we have sh(z’k) <4 and sh(zk) < 5.

THEOREM 6.1. (i) The 2-twist-spun trefoil has the sheet number four.
(i) The 3-twist-spun trefoil has the sheet number five.

Proor. (i) In [16], we prove that if a 2-knot K admits a non-trivial X-
coloring for some quandle X, then it holds that sh(K) > 4. Since the 2-twist-
spun trefoil 2k admits a non-trivial Rs-coloring, it holds that sh(z’k) > 4.
Hence, we have sh(z%k) = 4. (Recently, we prove that sh(K) > 4 for any non-
trivial 2-knot K [17, 18].)

(i) Tt is known that Hé(S4,Z2) ~ (Z»)* (cf. [1]). Let [0] be a non-zero
cohomology class of this group. Then the quandle cocycle invariant of the
3-twist-spun trefoil is given by

Dy(’k) = {0 (4 times), 1 (12 times)},

which contains a non-zero element.

In [20], we prove that if a homology class [y] eH3Q(S4)Z2 satisfies
7], [60]> # 0 € Zy, then it holds that /([y]) > 6 and hence /([f]) > 6. Here,
the product is taken by regarding [0] as a cohomology class of Hé(S4,Z2)Z2.
By Theorem 4.5, we have

I
2
Hence, it holds that sh(z3k) = 5. ]

sh(zk) = ~/([0]) +2 = 5.

We have an alternative proof of Theorem 6.1(i) similarly to that of (ii).
In fact, for a generator [f] of Hé(R3,Z3) ~ 73, we have

@y(%k) = {0 (3 times), 1 (6 times)}
and /([0]) =4. Hence, it holds that sh(z’k) > 342 =4.

QUESTION 6.2. Does the r-twist-spun trefoil have the sheet number r + 2
for r > 4?7
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