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Abstract. The sheet number of a 2-knot is a quantity which reflects the complexity of

the knotting in 4-space. The aim of this note is to determine the sheet numbers of the

2- and 3-twist-spun trefoils. For this purpose, we give a lower bound of the sheet

number by the quandle cocycle invariant of a 2-knot, and an upper bound by the

crossing number of a 1-knot.

1. Introduction

An n-knot is an n-sphere smoothly embedded in the Euclidian ðnþ 2Þ-
space. We have two kinds of quantities for a 2-knot K which are analogous to

the crossing number of a 1-knot. The triple point number tðKÞ and the sheet

number shðKÞ are the minimal numbers of triple points and sheets for all

diagrams of K . There are several studies on these invariants, for example,

[9, 13, 14, 15, 19, 20, 21] for tðKÞ, and [12, 16, 17, 18] for shðKÞ. In

particular, we have a table of these numbers for ‘‘elementary’’ 2-knots as shown

in the following.

K : 2-knot tðKÞ shðKÞ

trivial 2-knot 1

spun trefoil
0

4

spun figure-eight knot 5

spun 52-knot 6

2-twist-spun trefoil 4

3-twist-spun trefoil 6

Moreover, it is known that
� tðKÞ ¼ 0 if and only if K is a ribbon 2-knot [21],
� shðKÞ ¼ 1 if and only if K is a trivial 2-knot [17],
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� tðKÞb 4 for any non-ribbon 2-knot K [15], and
� shðKÞb 4 for any non-trivial 2-knot K [17, 18].

The first four 2-knots in the above table satisfy tðKÞ ¼ 0, that is, they are

ribbon 2-knots. Hence, it is natural to ask the sheet numbers of non-ribbon

2-knots, in particular, the 2- and 3-twist-spun trefoils.

In this paper, we first review the definitions of the quandle homology and

cohomology groups in Section 2 and the quandle cocycle invariants of 2-knots

in Section 3. In Section 4, we give a lower bound of the sheet number by

using the quandle cocycle invariant (Theorem 4.5). We remark that the

quandle cocycle invariant is trivial for the family of ribbon 2-knots. Section

5 is devoted to giving an upper bound of the sheet number of a twist-spun knot

in terms of the crossing number of a 1-knot (Lemma 5.2 and Theorem 5.3).

Combining these results, we determine the sheet numbers of the 2- and 3-twist-

spun trefoils to be four and five, respectively (Theorem 6.1).

This research is partially supported by the Japan Society for the Promotion

of Science.

2. Quandle (co)homology group

A non-empty set X with a binary operation ða; bÞ 7! a � b is a quandle

[10, 11] if it satisfies the following:

( i ) For any element a A X , it holds that a � a ¼ a.

( ii ) For any elements a and b A X , there is a unique element x A X which

satisfies a ¼ x � b.
(iii) For any elements a, b, and c A X , it holds that ða � bÞ � c ¼ ða � cÞ�

ðb � cÞ.

Definition 2.1. A quandle X is active if there is no distinct pair of

elements a and b A X with a � b ¼ a.

Example 2.2. (i) The set Zn ¼ f0; 1; . . . ; n� 1g with the binary operation

a � b ¼ 2b� a modulo n is called the dihedral quandle of order n, and denoted

by Rn. The quandle Rn is active if and only if n is odd.

(ii) The set f0; 1; 2; 3g with the binary operation given in the following

table is a quandle which is denoted by S4. It is easy to see that S4 is active.

0 � 0 ¼ 0; 0 � 1 ¼ 2; 0 � 2 ¼ 3; 0 � 3 ¼ 1;

1 � 0 ¼ 3; 1 � 1 ¼ 1; 1 � 2 ¼ 0; 1 � 3 ¼ 2;

2 � 0 ¼ 1; 2 � 1 ¼ 3; 2 � 2 ¼ 2; 2 � 3 ¼ 0;

3 � 0 ¼ 2; 3 � 1 ¼ 0; 3 � 2 ¼ 1; 3 � 3 ¼ 3:
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The associated group of a quandle X [7, 10], denoted by GðXÞ, is the

group which has a presentation

GðXÞ ¼ hx A X j x � y ¼ y�1xy for x; y A Xi:

For a quandle X , an X-set [7, 8] is a non-empty set S equipped with a

right action ðs; gÞ 7! s � g by the associated group GðX Þ; that is,

s � e ¼ s and s � ðgg 0Þ ¼ ðs � gÞ � g 0

for any s A S, the identity element e of GðX Þ, and any g; g 0 A GðXÞ.

Example 2.3. (i) For any quandle X , the set S ¼ f0g with the right

action 0 � g ¼ 0 for any g A GðXÞ is an X -set.

(ii) For any quandle X , the set S ¼ Z2 ¼ f0; 1g with the right action

0 � x ¼ 1 and 1 � x ¼ 0 for any generator x A X of GðX Þ is an X -set.

Let X be a quandle, and S an X -set.

(i) The chain group CR
n ðXÞS is given by

CR
n ðXÞS ¼

Z½S � X n� n > 0;

Z½S� n ¼ 0;

f0g n < 0;

8><
>:

where Z½M� denotes the free Abelian group generated by a set M. The

boundary operation qn : C
R
n ðX ÞS ! CR

n�1ðXÞS is given by

qnðs; x1; . . . ; xnÞ ¼
Xn

i¼1

ð�1Þ ifðs; x1; . . . ; x̂xi; . . . ; xnÞ

� ðs � xi; x1 � xi; . . . ; xi�1 � xi; x̂xi; xiþ1; . . . ; xnÞg

for n > 0, and qn ¼ 0 for na 0. Then CR
� ðX ÞS ¼ fCR

n ðX ÞS; qng is a chain

complex.

(ii) For nb 2, let ðS � X nÞ0 denote the subset of S � X n whose elements

are ðs; x1; . . . ; xnÞ’s with xi ¼ xiþ1 for some i. The chain group D�ðXÞS is

given by

DnðXÞS ¼ Z½ðS � X nÞ0� nb 2;

f0g na 1:

�

Since qnðDnðXÞSÞHDn�1ðXÞS, the pair D�ðX ÞS ¼ fDnðXÞS; qng is a subcom-

plex of CR
� ðXÞS.

(iii) The chain complex CQ
� ðXÞS is given by CR

� ðX ÞS=D�ðXÞS as a

quotient.
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(iv) For an Abelian group A, the chain and cochain groups

CQ
� ðX ;AÞS ¼ CQ

� ðXÞS nA; and

C �
QðX ;AÞS ¼ HomðCQ

� ðXÞS;AÞ;

(

with the coe‰cient A induce the homology and cohomology groups HQ
� ðX ;AÞS

and H �
QðX ;AÞS, respectively. They are called the quandle homology and

cohomology groups, respectively (cf. [2, 3]).

Remark 2.4. (i) If A ¼ Z, then we abbreviate A such as HQ
� ðXÞS and

H �
QðX ÞS.

(ii) If S ¼ f0g as given in Example 2.3(i), then we abbreviate S such as

HQ
� ðX ;AÞ and H �

QðX ;AÞ, which are the original quandle (co)homology groups

introduced in [1].

Definition 2.5. (i) By definition, any n-chain g A CQ
n ðXÞS ðnb 1Þ can be

uniquely represented by

g ¼
X

ms;x1;...;xnðs; x1; . . . ; xnÞ;

where ms;x1;...;xn ’s are integers and all zero except a finite number of them. The

sum is taken for all ðs; x1; . . . ; xnÞ A S � X n with xi 0 xiþ1 ði ¼ 1; . . . ; n� 1Þ.
The length of g is defined by

lðgÞ ¼
X

jms;x1;...;xn j:

(ii) For an nth homology class ½g� A HQ
n ðXÞS, the length of ½g� is defined

by

lð½g�Þ ¼ minflðg 0Þ j g 0 A CQ
n ðXÞS with ½g 0� ¼ ½g�g:

(iii) For an nth cohomology class ½y� A Hn
QðX ;AÞS, the length of ½y� is

defined by

lð½y�Þ ¼ minflð½g�Þ j ½g� A HQ
n ðXÞS with h½g�; ½y�i0 0g;

where h ; i : HQ
n ðXÞS �Hn

QðX ;AÞS ! A is the Kronecker product defined by

h½g�; ½y�i ¼ yðgÞ by regarding y as a map CQ
n ðXÞS ! A.

3. Quandle cocycle invariant

A 2-knot K is a 2-sphere embedded in the Euclidian 4-space R4

smoothly. In this paper, we always assume that K is oriented. Many notions

4 Shin Satoh



used in 1-knot theory can be extended to the study of 2-knots. The readers

who are not familiar with 2-knot theory may refer to [4, 5], for example.

A diagram of a 2-knot is the projection image pðKÞHR3 equipped with

crossing information, where p : R4 ! R3 is a fixed projection, and any point on

pðKÞ may be assumed to be a regular point, double point, an isolated triple

point, or an isolated branch point. Usually, we indicate crossing information

by dividing the lower disk into two pieces near a double point, and this

modification can be extended to neighborhoods of a triple point and a branch

point naturally. See Figure 1.

Any 2-knot diagram D is regarded as a disjoint union of compact,

connected surfaces, each of which is called a sheet. We denote by shðDÞ
and tðDÞ the numbers of sheets and triple points of D, respectively.

The sheet number and triple point number of a 2-knot K is the minimal

number of shðDÞ’s and tðDÞ’s for all diagrams which represents (the ambient

isotopy class of ) K , and denoted by shðKÞ and tðKÞ, respectively.

Let X be a quandle, and S an X -set. A pair of maps C ¼ ðC1;C2Þ,

C1 : fthe sheets of Dg ! X ;

C2 : fthe connected regions of R3npðKÞg ! S;

�

is an XS-coloring for D if it satisfies the following two conditions:

(1) C1ðHÞ � C1ðH 0Þ ¼ C1ðH 00Þ holds near every double point, where H

and H 00 are the lower sheets and H 0 is the upper sheet such that the

orientation of H 0 points from H to H 00.

(2) C2ðRÞ � C1ðHÞ ¼ C2ðR 0Þ holds near every regular point, where R and

R 0 are the regions adjacent to the sheet H such that the orientation of

H points from R to R 0.

See Figure 2. The elements C1ðHÞ A X and C2ðRÞ A S are called the colors of

a sheet H and a region R with respect to C, respectively. An XS-coloring

C ¼ ðC1;C2Þ is called trivial if C1 is a constant map, and otherwise non-trivial.

For S ¼ f0g, we call an XS-coloring an X-coloring simply.

Figure 1
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Let t be a triple point of a diagram D with an XS-coloring C. Among the

eight regions near t, the specified region R is the one such that all the

orientations of the sheets adjacent to R point away from R.

The color of t with respect to C is the element ðs; a; b; cÞ A S � X 3, where s

is the color of the specified region R, and a, b, and c are the colors of the

bottom, middle, and top sheets adjacent to R, respectively. See Figure 3.

The sign of t is positive if the ordered triple of the orientations of the top,

middle, and bottom sheets matches with the orientation of R3, and otherwise

negative. We denote it by eðtÞ A fG1g.
For a diagram D with an XS-coloring C, the 3-chain gD;C is defined by

gD;C ¼
X
t

eðtÞ � ðs; a; b; cÞ A CR
3 ðX ÞS ¼ Z½S � X 3�;

where the sum is taken for all triple points t of D and ðs; a; b; cÞ is the color

of t.

We remark that the 3-chain gD;C is a 3-cycle, that is, q3ðgD;CÞ ¼ 0.

Hence, it defines a third homology class ½gD;C � A H
Q
3 ðXÞS.

Theorem 3.1 (cf. [1, 3, 7]). (i) For a diagram D of a 2-knot K, the multi-

set

CðDÞ ¼ f½gD;C � A H
Q
3 ðX ÞS jC : XS-colorings for Dg

is independent of a particular choice of D.

Figure 2

Figure 3
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(ii) For a third cohomology class ½y� A H 3
QðX ;AÞS, the multi-set

FyðDÞ ¼ fh½gD;C �; ½y�i A A jC : XS-colorings for Dg

is independent of a particular choice of D.

The multi-set FyðDÞ in Theorem 3.1 is called the quandle cocycle invariant

of K associated with ½y� A H 3
QðX ;AÞS, and denoted by FyðKÞ.

Definition 3.2. Let t be a triple point of D with an XS-coloring C, and

ðs; a; b; cÞ A S � X 3 the color of t. We say that t is non-degenerated with

respect to C if a0 b0 c, and degenerated if a ¼ b or b ¼ c.

Let tðD;CÞ denote the number of non-degenerated triple points of D with

respect to an XS-coloring C.

Proposition 3.3. Let ½y� A H 3
QðX ;AÞS be a third cohomology class.

Assume that the quandle cocycle invariant FyðKÞ of a 2-knot K contains a non-

zero element. Then for any diagram D of K, it holds that tðD;CÞb lð½y�Þ.

Proof. By assumption, there is an XS-coloring C for D such that

h½gD;C �; ½y�i0 0. Hence, it holds that lð½gD;C �Þb lð½y�Þ. On the other hand,

it follows by definition that tðD;CÞb lð½gD;C �Þ. Hence, we have tðD;CÞb
lð½y�Þ. r

We remark that the number tðD;CÞ is originally introduced to give a lower

bound of the triple point number as follows.

Theorem 3.4 ([20]). If FyðKÞ contains a non-zero element, then it holds

that

tðKÞb lð½y�Þ:

Proof. Any diagram D of K satisfies tðDÞb tðD;CÞb lð½y�Þ by Prop-

osition 3.3. r

4. Lower bound of sheet number

Recall that a diagram D of a 2-knot K is the projection image pðKÞ
equipped with crossing information. For a double point p, the preimage

ðpjKÞ
�1ðpÞ consists of a pair of points, which are called the lower and upper

points with respect to the height function of the projection. Let L� ¼ L�ðDÞ
denote the closure of the lower points in K . The set L� is regarded as a

disjoint union of a graph and a finite number of circles embedded in K . In

particular, every vertex of L� has degree 1 or 4. More precisely, a branch
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point b of D gives a 1-valent vertex b� ¼ ðpjKÞ
�1ðbÞ of L�, and a triple point t

gives a 4-valent vertex t� on the bottom disk. We call t� the bottom point of t.

See Figure 4, where the solid and dotted lines mean L� and the closure of the

set of upper points in K , respectively.

Remark 4.1. (i) The set of the connected regions of the complement

KnL� has a one-to-one correspondence to the set of the sheets of D.

(ii) If D is XS-colored, then we give each region of KnL� the color

assigned to the corresponding sheet of D naturally.

Let C be an XS-coloring for a diagram D. We define the subgraph

L�ðCÞ of L� whose edges and circles satisfy the following condition: The

regions of KnL�ðCÞ on both sides of an edge/circle have di¤erent colors with

respect to C. In particular, any 1-valent vertex b� of L� and the edge incident

to b� do not belong to L�ðCÞ.

Lemma 4.2. Let X be an active quandle, C an XS-coloring for a diagram

D, and t a triple point of D.

(i) If t is a degenerated triple point with respect to C, then the bottom point

t� has degree 2 or 4 in L�ðCÞ, or does not belong to L�ðCÞ.
(ii) If t is a non-degenerated triple point, then t� has degree 3 or 4 in

L�ðCÞ.

Proof. Let ai ði ¼ 1; 2; 3; 4Þ, bj ð j ¼ 1; 2Þ, and c be the colors of the

bottom, middle, and top sheets, respectively, and ek ðk ¼ 1; 2; 3; 4Þ the edges

incident to t� in L� as shown in Figure 5.

Figure 4

Figure 5
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(i) If a1 ¼ b1 ¼ c, then we have a1 ¼ a2 ¼ a3 ¼ a4. Hence, the four

edges e1; . . . ; e4, and the bottom point t� do not belong to L�ðCÞ.
If a1 ¼ b1 0 c, then we have a1 ¼ a2 0 a3 ¼ a4. Hence, the edges e3 and

e4 belong to L�ðCÞ and e1 and e2 do not belong to L�ðCÞ. In particular, t�

has degree 2 in L�ðCÞ.
If a1 0 b1 ¼ c, then a1 0 a2 ¼ a3 0 a4. Hence, the four edges e1; . . . ; e4

belong to L�ðCÞ, and t� has degree 4 in L�ðCÞ.
(ii) Since a1 0 b1 0 c, we have a1 0 a2 and a3 0 a4. Hence, the edges e1

and e2 belong to L�ðCÞ. Assume that neither edge of e3 nor e4 belong to

L�ðCÞ, that is, a1 ¼ a3 and a2 ¼ a4. Since a1 � c ¼ a3, a2 � c ¼ a4, and X is

active, we have c ¼ a1 ¼ a2. This contradicts to a1 0 a2. Hence, at least one

of e3 and e4 belongs to L�ðCÞ, and t� has degree 3 or 4 in L�ðCÞ. r

Assume that L�ðCÞ is a disjoint union of m connected graphs and n

circles. Let vi ði ¼ 3; 4Þ denote the number of vertices of degree i, and r

the number of the connected regions of KnL�ðCÞ. The following is easily

obtained by the calculation of the Euler characteristic of a 2-sphere. See

Figure 6.

Lemma 4.3. r ¼ 1
2 v3 þ v4 þmþ nþ 1.

Proposition 4.4. Let X be an active quandle, and C an XS-coloring for a

diagram D. If tðD;CÞ > 0, then it holds that shðDÞb 1
2 tðD;CÞ þ 2.

Proof. Recall that shðDÞ is coincident with the number of the connected

regions of the complement KnL�. Since L�ðCÞHL�, it holds that shðDÞb r.

On the other hand, it follows by Lemma 4.2 that 1
2 v3 þ v4 b

1
2 ðv3 þ v4Þb

1
2 tðD;CÞ. Furthermore, it holds that mb 1 by tðD;CÞ > 0. By nb 0 and

Lemma 4.3, we have shðDÞb 1
2 tðD;CÞ þ 2 immediately. r

Theorem 4.5. Let X be an active quandle, and ½y� A H 3
QðX ;AÞS a third

cohomology class. If the quandle cocycle invariant FyðKÞ of a 2-knot K

contains a non-zero element, then it holds that

shðKÞb 1

2
lð½y�Þ þ 2:

Figure 6
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Proof. It follows by Propositions 3.3 and 4.4 that any diagram D of K

satisfies shðDÞb 1
2 tðD;CÞ þ 2b 1

2 lð½y�Þ þ 2. r

5. Upper bound of sheet number

Let k be a 1-knot, and r a non-negative integer. We take a tangle T in

the upper-half space R3
þ ¼ fðx; y; z; 0Þ j x; y A R; zb 0g whose knotting repre-

sents the 1-knot k. By spinning R3 about the axis R2 ¼ fðx; y; 0; 0Þ j x; y A Rg,
we recover the 4-space R4 ¼ fðx; y; z cos y; z sin yÞ j x; y A R; zb 0; y A S1g.

We take a 3-ball B in R3
þ such that the knotting part of T is entirely

contained in B. In the spinning process of R3
þ, we simultaneously rotate B r

full twists with keeping the points T V qB. The trace of T provides a 2-knot.

We call it the r-twist-spun knot, and denote it by trk [22]. See Figure 7.

Remark 5.1. (i) The 0-spun knot t0k is called the spun knot simply.

The spun knot has a diagram which is obtained from a tangle diagram of k in

the upper-half plane by spinning it about the axis. The diagram has neither

triple point nor branch point. Hence, we have tðt0kÞ ¼ 0 and shðt0kÞa
cðkÞ þ 1, where cðkÞ is the crossing number of the 1-knot k.

(ii) Every 1-twist-spun knot is a trivial 2-knot; that is, it bounds a 3-ball

embedded in R4 [22].

(iii) If rb 2 and k is a non-trivial 1-knot, then trk is always non-ribbon

[6]. Moreover, any diagram of trk must have at least four triple points [15].

To construct a diagram of a twist-spun knot trk, we consider the sequence

of Reidemeister moves for a tangle diagram T of k in the upper-half plane R2
þ

as shown in the upper row of Figure 8. Assume that T has n crossings.

Figure 7
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1 ! 2: The deformation is realized by an ambient isotopy of R2
þ.

2 ! 3: The tangle goes over the terminal path with several Reidemeister

moves II and n Reidemeister moves III.

3 ! 4: A single Reidemeister move I is performed.

4 ! 5: The deformation is realized by an ambient isotopy of R2
þ.

5 ! 6: The tangle goes under the initial path with several Reidemeister moves

II and n Reidemeister moves III.

6 ! 7: A Reidemeister move II and a Reidemeister move I are performed.

It is known that the sequence represents a full twist of the tangle (cf. [20]).

We take r copies of the sequence in a pile to obtain a diagram D of trk in R3

with open book structure. In particular, Reidemeister moves I and III in the

sequence correspond to a branch point and a triple point of D, respectively.

To obtain the set L� from D, we arrange the lower crossings in a line at

each stage of the sequence. See the lower row of Figure 8. Here, ~TT indicates

the immersed curve obtained from the diagram T by ignoring crossing

information, and the number of the parallel curves is equal to n. We put

r copies of the trace in a pile to obtain the set L� on a 2-sphere. See Figure 9.

Figure 8

Figure 9
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Lemma 5.2. For a non-trivial 1-knot k and rb 2, it holds that

shðtrkÞa f2cðkÞ � 1grþ 2:

Proof. We take a tangle diagram of k which realizes the crossing number

n ¼ cðkÞ. For the graph L� constructed as above, it is not di‰cult to count

the number of the connected regions of the complement trknL� as follows;

shðDÞ ¼ 1þ ðn� 1Þrþ nrþ 1 ¼ ð2n� 1Þrþ 2:

Since shðtrkÞa shðDÞ, we have the conclusion. r

Assume that a tangle diagram T has a particular pair of crossings labeled

a and b as shown in the top-left of Figure 10, where the boxed sub-tangle T 0

Figure 10
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has n� 2 crossings. We consider the sequence of Reidemeister moves for T as

in the top row of the figure.

The sequence is similar to the previous one, and the di¤erences are as

follows:

2 ! 3: The sub-tangle T 0 goes over the terminal path with several Reide-

meister moves II and n� 2 Reidemeister moves III.

3 ! 4: A Reidemeister move II and a Reidemeister move I are performed.

5 ! 6: The sub-tangle T 0 goes under the initial path with several Reidemeister

moves II and n� 2 Reidemeister moves III.

6 ! 7: A pair of Reidemeister moves II and a Reidemeister move I are

performed.

It is known that the sequence also represents a full twist of the tangle (cf.

[20]). In the middle and bottom rows of Figure 10, we illustrate the trace of

the lower crossings arranged in a line at each stage, where the middle row is the

case that the under-crossing of a comes before the over-crossing of b with

respect to the orientation of T , and the bottom row is the opposite case.

Theorem 5.3. Suppose that a non-trivial 1-knot k has a minimal diagram

which contains the portion or . Then for rb 2, it holds that

shðtrkÞa f2cðkÞ � 5grþ 2:

Proof. We may assume that k has a tangle diagram which contains a

sub-tangle T 0 with n� 2 crossings as above, where n ¼ cðkÞ.
We consider the case that the set L� is obtained by taking r copies of the

traces in the middle row of Figure 10. The case in the bottom row can be

similarly proved. By observing L� as shown in Figure 11, we count the

number of the connected regions of the complement trknL� as follows;

shðDÞ ¼ 1þ ðn� 2Þrþ ðn� 3Þrþ 1 ¼ ð2n� 5Þrþ 2:

Since shðtrkÞa shðDÞ, we have the conclusion. r

Figure 11
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6. 2- and 3-twist-spun trefoils

Let k be the trefoil knot. It follows by Theorem 5.3 that shðtrkÞa rþ 2.

In particular, we have shðt2kÞa 4 and shðt3kÞa 5.

Theorem 6.1. (i) The 2-twist-spun trefoil has the sheet number four.

(ii) The 3-twist-spun trefoil has the sheet number five.

Proof. (i) In [16], we prove that if a 2-knot K admits a non-trivial X -

coloring for some quandle X , then it holds that shðKÞb 4. Since the 2-twist-

spun trefoil t2k admits a non-trivial R3-coloring, it holds that shðt2kÞb 4.

Hence, we have shðt2kÞ ¼ 4. (Recently, we prove that shðKÞb 4 for any non-

trivial 2-knot K [17, 18].)

(ii) It is known that H 3
QðS4;Z2ÞG ðZ2Þ3 (cf. [1]). Let ½y� be a non-zero

cohomology class of this group. Then the quandle cocycle invariant of the

3-twist-spun trefoil is given by

Fyðt3kÞ ¼ f0 ð4 timesÞ; 1 ð12 timesÞg;

which contains a non-zero element.

In [20], we prove that if a homology class ½g� A H
Q
3 ðS4ÞZ2

satisfies

h½g�; ½y�i0 0 A Z2, then it holds that lð½g�Þb 6 and hence lð½y�Þb 6. Here,

the product is taken by regarding ½y� as a cohomology class of H 3
QðS4;Z2ÞZ2

.

By Theorem 4.5, we have

shðt3kÞb 1

2
lð½y�Þ þ 2b 5:

Hence, it holds that shðt3kÞ ¼ 5. r

We have an alternative proof of Theorem 6.1(i) similarly to that of (ii).

In fact, for a generator ½y� of H 3
QðR3;Z3ÞGZ3, we have

Fyðt2kÞ ¼ f0 ð3 timesÞ; 1 ð6 timesÞg

and lð½y�Þ ¼ 4. Hence, it holds that shðt2kÞb 4
2 þ 2 ¼ 4.

Question 6.2. Does the r-twist-spun trefoil have the sheet number rþ 2

for rb 4?
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