HirosHIMA MATH. J.
39 (2009), 277-292

Holomorphic functions taking values in a quotient
of Fréchet-Schwartz spaces

Belmesnaoui AQzzouz and Hassan M. EL AL

(Received July 23, 2007)
(Revised December 24, 2008)

ABSTRACT. We define a space of holomorphic functions O;(U, E|F) on a domain of
holomorphy U of C”", taking their values in quotient bornological spaces E|F as the
kernel of a sheaf-morphism. We show that if £ is a Schwartz b-space and F a Fréchet-
Schwartz b-space, then O,(U, E|F) and O(U,E)|O(U,F) are naturally isomorphic.

1. Introduction and notation

In studying spectral theory of topological algebras, L. Waelbroeck intro-
duced a class of spaces that he called b-spaces [16], i.e. complete and separate
convex bornological vector spaces in the sense of Hogbe Nlend [9], and he
succeeded in solving some problems related to the new class. To give the
definition of a b-space, we need to recall some definitions.

Let E be a real or complex vector space, and let B be an absolutely convex
set of E. Let Ep be the vector space generated by B i.e. Ep = | 10 AB. The
Minkowski functional of B is a semi-norm on Eg. It is a norm, if and only
if B does not contain any nonzero subspace of E. The set B is said to be
completant if its Minkowski functional is a Banach norm.

A bounded structure f on the vector space E is defined by a family of
“bounded” subsets of E with the following properties:

(1) Every finite subset of E is bounded.

(2) Every union of two bounded subsets is bounded.

(3) Every subset of a bounded subset is bounded.

(4) A set homothetic to a bounded subset is bounded.

(5) Each bounded subset is contained in a completant bounded subset.

A b-space (E,f) is a vector space E with a boundedness . A subspace F
of a b-space E is bornologically closed if FNEp is closed in Ep for every
completant bounded subset B of E.

On the other hand, if U is a domain of holomorphy of C”, we denote
by O(U) the space of holomorphic functions on U endowed with its von
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Neumann boundedness. If E is a b-space, then we define the space of E-
valued holomorphic functions on U as the b-space O(U, E) = limg O(U, Ep)
where limp is the bornological inductive limit, Ep is the Banach space generated
by B, O(U, Ep) is the space of holomorphic functions on U taking their values
in Eg and B ranges over bounded completant subsets of E. It is well known
that a function f is holomorphic if it is locally holomorphic, in other words, if
E is a b-space, then O(., E) is a sheaf which takes its values in the category of
b-spaces.

By using the projective tensor product ®, of G. Noél [12], L. Waelbroeck
[17] defined a space of holomorphic functions on a domain of holomorphy
U of C", which takes values in a quotient Banach space E|F as the space
O(U) ®, (E|F) = (O(U) ®nh E)|(O(U) ®nb F) where ®,, is the projective
tensor product in the category of b-spaces [9]. His definition gave a presheaf
and it did not give a sheaf. In 1986, F. H. Vasilescu [14] defined a space of
holomorphic functions on a complex manifold U taking their values in a
quotient of Fréchet space E|F as O(U) ®, (E|F) = (O(U) ®,E) | (0O(U) ®,F)
where ®, is the projective tensor product of Grothendieck [7]. In the general
situation the definition of Vasilescu gives also a presheaf and not a sheaf.

In [6], we tried to define a space of holomorphic functions which must be a
sheaf. For this reason we defined in [6] a new space of holomorphic functions
O(U,E) on a domain of holomorphy U of C”", valued in a b-space E as the
kernel of the sheaf-morphism 0: &(.,E) — &(.,E) ® C™, where C*" is the
space of antilinear forms on C”".

In this paper, we will extend our results in [6] to the category of quotient
bornological spaces in the sense of Waelbroeck [19]. In this direction, we will
define two spaces of holomorphic functions on a domain of holomorphy U
of C", taking their values in a quotient bornological space E|F. The first one
is the space O(U,E|F) ~1limy(O(V)e(E|F)) where V ranges over relatively
compact subsets of U and ¢ is the ¢-product defined in the category q [1] and
the second one O;(U, E|F) is the kernel of the sheaf-morphism 0 : &(., E|F) —
E(LEIF)®C™. O(.,E|F) is also a presheaf. But if E|F is a quotient
bornological space such that E is a Schwartz b-space and F is a Fréchet-
Schwartz b-space, we will prove that O(U, E|F) ~ O(U,E)|O(U,F). Finally,
we will prove that in general, the quotient bornological space O(U, E|F) is
naturally isomorphic to a subquotient of O;(U, E|F).

Let us fix some notation and recall some definitions that will be used in
this paper. Let E.V. be the category of vector spaces and linear mappings
over the scalar field R or C, and Ban the subcategory of Banach spaces and
bounded linear mappings.

1- Let (E,|.||p) be a Banach space. A Banach subspace F of E is a
vector subspace endowed with a Banach norm ||.|| such that the inclusion
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(F, I'lp) — (E,|Illg) is continuous. A quotient Banach space E|F is a vector
space E/F, where E is a Banach space and F a Banach subspace of E.

Given two quotient Banach spaces E|F and Ej|F;. A strict morphism
u: E|F — E||F; is a linear mapping u : x + F — u;(x) + F; where u; : E — E;
is a bounded linear mapping such that u(F) = F;. We say that u; induces
u. Two bounded linear mappings u;,u; : E — E; which induce a strict mor-
phism, induce the same strict morphism iff #; — u, is a bounded linear mapping
E — F;. A pseudo-isomorphism u : E|F — E;|F is a strict morphism induced
by a surjective bounded linear mapping u; : E — E; such that u;!(F;) =F.

Let E|F be a quotient Banach space and Ey, be a Banach subspace of
E such that F is a Banach subspace of Ey. Then the natural injection Ey — FE
induces a strict morphism Ey|F — E|F, and the identity mapping Idg : E — E
induces a strict morphism E|F — E|E,.

We call qBan the category of quotient Banach spaces and strict mor-
phisms. It is a subcategory of EV and contains the category Ban (any Banach
space E will be identified with the quotient Banach space E|{0} , and moreover
if uy : E — Ej is a bounded linear mapping, then u; induces a strict morphism
E|{0} — E;|{0} and every strict morphism E|{0} — E;|{0} is induced by a
unique bounded linear mapping u; : E — Ej).

The category Ban is not abelian, if £ is a Banach space and F a closed
subspace of E. It would be very nice if the quotient Banach space E|F is
isomorphic to the quotient (E/F)|{0}. This is not the case in qBan unless F
is complemented in E.

L. Waelbroeck [18] introduced an abelian category qBan generated by
qBan and inverses of pseudo-isomorphims. It has the same objects as qBan.
Every morphism u of gBan can be expressed as u = vo s~!, where s is a pseudo-
isomorphism and v is a strict morphism. For more information about quotient
Banach spaces we refer the reader to [18].

2- In a similar way, we define the category of quotient bornological
spaces. Given two b-spaces (E, ) and (F,f), a linear mapping u : E — F is
bounded, if it maps bounded subsets of E into bounded subsets of F. The
mapping u: E — F is said to be bornologically surjective if for every B’ € i,
there exists B e ff; such that u(B) = B'.

We denote by b(E), E;) the space of bounded linear mappings between the
b-spaces E; and E;. It is a b-space for the following equibounded bounded-
ness: a subset B of b(Ej,E,) is bounded if the set {u(x):ueB,xeB'} is
bounded in E; for all B’ bounded in E;. And we denote by b the category
of b-spaces and bounded linear mappings. For more information about this
category we refer the reader to [9] and [16].

Let (E,Bg) be a b-space. A b-subspace of E is a subspace F with a
boundedness fr such that (F,fr) is a b-space and fp < fp. A quotient
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bornological space E|F is a vector space E/F, where E is a b-space and F a
b-subspace of E.

Given two quotient bornological spaces E|F and E||F), a strict morphism
u: E|F — E||F; is induced by a bounded linear mapping u; : E — E; whose
restriction to F is a bounded linear mapping F — F;. Two bounded linear
mappings uj,v; : E — E;, which induce a strict morphism, induce the same
strict morphism E|F — E;|F; iff u; —v; is a bounded linear mapping E — Fj.
A strict morphism u is a class of equivalence, of bounded linear mappings, for
the equivalence just defined.

The class of quotient bornological spaces and strict morphisms is a
category, that we call q. A pseudo-isomorphism u: E|F — E}|F) is a strict
morphism induced by a bounded linear mapping u; : E — E; which is borno-
logically surjective and such that u;!(F)) = F as b-spaces i.e. Be f if Be Sy
and u;(B) € fr,).

As in the category qBan, there are pseudo-isomorphisms which do not
have strict inverses. L. Waelbroeck [19] constructed an abelian category q that
contains q such that all pseudo-isomorphisms of q are isomorphisms. For
more informations about quotient bornological spaces, we refer the reader to
[19].

3- A Banach space E is an %, ;-space, A > 1, if every finite-dimensional
subspace F' of E is contained in a finite-dimensional subspace F; of E such
that d(F1,[°) < A, where n=dim F,/° is K" (K=R or C) with the norm
SUp; <;<nlxil, and d(X,Y) =inf{|T|||T7": T: X — Y isomorphism} is the
Banach-Mazur distance of the Banach spaces X and Y. A Banach space E is
an Z,-space if it is an %, ;-space for some A > 1. For more information
about %, -spaces we refer the reader to [11].

4- Let E and F be two Banach spaces. A bounded linear mapping
u: E — F is nuclear if there exist bounded sequences (x,), < E’, (yu), < F and
the one (4,) = /' such that for all xe E we have u(x) = > 7% Lx/(X)y,.. A
b-space G is nuclear if all bounded completant B of G is included in a bounded
completant 4 of G such that the inclusion isp: Gg — G4 is a nuclear
mapping. For more informations about nuclear b-spaces we refer the reader
to [9].

2. Preliminaries

If E|F and E;|F; are two quotient bornological spaces, we denote by
q(E|F,E|F|) the quotient bornological space q!(E|F,E|F\)|q"(E|F,E\|F)),
where q'(E|F, E\|F}) is the space of f € b(E, E|) such that the restriction f] e
b(F, F)) satisfies the following boundedness: a subset B of q'(E|F,E|F;) is
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bounded if it is equibounded in b(E, E1) and B, = {f|, : f € B} is equibounded
in b(F, Fl), and qO(E|F, E1 |F1) = b(E, Fl).
If E|F,..., E,|F, are quotient bornological spaces, we define by induction:

q,(E|F, Er|Fi) = q(E|F, E1|FY)
and
Q. (E|F, ..., Ex|Fo1; Ed|Fy) = Q(E|F, q,(E1|FY, o B[ Bt E|Fr)).

The projective tensor product of two b-spaces E and F is the b-space
E ®,, F defined as limp c(Ep ®, Fc), where B (resp. C) ranges over bounded
completant subsets of E (resp. F). The inductive limit is taken in the category
b and Ep ®, Fc is the completion of the normed space (Ez ® Fe,|| ||,) where
Il ||, is the projective tensor norm given by the formula

. n n
ol = inf {30 Wl el s =70 e @ -

Recall the definition of the projective tensor product ®, of G. Nogl [12]
in the category q. Let E|F and E;|F; be two quotient bornological spaces.
These spaces have a projective tensor product (E|F)®, (E1|F;) if a quotient
bornological space E»|F, exists and a functor isomorphism of oq,(E|F, E}|F},.)
with oq(E|F>,.). The projective tensor product of E|F and E)|F) is naturally
isomorphic to E»|F,. By G. Noél [12], for all couples of quotient borno-
logical spaces E|F and E)|Fj, the projective tensor product (E|F) ®, (E1|F) is
defined, and if u: E|F — E'|F’ and v: E||Fi — E[|F| are morphisms, then
u®,v: (E|F)®, (Ei|F1) — (E'|F'") ®, (E[|F{) is a morphism. The projective
tensor product ®, defines a right exact functor q x q — q.

If X is a set and E|F is a quotient bornological space, G. Noél showed in
[12] that

(X, EF) =~ 1'(X) @, (EIF) ~ (I'(X) ®, E) | (I'(X) ®, F).

The e-product of two Banach spaces E and F' is the Banach space Ee¢F of
linear mappings E’ — F whose restrictions to the closed unit ball Bg: of E’
are continuous for the topology o(E’,E) where E’ is the topological dual of
E. 1t follows from the proposition 2 of [15] that the e-product is symmetric
i.e. the Banach spaces EeF and FeE are isometrically isomorphic. If E; and F;
are Banach spaces and u; : E; — F; are bounded linear mappings, i = 1,2, the
e-product of u; and u, is the bounded linear mapping ujeu, : EjcE; — FieF,
f—uyo fou, where uj is the dual mapping of u;. It is clear that ujeu, is
injective when u; and u; are injections. If G and E are Banach spaces and F
is a Banach subspace of E, then GeF is a Banach subspace of GeE. For more
informations about the ¢-product the reader is refered to [15].
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Recall from [2] that the e-product GeE of a b-space G by a Banach space
E is defined as the b-space |),(GpeE) where B ranges over bounded com-
pletant subsets of the b-space G. If F is a b-subspace in G, the space Fe¢E
is a b-subspace in GeE. Now, if G and E are two b-spaces, the e-product of
G and E is the b-space GeE = |, (GpeEc) where B (resp. C) ranges over
bounded completant subsets of the b-spaces G (resp. E).

If U is an open subset of C” and E is a b-space, the b-space of E-valued
holomorphic functions on U is defined as the b-space O(U, E) = limp O(U, Ep)
where limp is the bornological inductive limit and B ranges over bounded
completant subsets of the b-spaces E. Since O(U, Eg) ~ O(U)eEp, we obtain
O(U,E) ~ O(U)¢E.

Also, we recall that for each Banach space E, we have coeE ~ ¢o(E).
Since the inductive limit is an exact functor, it follows that if £ is a b-space,
we have coeE ~ ¢o(E) where ¢¢ is the Banach space of all sequences which
converge to 0.

In [1], we defined the ¢-product of an %, -space G by a quotient Banach
space E|F as the quotient Banach space Ge(E|F) = (GeE)|(GeF). By Prop-
osition 6.2 of [1], the functor Ge. : b — b is exact, and it follows from Theorem
4.1 of [19], that this functor admits an exact extension Ge. : ¢ — q. This shows
that if E|F is a quotient bornological space, then Ge(E|F) = (GeE) | (GeF).

Recall that a Banach space H has the approximation property if the
identity mapping Idy : H — H belongs to the closure of (H)' ® H in the
topology of the uniform convergence on the compact subsets of the Banach
space H.

The following result shows that for nuclear b-spaces, our e-product
defined in [1] is isomorphic to the projective tensor product ®, of G. Nogl
[12].

THEOREM 2.1. Let N be a nuclear b-space and E|F be a quotient
bornological space. Then G ®, (E|F) ~ Ge(E|F).

Proor. If N is a nuclear b-space, then by [9], we have N =limg Np
where each Banach space Np is isometrically isomorphic to the %, -space
co. Since each functor Nge.:b — b is exact and the inductive limit limp is
an exact functor on the category b, the functor Ne. = limg(Npe.) :b — b is
exact. Now, it follows from Theorem 4.1 of [19], that this functor has an
exact extension Ne.:q — q. Then for every quotient bornological space E|F,
we have Ne¢(E|F) = (N¢E)| (NeF).

On the other hand, since N is a nuclear b-space, it follows from [9] that
N¢E =N ®,, E. Hence Ne(E|F) = (N ®,, E)| (N ®,, F). Now, by [12], we

Ty

have G®, (E|F) = (N ®nh E)|(N ®nb F). This establishs the result.
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As a consequence, if U is an open subset of C”, the b-space O(U) is
nuclear for its von Neumann boundedness, and then we obtain

O(U) ®, (E|F) ~ O(U)e(E|F) ~ (O(U)eE) | (O(U)eF) ~ O(U, E)| O(U, F).

3. Definition of the presheaf O(.,E|F)

Let U be an open subset of R” and let ¥y be the set of all open relatively
compact subsets of U. If Ve %y, the space O(V) with its von Neumann
boundedness is a nuclear b-space, and then defines an exact functor O(V)e. =
O(V,.) on the category b. If E is a b-space and F is a bornologically closed
subspace of E, the b-space

O(V,E/F)=0O(V)e(E/F)
is defined as
(O(V)eE)/(O(V)eF) = O(V,E)/O(V, F).
If W,V e%y such that W < V', we have a bounded linear mapping
v.o0V)—oWw), [~/
where f| is the restriction of f to W. We can show that (O(V))) 4, is a
projective system in the category b. If E is a b-space the family (O(V)eE)y 4,
is also a projective system in b, and then has a projective limit in the category
" We define
O(U,E) =limyeqg, (O(V)EE).

Also we define the presheaf O(.,E|F).

DErFINITION 3.1. Let U be an open subset of C" and E|F be a quotient
bornological space. Then we define the space of holomorphic functions
O(U, E|F) as the quotient bornological space limy (O(V)e(E|F)) where V ranges
over open relatively compact subsets of U.

It is clear that O(U, E|F) =limy ((O(V)¢E) | (O(V)eF)). To prove that
limy ((O(V)eE) | (O(V)eF)) = limp(O(V)eE) | limy (O(V)eF), we need to recall
from [3] some definitions.

The boundedness of a Fréchet space has a property that a general
bornology does not have. b-Spaces whose boundedness have this property
were called Fréchet b-spaces in [3].

DErFINITION 3.2. A b-space E is a Fréchet b-space if for all sequences of
bounded subsets (B,), of E, there exists a sequence of positive real numbers (1,),
such that \ ), 4B, is bounded in E.
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If U’ = U is open, the morphism O,(U, E|F) — O(U’,E|F) is the projective
limit of the restrictions O(V)e(E|F) — O(V')e(E|F) with V' open, relatively
compact in U, V' open, relatively compact in U’ and V' = V. It follows that
Oi(.,E|F) is a presheaf.

Recall that both Borel and Mittag-Leffler [10] considered a class of
mappings with a dense range. In [3], we studied this class that we called
“approximatively surjective mappings’’.

DeriNITION 3.3, Let (E,fg) and (F,fBr) be b-spaces. A bounded linear
mapping u : E — F is approximatively surjective if for each completant bounded
subset B € [, there exist bounded completant bounded subsets By € i and
C e fg such that B = By, u(C) = By and for every ¢ >0, we have By < ¢B; +

Uy Mu(C).

It is clear that in the Banach case, a mapping is approximatively surjective
if and only if it has a dense range.

For such a class of mappings, we proved in (cf. [3]) a version of Bartle-
Graves theorem.

THEOREM 3.4 (cf. [3]). Let u:E — F be an approximatively surjective
bounded linear mapping between b-spaces and X a compact space. The bounded
linear mapping C(X,u): C(X,E) — C(X,F), f— uof is approximatively
surjective.

Theorem 3.4 is useful to establish the exactness of the projective limit
functor on the category of b-spaces as the following Theorem shows:

THEOREM 3.5 [3]. Let (E,) and (F,) be projective systems in the category
of b-spaces such that for each neN, F, is a Fréchet b-space which is a
bornologically closed subspace of E,. For each neN, let u,,|: E, 1 — E, be
a bounded linear mapping whose restriction v,y = Untly, :F, 1 — F, is an
approximatively — surjective bounded linear mapping. Then lim,(E,/F,) ~
(lim, E,)/(lim, F),).

As an immediate consequence, we obtain an analogue in the category of
quotients bornological spaces.

COROLLARY 3.6. For each n e N, let E, be a b-space and F, be a Fréchet
b-space which is a b-subspace of E, and let u,. : E .1 — E, be a bounded linear
mapping whose restriction v, = u,,H‘F”H :Fyyy — F, is an approximatively
surjective bounded linear mapping. Then lim,(E,|F,) ~ (lim, E,) | (lim, F,).

Proor. In fact, the projective limit functor lim, is exact on the category
of b-spaces b, hence by Theorem 4.1 of [19], the functor lim, admit an exact
extension to the category q. This proves the result.
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If G is a b-space, we denote by G, the space G that we endow with its
Schwartz boundedness (i.e. a subset 4 of G is bounded if there exists a
completant bounded subset B of G such that 4 is compact in the Banach space
Gp). The space G, is a Schwartz b-space. If G is a Schwartz b-space, then
G=0G..

Our first principal result is the following:

THEOREM 3.7. Let U be an open subset of C" and E|F be a quotient
bornological space such that E is a Schwartz b-space and F is a Fréchet-
Schwartz b-space. Then the quotient bornological spaces O(U,E|F) and
O(U,E)|O(U,F) are naturally isomorphic.

ProoF. The set U is not assumed to be a domain of holomorphy of C”".
Let U=V be its associated domain of holomorphy. In ¥, each compact
subset L is contained in a compact and holomorphically convex subset of V|
then V is the union of a sequence of compact subset K, such that, for each n,
we have K, < K1+1 and K, is a holomorphically convex subset of V' where
f(n+1 is the interior of K, ..

It is well known that the Runge Theorem implies that the restriction
O(U,G) — O(V,G) has a dense range whenever G is a Banach space and V is
holomorphically convex.

On the other hand, let E|F be a quotient bornological space. Since F is a
b-space, the restriction O(K,,;1)eF — O(K,)eF is an approximatively surjective
mapping. Now, E|F defines the following exact sequence in q:

0—F—E—E|F—0.
Its image by each exact functor O(K,)e. : ¢ — q is the following exact sequence:
0 — O(K,)eF — O(K,)¢eE — O(K,)&(E|F) — 0.

We obtain then the following infinite commutative diagram:

0 — O(K,H_l)S‘F — O(I(,H_l)&‘E — (0(Kn+1)8E| O(K,H_])SF) — 0

0 — O(Kn)EF E— O(Kn)SE —_— (0(K,,)8E|0(Kn)8F) — 0




286 Belmesnaoui AQzzouz and Hassan M. EL ALj

where the rows are exact and the vertical arrows O(K,i))eF — O(K,)eF are
approximatively surjective for each n. Since each b-space F, is a Fréchet
b-space, it follows from Theorem 2.8 that

lim,(E,|F,) ~ (lim, E,) | (lim, F),).
By Theorem 2.7, the bounded linear mapping
C(K7 unJrl) : C(Ka En+1) - C(Ka En)

is approximatively surjective if K is compact and u,; : E,;1 — E, is an
approximatively surjective mapping. It follows that

C(K,lim,(E,|F,)) ~ C(K, (lim, E,)) | C(K, (lim, F,)).

Because we assume that each E, and F, has a Schwartz boundedness, it follows
that E= (), Es =) (E4), (resp. F =), Fp=),(Fp).) where 4 (resp. B)
ranges over bounded completant subsets of E (resp. F) and (Ey4), (resp. (Fp),)
is the space E, (resp. Fj) with its Schwartz boundedness. The bounded linear

mapping
O(Kus1,F) — O(K,, F)
is then approximatively surjective and therefore
lim,(O(K,, E)| O(K,,F)) = O(U,E|F) ~ O(U,E)| O(U, F)

and the Theorem 3.7 is proved.

4. The sheaf O(.,E|F)

To give the definition of the sheaf of holomorphic functions O(., E|F),
we recall that in [4], we defined several sheaves of functions which take the
values in a quotient bornological space E|F, such as, C(.,E|F), C"(.,E|F) if
re RI\N, Cy(.,E|F), C.(.,E|F) and 0(.,E|F). By [l], for every quotient
bornological space E|F, we have Z (X,E|F)=%(X,E)|Z(X,F) where
F(X) = C(X), Cy(X), Co(X) and O(R,w,).

In this paper, we need to use the sheaf £(., E|F). Recall that the space
of holomorphic functions that L. Waelbroeck [17] defined as O(.) ®, (E|F) is a
presheaf but not a sheaf. In view of this we defined in [6] another space of
holomorphic functions O;(U, E) which define a sheaf on the category b. To
extend it to the category of quotient bornological spaces q, we need to recall
first the space &(U,E) when E is a b-space [6].

The elements of &(U, E) are functions f : U — E such that for all xe U,
there exist a coordinate neighbourhood U, of x and a completant bounded
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subset B, of E such that fjy e C*(U,, Ep). A subset C of &§(U,E) is
bounded if for every x e U, there exist a neighbourhood U, of x and a
bounded completant subset B, of E such that C| = {f| :f € C} is bounded
in the Fréchet space C*(Uy, Ep,). For E=C, one writes &(U) instead of
é(U,C).

By Proposition 2.1 of [6], if u: E— F is a bornologically surjective
bounded linear mapping between b-spaces, then the bounded linear mapping
&(U,u): &(UE) — &U,F), f—uo f is bornologically surjective. Hence,
the functor &(U,.) : b — b is exact. Now, Proposition 4.1 of [19] implies that
this functor has an exact extension &(U,.):q — q. As a consequence, we
obtain

&(U,E|F) ~ §(U)e(E|F) ~ 6(U,E)|8(U,F).

Let X be a topological space. We define a category Openy whose objects
are the open subsets of X such that if ¥ and Z are open subsets of X such that
Z < Y, then a unique morphism iyz : Z — Y exists. If K = Z < Y, then the
composition of the two morphisms izx : K — Z and iy : Z — Y is the unique
morphism iyx : K — Y. The category Openy is the opposite category to
Openy.

To give the definition of the sheaf of holomorphic functions O, (., E|F), we
need the following lemma:

Lemma 4.1. Let X be a topological space. If F1 and 7, are sheaves
Openy — q and u: 7, — F, is a morphism of sheaves, then Ker(u)(.) is a

sheaf.

Proor. Let U be an open subset of a topological space X. If % and %,
are presheaves and u: #] — &, is a morphism of presheaves then ker(u(U))
is the kernel of u(U): #(U) — #(U). If V < U, we have a morphism
Ker(u(U)) — Ker(u(V)) i.e. Ker(u(.))is a presheaf.

Let 9(U) ~ Ker(u(U)) and let (U;);.; be an open covering of U. For all
i e I, we have a morphism 4(U) — %(U;) which is the “restriction morphism”
given by the structure of the presheaf, and hence we define a morphism

oy : 9(U) — [[.9(U)

as the direct product of the restriction morphisms 4(U) — %(U;). We shall
need a second morphism

O1uy) * ng(Ui) — Hi,j gunu).
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To define it, we first observe that U; = U}.(U,;ﬂ U;). Hence we have a
morphism  4(U;) — [[;4(U;NU;), and then the morphism [[,%(U;) —
Hi,_/ 4(UiN U])

Instead of looking at Uj;, we could consider U;, U; = (J,(U;iNU;). We
consider a morphism

G(U) — [[.6uiny)
and therefore a morphism
ILgWQHILjﬂ“”@)

Note that [[;%(U;) =[[;%4(U;). In this way, we obtain a second morphism
[;9(U) — I, ;9(U;NU;). The morphism

51([//) : Hz(q(Ul) — Hi,j @(UZ n U])
is the difference between the two morphisms described above. It is clear that
d1uy © oy = 0.

To prove that Ker(u)(.) is a sheaf whenever &, and &, are sheaves, we
use a 3 x3 Lemma in [13]. The following diagram

0 0 0

0 — #HU) —b I7:(U) — H,‘L/‘.yl((],'ﬂ(]j)

0 — #)NU) — 1,7, (U) —— 11,7, (UiN U))

is commutative. Since its three columns and its second and third rows are left
exact, the first row is left exact, and then %(.) is a sheaf.

In our definition we shall use the quotient bornological space
&(U,E|F). For this purpose we first prove that &(.,E|F) is a sheaf.
In fact, if U’ < U, we have a natural morphism &(U,E|F)—
&(U',E|F). Tt is clear that &(.,E|F) is a presheaf.

THEOREM 4.2. Let U be an open subset of C" and E|F a quotient
bornological space. Then the presheaf &(.,E|F) is a sheaf.
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ProoF. We must show that the preshef &(., E|F) is a sheaf. We consider
an open covering (U;) of U. We assume that (f;) is a system with f;e
(U, E) such that

Jivnu, = fijuny € (Ui N U, F).

Using a partition of unity (¢;) subordinate to the open cover (U;) of U, we let
f=>0.fi. Wehave f=>¢,fie &(U,F). In a similar way B is bounded
in §£(U,F) if it is bounded in &(U,E) and for every i, the set By, =
{flv, = fi : f € B} is bounded in &(U;, F). In this way the morphism Jyy,
is monic.

Let x € U, there exists a neighbourhood W of x which meets only a finite
number of supports of the functions (p;). Consider

f\'W - fi\W = Zj %\W(](}\W - fi\W)~
We know that on W, we have

ﬁw—fﬂw Eéa(W,F)

We wish also to prove that the kernel of (g, is naturally isomorphic
to the coimage of Jy. Again the b-space in the definition of the kernel has
as bounded subsets the ranges of mappings W — [[;&(U;, E) such that the
differences of the restrictions to U;N U; are bounded in &(U;NU;, F). The
same construction gives a bounded mapping of W into &(U,E) such that
Vi:gw — gqw is a bounded mapping from W into &(W,F). Therefore the
sequence (0,dy(z;),01(v,)) is left exact, and the presheaf &(., E|F) is a sheaf.

Now, we are in position to give the definition of the sheaf O,(.,E|F).

DEFINITION 4.3. Let E|F be a quotient bornological space. The sheaf
O\(., E|F) is the kernel of the sheaf-morphism ¢ : &(., E|F) — &(., E|F) ®,C"™,
where C™ is the space of antilinear forms on C" and ®, is the projective tensor
product in q.

THEOREM 4.4. Let E|F be a quotient bornological space such that E is a
Schwartz b-space and F is a Fréchet-Schwartz b-space and let U be an open
subset of C". Then the quotient bornological space O(U,E|F) is naturally
isomorphic to a subquotient of O;(U, E|F).

Proor. Let V' be an open relatively compact subset of U. Since the
b-spaces O(V') and &(V') are nuclear, then O(V)e(E|F) = (O(V)¢E) | (O(V)eF)
and &(V)e(E|F) = (6(V)eE)|(6(V)eF). On the other hand, we have an
injection i: O(V) — &(V), and then the morphisms ig: O(V,E) — &(V,E)
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and ir : O(V,F) — 6(V,F) are injectives such that the restriction of ig to
O(V,F) coincides with ir. Hence the bounded linear mapping ir induces
a strict morphism (O(V)eE) | (O(V)eF) — (6(V)eE) | (8(V)eF). We have to
prove that it is monic. This is equivalent to showing that O(V,F) =
O(V,E)YN&(V,F) where the equality is bornological.

In fact, in one dimension, we use Morera’s Theorem. Let V' < C be open
and simply connected and f e O(V,E)YN&(V,F). Letz,e V. Then f has a
primitive

It is continuous, F-valued and of class C! as an F-valued function.

It satisfies the Cauchy-Riemann relations. It is holomorphic, F-valued.
Its derivative f is also holomorphic, F-valued. A bounded subset of O(V, E)
which is bounded in &(V, F) is in a similar way bounded in O(V,F). If V is
not simply connected, it is locally simply connected, and its holomorphy is
local.

Consider f e O(V,E)N&(V,F). Then there exists a completant bounded
subset B of E such that fe O(V,Eg). By Hartog’s Theorem, applied to
holomorphic functions taking their values in the Banach space Ej, the function
[ is continuous and separately analytic. Hence f € O(V,F). The same proof
shows that bounded subsets of O(V,E)Né&(V,F) are bounded in O(V,F).

Now, as O(V, E|F) is the kernel of the sheaf-morphism 0 : &(V, E|F) —
&(V,E|F) ®,C™, it follows that O(V)e(E|F) is a subquotient of the quotient
bornological space O;(V, E|F).

Finally, since O(U,E|F) is the quotient bornological space
limy (O(V)e(E|F)) where V ranges over open relatively compact subsets
of U (definition 3.1) and the quotient bornological spaces O(U, E|F) and
O(U,E)| O(U,F) are naturally isomorphic whenever E is a Schwartz b-space
and F is a Fréchet-Schwartz b-space (Theorem 3.7), it follows that the
morphism

O,(U,E|F) — O(U,E|F)

is monic because it is the projective limit of the monic morphisms
O(V)e(E|F) — O\(V, E|F)).
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