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Abstract. We show that the Lebesgue space with a variable exponent Lpð�Þ is a

rearrangement–invariant space if and only if p is constant. In addition, we give a

necessary and su‰cient condition on a variable exponent for a martingale inequality to

hold.

1. Introduction

Let p be a variable exponent, i.e., let p : Rn ! ½1;yÞ be a measurable

function. The Lebesgue space with a variable exponent Lpð�Þ is defined to be

the set of measurable functions f on Rn such that for some l > 0,ð
R n

jlf ðxÞjpðxÞdx < y:

Such Lebesgue spaces were studied by O. Kováčik and J. Rákosnı́k [6], X. Fan

and D. Zhao [3] and others.

In this paper, we consider such Lebesgue spaces Lpð�Þ on a probability

space W: one of our purposes is to prove that Lpð�Þ is a rearrangement–invariant

space (see Definition 5) if and only if p is constant.

Another purpose is to prove the weak type Doob inequality with a

variable exponent. Let ðW;S;PÞ be a probability space with a filtration

F ¼ ðFnÞn AZþ
, where we mean by filtration an increasing sequence of sub-

s-algebras of S. We define Mf ¼ supn AZþ j fnj and fy ¼ limn!y fn almost

surely (a.s.). Let f ¼ ð fnÞn AZþ
be a uniformly integrable F-martingale, that

is, f ¼ ð fnÞ is a F-martingale such that fn ¼ E½ fyjFn� a.s. for n A Zþ. Let

pb 1 be a constant. Then

lpPðMf > lÞaE½j fyjp� ðl > 0Þ: ð1Þ

This inequality was proved by J. L. Doob.
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It is well known that inequality (1) is a probabilistic analogue of the

Hardy-Littlewood weak type inequality

jfx A G : Mf ðxÞ > tgja C

tp

ð
G

j f ðyÞjpdy; 1a p < y;

where GHRn is an open set and M denotes the Hardy–Littlewood maximal

operator.

Recently, this inequality was generalized as follows (see [2]):

If there exists a constant c such that for every ball B,

1

pðxÞ a
c

jBj

ð
B

1

pðyÞ dy; x A B; ð2Þ

then there exists a constant C such that for any t > 0,

jfx A G : Mf ðxÞ > tgjaC

ð
G

j f ðyÞj
t

� �pðyÞ
dy:

We show that an analogous result holds in our setting; under the condition

that

1

p
aCE

1

p

����Ft

� �
for all stopping times t;

we prove the inequality

PðMf > lÞaE

���� fyl
����
p� �
: ð3Þ

We also consider the inequality

E½lp1fMf>lg�aE½j fyjp�: ð4Þ

2. Preliminaries

Let ðW;S;PÞ be a complete probability space. We denote by F the set

of all filtrations of ðW;S;PÞ, by MðFÞ the set of all uniformly integrable

martingales with respect to F A F, and by S1SðFÞ the set of all stopping

times with respect to F A F. For f ¼ ð fnÞn AZþ
A MðFÞ, we let

Mf ¼ sup
n AZþ

j fnj and fy ¼ lim
n!y

fn a:s:

Next we fix some notation concerning generalized Lebesgue spaces.

Let p be a variable exponent, i.e., let p : W ! ½1;yÞ be a random variable.

We put pþ ¼ ess supW p and p� ¼ ess infW p. For a random variable x we

define the functional rpð�Þ by
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rpð�ÞðxÞ ¼ E½jxjp� ¼
ð
W

jxðoÞjpðoÞdPðoÞ:

The Lebesgue space Lpð�Þ with the variable exponent p on W is defined to be the

set of all random variables such that rpð�ÞðlxÞ < y for some l > 0. It is easy

to see that the functional k � kpð�Þ defined by

kxkpð�Þ ¼ inffl > 0 : rpð�Þðx=lÞa 1g

is a norm on Lpð�Þ.

Proposition 1. Let p be a variable exponent and let x A Lpð�Þ. Then

kxkpð�Þ a 1 if and only if rpð�ÞðxÞa 1.

See [6] for a proof.

Let X and Y be normed linear spaces. We write X ,! Y if X is

continuously embedded in Y, i.e., if X HY and the inclusion map is con-

tinuous.

Proposition 2. Let p and q be variable exponents. If pa q a.s. on W,

then Lqð�Þ ,! Lpð�Þ.

See [6, Theorem 2.8] for a proof.

Definition 1. A Banach function space over a probability space is a real

Banach space ðX ; k � kX Þ of random variables such that:

(B1) Ly ,! X ,! L1.

(B2) If x A X and jyja jxj a.s., then y A X and kykX a kxkX .
(B3) If xn A X for all n, 0a xn " x a.s., and supnkxnkX < y, then x A X

and kxkX ¼ supnkxnkX .

Proposition 3. The space ðLpð�Þ; k � kpð�ÞÞ is a Banach function space over a

probability space W.

Proof. The completeness can be proved as in [6] or [5]. It is easy to

prove (B1), (B2) and (B3).

If x and y are random variables, we write xFd y when they have the same

distribution.

Definition 2. A rearrangement-invariant (r.i.) space is a Banach function

space ðX ; k � kX Þ such that:

(R) If xFd y and x A X , then y A X and kxkX ¼ kykX .
It is known (cf. [1, p. 43]) that if p is constant on W, then ðLpð�Þ; k � kpð�ÞÞ is

an r.i. space.

209Lebesgue spaces with variable exponent



3. Results

Throughout this section, we will consider martingales f ¼ ð fnÞ such that

fy A Lpð�Þ and filtrations F ¼ ðFnÞ such that F0 includes the family of P-

negligible subsets of W. We denote by 1A the indicator function of A A S.

Our main result is as follows:

Theorem 1. Suppose that ðW;S;PÞ is a nonatomic space, i.e., that

ðW;S;PÞ contains no atom. If there exists a norm on Lpð�Þ which is equivalent

to k � kpð�Þ and with respect to which Lpð�Þ is an r.i. space, then p is constant.

Proof. We assume that p is not constant. It su‰ces to show that there

are random variables x and y such that x A Lpð�Þ, xFd y and kykpð�Þ ¼ y.

Then there exist numbers m1 and m2 such that 1am1 < m2 < y and both

A ¼ fpam1g and B ¼ fm2 a pg have positive measure. Since W is non-

atomic, there exist measurable sets A 0 and B 0 such that A 0 HA, B 0 HB and

PðA 0Þ ¼ PðB 0Þ > 0. Again since W is a nonatomic, there exist sequences

fAngn AN and fBngn AN of pairwise disjoint measurable subsets of W such that

An HA 0; Bn HB 0 ðn A NÞ;

and

PðAnÞ ¼
1

2n
PðA 0Þ; PðBnÞ ¼

1

2n
PðB 0Þ ðn A NÞ:

Define

x ¼
Xy
n¼1

2n=m21An
and y ¼

Xy
n¼1

2n=m21Bn
:

Then we have xFd y and

E½xp� ¼
Xy
n¼1

E½2ðn=m2Þp1An
�a

Xy
n¼1

E½2ðm1=m2Þn1An
� ¼

Xy
n¼1

1

2

� �1�m1=m2

( )n

PðA 0Þ < y:

Therefore x A Lpð�Þ. Moreover, for each l > 0, there is a number Nl A N such

that la 2Nl=m2 . Then we have

E

���� yl
����
p� �

b
Xy
n¼Nl

E
2n=m2

l

� �p

1Bn

" #
b

Xy
n¼Nl

1

lm2
PðB 0Þ ¼ y:

Hence kykpð�Þ ¼ inffl > 0 : E½jy=ljp�a 1g ¼ y.
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If ðW;S;PÞ has an atom, then the conclusion of Theorem 1 may not hold.

Example. Let A1, A2 and A3 be measurable subsets of W such that

PðA1Þ ¼ PðA2Þ ¼
2

5
; PðA3Þ ¼

1

5
and Ai VAj ¼ q ði0 jÞ:

We let S ¼ sðA1;A2;A3Þ. Now we define

p ¼ 1 on A1 UA2;

2 on A3:

�

For random variables x and y, we can write

x ¼
X3

i¼1

ai1Ai
; y ¼

X3

i¼1

bi1Ai
;

where ai; bi A R.

We observe that if x0 y and xFd y, then a1 0 a2, a1 ¼ b2, a2 ¼ b1 and

a3 ¼ b3. As a result, for l > 0,

E

���� xl
����
p� �

¼
���� a1l

����PðA1Þ þ
���� a2l

����PðA2Þ þ
���� a3l

����
2

PðA3Þ

¼
���� b2l

����PðA1Þ þ
���� b1l

����PðA2Þ þ
���� b3l

����
2

PðA3Þ ¼ E

���� yl
����
p� �
;

that is, kxkpð�Þ ¼ kykpð�Þ. Thus ðLpð�Þ; k � kpð�ÞÞ is the r.i. space, but p is not

constant.

Now we study some martingale inequalities.

The next proposition is an analogue of the result of [2, Theorem 1.8].

The method of [2] is available for the proof of the proposition.

Proposition 4. Let F A F. If there is a constant Cb 1 such that

1

p
aCE

1

p

����Ft

� �
a:s:

for all t A S, then for any f A MðFÞ such that fy A Lpð�Þ and for any l > 0,

PðMf > lÞaCE

���� fyl
����
p� �
:

Proof. For l > 0, we define

t ¼ inffn A Zþ : j fnj > lg A S;
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with the convention that inf q ¼ y. It is easy to prove that fMf > lg ¼
ft < yg and ft < ygH fj ftj > lg. Note that

E

���� fyl
����
����Ft

� �
> 1 a:s: on ft < yg: ð5Þ

By Young’s inequality,

E

���� fyl
����
����Ft

� �
aE

1

p

���� fyl
����
p����Ft

� �
þ E

1

q

����Ft

� �
a:s:; ð6Þ

where q is the conjugate function of p. By (5) and (6), we have

E
1

p

����Ft

� �
¼ 1� E

1

q

����Ft

� �

< E

���� fyl
����
����Ft

� �
� E

1

q

����Ft

� �

aE
1

p

���� fyl
����
p����Ft

� �
a:s: on ft < yg:

Therefore,

PðMf > lÞaE
1

E½1=p jFt�
E½1=p jFt�1ft<yg

� �

aE
1

E½1=p jFt�
E

1

p

���� fyl
����
p����Ft

� �
1ft<yg

� �

aE
1

E½1=p jFt�
� 1
p
�
���� fyl

����
p

1ft<yg

� �

aCE

���� fyl
����
p

1ft<yg

� �
aCE

���� fyl
����
p� �
:

This completes the proof of Proposition 4.

For a specific filtration, we prove the inequality (4). In order to prove it,

we need the following lemmas.

Lemma 1. Let A be a sub-s-algebra of S and let p be an A-measurable

variable exponent. Then

E½jxj jA�p aE½jxjpjA� a:s:

for all x A Lpð�Þ.
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Proof. Suppose that p is an A-measurable simple function and pb 1 on

W. Then we can write

p ¼
Xn

k¼1

ak1Ak
a:s:;

where the sets Ak are pairwise disjoint subsets of W and ak b 1 ðk ¼ 1; 2; . . .Þ.
We find that

E½jxj jA�p ¼
Xn

k¼1

E½jxj jA�ak1Ak
a

Xn

k¼1

E½jxjak jA�1Ak

¼ E
Xn

k¼1

jxjak1Ak

����A
" #

¼ E½jxjpjA� a:s:

Suppose now that p is an arbitrary A-measurable variable exponent. Then

there exists a sequence ðpnÞn AN of A-measurable simple functions such that

pn " p ðn ! yÞ and pn b 1 ðn A NÞ:

Since jxjpn a 1þ jxjp A L1 ðn A NÞ when x A Lpð�Þ, the dominated convergence

theorem gives

E½jxj jA�p aE½jxjpjA� a:s:

This completes the proof of Lemma 1.

Lemma 2. Let fAkgk AN be a sequence of pairwise disjoint measurable

subsets of W such that W ¼ 6
k AN Ak, and let F0 ¼ sðfAk; k A NgÞ. If there

exists a constant Cb 1, independent of x A Lþ
pð�Þ, such that

E½E½xjF0�p jF0�aCE½xpjF0� a:s:; ð7Þ

then p is F0-measurable. Here Lþ
pð�Þ ¼ fx A Lpð�Þ : xb 0g.

Proof. Let A ¼ F0. Assume that p is not A-measurable, i.e., that

there exists an index N A N such that p is not constant on AN . Then there

exists a number m such that 1am < y, and both L1 ¼ fpamgVAN and

L2 ¼ fm < pgVAN have positive measure. For a > 1, we define a random

variable xa by xa ¼ a1L1
A Lþ

pð�Þ. Then we have

E½xp
a jA� ¼ 1AN

PðANÞ
E½ap1L1

�a am PðL1Þ
PðANÞ

1AN
a:s:;

and
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E½E½xajA�p jA�1AN
¼ E

1AN

PðANÞp
E½a1L1

�p jA
� �

b
1AN

PðANÞ
E ap PðL1Þ

PðANÞ

� �p

1L2

� �
a:s:

Hence

E½E½xajA�p jA�
E½xp

a jA� 1AN
b

1AN

PðL1Þ
ap�m PðL1Þ

PðANÞ

� �p

1L2

� �
a:s:

Since p�m > 0 on L2,

lim
a!y

E½E½xajA�p jA�
E½xp

a jA� 1AN
¼ y a:s:

Therefore there is no constant Cb 1 satisfying (7). This completes the proof

of Lemma 2.

Theorem 2. Let fAkgk AN be as in Lemma 2 and let F ¼ ðFnÞn AZþ
A F be

such that F0 ¼ sðfAk; k A NgÞ. Then the following are equivalent:

( i ) There exists a constant Cb 1, independent of f A MðFÞ, such that for

any l > 0,

E½lp1fMf>lg�aCE½j fyjp�: ð8Þ

(ii) p is F0-measurable.

Proof. (i) ) (ii): By (8), we have for any L A F0,

E½lp1fE½j fyj jF0�>lg1L� ¼ E½lp1fE½j fyj1LjF0�>lg�aCE½j fyjp1L�:

Hence

sup
l>0

E½lpjF0�1fE½j fyj jF0�>lg aCE½j fyjpjF0� a:s:

This implies that for any f A MðFÞ,

E½E½j fyj jF0�p jF0�aCE½j fyjpjF0� a:s:

Thus, by Lemma 2, p is F0-measurable.

(ii) ) (i): For l > 0, we define t A S as in Proposition 4. Then, by

Lemma 1, we have

E½lp1fMf>lg� ¼ E½lp1ft<yg�aE½j ftjp1ft<yg�

aE½j fyjp1ft<yg�aE½j fyjp�:

This completes the proof.
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Corollary 1. Let F ¼ ðFnÞ be as in Theorem 2, and 1 < p� a pþ < y.

Then the following conditions are equivalent:

( i ) There exists a constant Cb 1, independent of f A MðFÞ, such that

kMf kpð�Þ aCk fykpð�Þ:

(ii) p is F0-measurable.

Proof. We may assume k fykpð�Þ a 1.

(i) ) (ii): Since pþ < y and E½j fyjp�a 1, we have E½ðMf Þp�aCpþ .

Therefore, we have

E½lp1fMf>lg�aCpþ

for any fy A Lpð�Þ. Thus, by Theorem 2, p is F0-measurable.

(ii) ) (i): We set q ¼ p=p�. By Lemma 1,

ðMf Þq ¼ sup
n

j fnjq a sup
n

E½j fyjqjFn�:

We have

rpð�ÞðMf Þ ¼ E½ðMf Þq�p
�
� ¼ kðMf Þqkp�

p�

a

���� sup
n

E½j fyjqjFn�
����
p�

p�
:

Here, by the strong type Doob inequality, we obtain���� sup
n

E½j fyjqjFn�
����
p�

p�
a qþk f q

ykp�

p� ;

where qþ ¼ pþ=p�. Therefore

rpð�ÞðMf Þa qþk f q
ykp�

p� a qþ:

Hence, kMf kpð�Þ a qþ.

Remark. Let p� > 1 and pþ < y. According to [7] (cf. [4, Remark

4.5]), the following are equivalent:

( i ) There exists a constant cb 1 such that for any f A Lpð�ÞðRnÞ,ð
Rn

ðMf ðxÞÞpðxÞdxa c

ð
Rn

j f ðxÞjpðxÞdx

holds, where M denotes the Hardy–Littlewood maximal operator.

(ii) p is constant.

A probabilistic analogue of this result is as follows:
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Let ðW;S;PÞ be a nonatomic probability space, and let p be a variable

exponent. The following are equivalent:

( i ) If there exists a norm on Lpð�Þ which is equivalent to k � kpð�Þ and with

respect to which Lpð�Þ is an r.i. space.

( ii ) There exists a constant Cb 1, independent of f A MðFÞ, such that

E½lp1fMf>lg�aCE½j fyjp�

for any F A F and l > 0.

(iii) p is constant.

The equivalence of (i) and (iii) follows from Theorem 1. The equivalence of

(ii) and (iii) follows from Theorem 2.

Acknowledgement

The author is most grateful to Prof. Masato Kikuchi for his kind

advice. I also thank the referee for his helpful suggestions.

References

[ 1 ] C. Bennett and R. Sharpley, Interpolation of operators, Pure and Applied Mathematics

129, Academic Press, 1988.

[ 2 ] D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer, The maximal function on variable

Lp spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), 223–238; 29 (2004), 247–249.

[ 3 ] X. Fan and D. Zhao, On the spaces LpðxÞðWÞ and Wm; pðxÞðWÞ, J. Math. Anal. Appl. 263

(2001), 424–446.

[ 4 ] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embedding for variable exponent

Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 495–522.
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