HirosHIMA MATH. J.
39 (2009), 207-216

Lebesgue spaces with variable exponent on a probability space
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ABSTRACT. We show that the Lebesgue space with a variable exponent L,.) is a
rearrangement—invariant space if and only if p is constant. In addition, we give a
necessary and sufficient condition on a variable exponent for a martingale inequality to
hold.

1. Introduction

Let p be a variable exponent, ie., let p:R" — [1,00) be a measurable
function. The Lebesgue space with a variable exponent L, is defined to be
the set of measurable functions f on R” such that for some A > 0,

J 12 (x)["¥dx < oo.
R)’l

Such Lebesgue spaces were studied by O. Kovacik and J. Rékosnik [6], X. Fan
and D. Zhao [3] and others.

In this paper, we consider such Lebesgue spaces L,. on a probability
space £2: one of our purposes is to prove that L, is a rearrangement—invariant
space (see Definition 5) if and only if p is constant.

Another purpose is to prove the weak type Doob inequality with a
variable exponent. Let (Q,X,P) be a probability space with a filtration
F = (Fn)yez,,» Where we mean by filtration an increasing sequence of sub-
o-algebras of X. We define Mf =sup,.z |fa| and f, =lim, ., f, almost
surely (a.s.). Let /= (fs),cz, be a uniformly integrable #-martingale, that
is, f = (fy) is a Z-martingale such that f, = E[f,,|%,] as. for neZ;. Let
p>1 be a constant. Then

JPP(Mf > ) <E[lf]”] (4> 0). (1)

This inequality was proved by J. L. Doob.
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It is well known that inequality (1) is a probabilistic analogue of the
Hardy-Littlewood weak type inequality

C

Hxe G: Mf(x) >t} < m

| o, 1sp<w,
where G = R” is an open set and M denotes the Hardy-Littlewood maximal
operator.

Recently, this inequality was generalized as follows (see [2]):

If there exists a constant ¢ such that for every ball B,

1 c J 1
— < = | —dy, x € B, 2
P00 = 18150 .
then there exists a constant C such that for any 7> 0,

HxeG: Mf(x) >t} < CJG <M)p(y)dy.

t

We show that an analogous result holds in our setting; under the condition
that

1 1 . .
> < CE L‘%} for all stopping times 7,

we prove the inequality

f p
P(Mf>i)£E{% } (3)
We also consider the inequality
E[" 1o n] < E[|/2]"). (4)

2. Preliminaries

Let (2,2,P) be a complete probability space. We denote by F the set
of all filtrations of (Q,X,P), by .#(#) the set of all uniformly integrable
martingales with respect to # € F, and by & = %(%) the set of all stopping
times with respect to # €F. For f = (fu),cz, € -4 (F), we let

Mf = sup |/ and fwo = lim f, a.s.
nel, =0

Next we fix some notation concerning generalized Lebesgue spaces.

Let p be a variable exponent, i.e., let p : 2 — [1, 00) be a random variable.
We put pt =esssup, p and p~ =essinfp p. For a random variable x we
define the functional p, by
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Py (¥) = ElJx]"] = L (@) dP(w).

The Lebesgue space L, with the variable exponent p on £ is defined to be the
set of all random variables such that p,,(4x) < oo for some 1> 0. It is easy
to see that the functional |- ||,., defined by

1S a norm on LP<‘).

ProrosiTioN 1. Let p be a variable exponent and let x e Ly.. Then
X[, <1 if and only if p,.)(x) < 1.

See [6] for a proof.

Let X and Y be normed linear spaces. We write X — Y if X is
continuously embedded in Y, ie., if X = Y and the inclusion map is con-
tinuous.

PROPOSITION 2. Let p and g be variable exponents. If p <q a.s. on Q,
then L.y — Ly).

See [6, Theorem 2.8] for a proof.

DerINITION 1. A Banach function space over a probability space is a real
Banach space (X, | -||y) of random variables such that:
(Bl) Ly — X — L.
(B2) If xeX and |y| <|x| as., then ye X and |||y < [|x]|y-
(B3) If x,eX for all n, 0 <x, T x as., and sup,||x,||y < co, then x € X
and_ x| = sup, %l -

PROPOSITION 3. The space (L), || - ||,)) is a Banach function space over a
probability space Q.

Proor. The completeness can be proved as in [6] or [5]. It is easy to
prove (Bl1), (B2) and (B3).

If x and y are random variables, we write x ~; y when they have the same
distribution.

DErINITION 2. A rearrangement-invariant (r.i.) space is a Banach function
space (X, | -|ly) such that:

(R) If x~;y and xe X, then ye X and ||x|y = |yl -

It is known (cf. [1, p. 43]) that if p is constant on £, then (L), || - [|,()) is
an r.i. space.
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3. Results

Throughout this section, we will consider martingales f = (f,) such that
fw € Ly and filtrations # = (%,) such that #; includes the family of P-
negligible subsets of 2. We denote by 1,4 the indicator function of 4 € 2.
Our main result is as follows:

THEOREM 1. Suppose that (2,X,P) is a nonatomic space, ie., that
(Q,2,P) contains no atom. If there exists a norm on L., which is equivalent
t0 ||+ ||, and with respect to which Ly is an r.i. space, then p is constant.

ProOOF. We assume that p is not constant. It suffices to show that there
are random variables x and y such that xe Ly, x =~y and [y, = .
Then there exist numbers m; and m, such that 1 <m; < my < oo and both
A={p<m} and B={my < p} have positive measure. Since £ is non-
atomic, there exist measurable sets 4’ and B’ such that 4’ = 4, B’ = B and
P(4’) =P(B’) > 0. Again since Q is a nonatomic, there exist sequences
{4,},en and {B,}, N of pairwise disjoint measurable subsets of © such that

A,c A, B,cB (neN),

and
1 / 1 /
P(d,) = 5, P(4"), P(B,)=5.P(B) (neN).
Define
o0 o0
x=>»2""1,  and  y=> 2"l
n=1 n=1

Then we have x ~; y and

0 1 1—my fmy )"
E[Xp]:ZE[ n/rmPlA ZE 2 (1 /ma) " ] Z{(z) }P(A,)<OO.

n=1 n=1

Therefore x € L,.). Moreover, for each 4 > 0, there is a number N; € N such
that A <2V:/™_  Then we have

¥y onfma\?P “ 1 N
REE L (O TES L LR

Hence |y, =inf{ > 0:E[[y/4]”] <1} = oo.
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If (2,2 P) has an atom, then the conclusion of Theorem 1 may not hold.
ExampPLE. Let A;, A, and A3 be measurable subsets of £ such that

P(4,) = P(4,)
We let X =0g(A41,4,,43). Now we define

o 1 OIlAIUAz,
p= 2 on As.

For random variables x and y, we can write

3 3
XZZGJA” )’ZzbilAm
i=1 i=1

where a;,b; € R.
We observe that if x # y and x ~; y, then a; # ay, ay = by, ap = b; and
as; = b3. As a result, for 1> 0,

x|? a a a3 |?
E|l|l- =|—|P(4 — |P(4 —| P(4
5] =[5 pean + |2 |peas +| 2] peas
b2 b] b3 ? Y g
= |—=|P(41) +|—=|P(42) +|=| P(43) =E||=]| |,
A A ) A
that is, [[x[|,.) = [[¥ll,.)- Thus (L), | -[l,.) is the ri space, but p is not

constant.

Now we study some martingale inequalities.

The next proposition is an analogue of the result of [2, Theorem 1.8].
The method of [2] is available for the proof of the proposition.

ProposSITION 4. Let # € F. If there is a constant C > 1 such that

o< CEf;
p p

%] a.s.

for all te€ S, then for any f e #M(F) such that f, € L.y and for any i >0,

S ”]

P(Mf>;L)SCE|: 7
t=inf{neZ; : |fy| > 1} € &,

Proor. For 1> 0, we define
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with the convention that inf ¢ = oo, It is easy to prove that {Mf > A} =
{r< w0} and {t < w0} < {|f;| > 1}. Note that

E{%@ %} >1 as. on {r< w}. (5)
By Young’s inequality,
P
E o F.| <E 1|/ F, +E1§«; a.s., (6)
A pl A q

where ¢ is the conjugate function of p. By (5) and (6), we have
w5l -1-=[3
p q

/|
] s

LI/
<E|-|=| |Z| as. on {r < w©}.
2
Therefore,
[ 1
P(Mf E|l———EJl 7|1
<E_;E 1 f—w ’ 7.1
SUEL A e A | T
[ 1 1 |7 l?
<® g 5 | e
S|’ S’
El|—| 1 . E||—] |.
<C { (<} | = C i

This completes the proof of Proposition 4.

For a specific filtration, we prove the inequality (4). In order to prove it,
we need the following lemmas.

LemMmaA 1. Let o/ be a sub-g-algebra of X and let p be an .o/ -measurable
variable exponent. Then

E[|x| | /)" < E[|x|’|</] a.s.

Jor all x e L.
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ProOF. Suppose that p is an .o/-measurable simple function and p > 1 on
Q. Then we can write

n
p= E orla, as.,
k=1

where the sets A; are pairwise disjoint subsets of Q and o, > 1 (k=1,2,...).
We find that

[IXI\Q/”*ZEIXII%“‘lAk < ZEIXI“"IdlAA
k=1

n
=E|> [x["1y |
k=1

Suppose now that p is an arbitrary .o/-measurable variable exponent. Then
there exists a sequence (p,),.n of /-measurable simple functions such that

= E[|x|”|«/] a.s.

plp (n— ) and =1 (neN).

Since |x|”" <1+ |x|"eL; (neN) when x € Ly, the dominated convergence
theorem gives

E[|x| | /)’ < E[|x|’|</] a.s.
This completes the proof of Lemma 1.

LemMMA 2. Let {Ar}in be a sequence of pairwise disjoint measurable
subsets of Q such that Q =), .\ Ak, and let Fy=o({A;k eN}). If there
exists a constant C > 1, independent of xeL;:(‘), such that

E[E[x|70]" | #o] < CE[x"|F] a.s., ()
then p is Fo-measurable. Here L;(‘) ={xelL,,:x=0}

Proor. Let .o/ = %;. Assume that p is not .o/-measurable, i.e., that
there exists an index N € N such that p is not constant on Ay. Then there
exists a number m such that 1 <m < oo, and both 4; ={p <m}NAy and
Ay ={m < p} N Ay have positive measure. For a > 1, we define a random
variable x, by x, =aly, eL;rm. Then we have

L4, P4
An E[aplAl} <a" ( 1)

Ebeeler] = P(Ay) ~ P(4y)

14, a.s.,

and
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E[E[XHL,Q/]plﬂ]]AN :E|:P(A CllA] p|%:|

> o B () 1] @

BB 4], Lae [ o (PCADY
B 2wy | () 1] @

Hence

Since p—m >0 on A,

1o BIEL|)" | 7]

P T A

Therefore there is no constant C > 1 satisfying (7). This completes the proof
of Lemma 2.

THEOREM 2. Let {Ax}y N be as in Lemma 2 and let F = (#y), 4. €F be
such that o = o({Ar;k € N}).  Then the following are equivalent:
(1) There exists a constant C > 1, independent of [ € M (F), such that for
any 4 >0,

E[" N uys] < CE[|f[). (®)
(i) p is Fo-measurable.
Proor. (i) = (ii): By (8), we have for any A € %,
E" Vw7, 170050y La] = B Ly g1 0] < CE[foe|" L]
Hence

P F0] as.

sup E[A"| 7]k 1, | 7> < CE[

>0
This implies that for any f e .#(F),
E[E[| /2| |#0)” | #0] < CE[| /|| #0] as.

Thus, by Lemma 2, p is Zj-measurable.
(i) = (i) For 4> 0, we define 7€.% as in Proposition 4. Then, by
Lemma 1, we have

E[7 L mpsiy] = B[ Lcoy] < E[| il 1rcoy]
< E[|foc|p1{r<oo}] < E[|fx|p]

This completes the proof.
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COROLLARY 1. Let & = (%,) be as in Theorem 2, and 1 < p~ < pt < 0.
Then the following conditions are equivalent:
(1) There exists a constant C > 1, independent of f € M(F), such that

() p is Fo-measurable.

Proor. We may assume || fo |, < 1.
(i) = (ii): Since p* < oo and E[f.|’] <1, we have E[(Mf)"]< CF".
Therefore, we have

E[ipl{Mf>,1}] < cr

for any f, € L,.. Thus, by Theorem 2, p is Fj-measurable.
(i) = (i) We set ¢=p/p~. By Lemma I,

(Mf)* = sgplfn\q < sup E[| /%

47,).

We have

P (M) = EICMP)™ ) = (1)
< "

sup E[| /|| 73]
n

pu
Here, by the strong type Doob inequality, we obtain
p

<q 720

sup E[| /|| 7]
n

P

where ¢* = p*/p~. Therefore

Poiy(MF) < g1 £21- < g
Hence, HMpr(.) <q".
REMARK. Let p~ >1 and p™ < 0. According to [7] (cf. [4, Remark

4.5]), the following are equivalent:
(i) There exists a constant ¢ > 1 such that for any f e L, (R"),

J ”(Mf(x))p(x)dx < CJRn |f(x)|p(x)dx

holds, where M denotes the Hardy-Littlewood maximal operator.
(i) p is constant.
A probabilistic analogue of this result is as follows:
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Let (2,2,P) be a nonatomic probability space, and let p be a variable
exponent. The following are equivalent:
(i) If there exists a norm on L, which is equivalent to || - ||, and with
respect to which L, is an r.i. space.
(ii) There exists a constant C > 1, independent of f € .#(%), such that

E[/7 1 yr-03] < CE[| 0]’

for any & € F and 1 > 0.
(iif) p is constant.
The equivalence of (i) and (iii) follows from Theorem 1. The equivalence of
(ii) and (iii) follows from Theorem 2.
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