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Fractional calculus on parabolic Bergman spaces
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ABSTRACT. The parabolic Bergman space is the set of all L”-solutions of the parabolic
operator L®. In this paper, we study fractional calculus on parabolic Bergman spaces.
In particular, we investigate properties of fractional derivatives of the fundamental
solution of the parabolic operator. We show the reproducing property of fractional
derivatives of the fundamental solution.

1. Introduction

Let H be the upper half-space of the (n + 1)-dimensional Euclidean space
R (n>1), that is, H = {(x,7) eR""';xeR",t>0}. For 1 <p< oo and
A > —1, L?(Z) is the Banach space of Lebesgue measurable functions u on H
with

1/p
Hu||L,,(A) = <JH lu(x, )|’ t* dV (x, t)) < 00,

where dV is the Lebesgue volume measure on H. For 0 <o <1, the par-
abolic operator L® is defined by

L<1) = at + (*Ax)a,

where 0, = 0/0t and A4, is the Laplacian with respect to x. A continuous
function u on H is said to be L(®-harmonic if L®u =0 in the sense of
distributions (for details, see section 3). The parabolic Bergman space b7 (1) is
the set of all L®-harmonic functions u on H which belong to L”(1). We
remark that b7 /2(/1) coincides with the harmonic Bergman space of Koo, Nam,
and Yi [3]. Therefore, usual harmonic Bergman spaces are the classes of
L”(J)-solutions of the parabolic operator L/,

Our aim of this paper is the analysis of fractional integrals and derivatives
of parabolic Bergman functions. The fundamental solution of the parabolic
operator L(* plays an important role for the analysis of parabolic Bergman
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spaces. Therefore, in this paper, we investigate the fractional integrals and
derivatives of the fundamental solution. Consequently, we show that the
reproducing kernel for »2(1) is given by a fractional derivative of the funda-
mental solution. Furthermore, our results in this paper can also be applied to
study conjugate functions of parabolic Bergman functions, whose application
will be described elsewhere.

To state our results, we present some definitions. Let Ny be the set of
all non-negative integers. For a multi-index f = (f,,...,5,) € N, let 05 =
alfly 0xf '...0xp". For a real number x, a fractional differential operator Z; is
defined by 2, = (—d,)" (the explicit definition will be described in section 2).
And let W® be the fundamental solution of the parabolic operator L® (for
details, see section 3). The following theorems are main results in this paper.
In Theorem 1, we give properties of fractional integrals and derivatives of
the fundamental solution. Theorem 2 establishes the reproducing property of
fractional derivatives of the fundamental solution (our result is more general,
see Theorem 5.2).

Tueorem 1. Let 0 <o <1, f e Ny, and k > — 3. be a real number.  Then,
the following statements hold.

(1) The derivative *G*W® (x,1) = D" W (x,1) is well-defined.
Moreover, there exists a constant C > 0 such that

|af=@;(W(“)(x7 t)| < C<t+ |x‘2a)—(n+\/ﬂ)/2aﬂc

Sfor all (x,t) e H.
(2) If 0<g<oo and 0> -1 satisfy the condition 5.+ 0+1—
(";‘(ﬁ I +K>q < 0, then there exists a constant C > 0 such that

J|M@WWWx7%HﬂWﬁdW%@SCWWWH%“WWHM
H

Xt

Sfor all (x,t) e H.
(3) Pgrw® is L™-harmonic on H.

THEOREM 2. Let 0 <a<1,1 < p< o0, and 2> —1. Then, the reproduc-
ing property

Mnn:CﬁJ’m%wgﬁww”@—yn+wﬁdw%w
H

holds for all uebl(%) and (x,t) € H, where C; =2*/T'(}).

By Theorems 1 and 2, we obtain the following corollary, which shows that
the reproducing kernel for h2(1) is given by a fractional derivative of the
fundamental solution.
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COROLLARY. Let 0 <o <1 and A > —1. We define the function R} on
H x H such that

R;(xv 5y, S) = C/H—l@t/prl W(x)(x - ) t+ S).
Then, ng(x, t;-,-) is the reproducing kernel for bi (A).

Throughout this paper, we will denote by C a positive constant whose
value may not necessarily be the same at each occurrence.

2. Fractional differential operators

We introduce fractional differential operators which are main tools for our
study. Let C(R.) be the set of all continuous functions on R, = (0,00). For
a positive real number x, let Z% " be the set of all functions ¢ € C(R.) such
that there exist constants & C >0 with |p(¢)| < Cr*7¢ for all te R;. We
remark that ¢ ' <« Z%¢ " if 0<k <v. For pe F€ ", we can define the
fractional integral of ¢ with order x by

0

gﬂq)(z)zLJ (it 4+ 1)dr = (t— 0" 'p(t)dr, teR,, (1)

ol
0 I'(x) ),
where I'(-) is the gamma function. Furthermore, for a positive real number r,
let #€* be the set of all functions ¢ € C(R;) such that d[ﬂgoef‘g’“ﬂ”‘),
where d; = d/dt and [k] is the smallest integer greater than or equal to x. In
particular, we will write Z%° = C(R,). For g € Z%*, we can also define the
fractional derivative of ¢ with order x by

7%p(1) = 7~ (—d)lg(r),  1eR,. (22)

Also, we define 2% = ¢. For a real number x, we may often call both (2.1)
and (2.2) the fractional derivative of ¢ with order . Moreover, we call 2" the
fractional differential operator with order . The following proposition shows
that fractional differential operators enjoy the commutative and exponential
laws under some conditions.

ProrosITION 2.1. Let k and v be positive real numbers. Then, the
following statements hold.

(1) If pe F€7", then 2 "p e C(R,).

2) If pe F€ ", then 97"°2 9 =27 "p.

() If dpeF€ for all integers 0<k<[k]—1 and dtmqoe
FC K9 then X9 "9 = 37" p = G g

@4 I dtkﬂv]goeg"g_”‘q_") for all integers 0 <k < [k]—1, dthgoe
FZC 9 for all integers 0 < €< [v] =1, and d/*1"""p e 7@ xI-x~(=),
then 99" p = "¢
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Proor. (1) Let pe % * and f;(r) =" 'p(t+ 1), and let o e R, be
fixed. By the continuity of ¢, fi(t) — f,(7) as t — #, for all ze R.. Since
@€ F%*, we can easily find a function g e L'(R,) and a constant § > 0 such
that |f;(t)] < g(r) for all te R, and € [to —3J,t +J]. Therefore, the Leb-
esgue dominated convergence theorem implies that 2 "¢(1) — 2 "p(1)) as

t— 1.
Ty—1

(2) By using (2.1) and the change of variables 2=

— 7, we have

I = F(IK) :v) J:O J:I(U — 0" 11 = 1) drap(n1)dr)

™~

o l
- 1 ! J J N1 = 1) (= ) () dr

)j (11 — 0 p(a))der = T (1),

where B(-,-) stands for the beta function.

(3) By using (2) and differentiating under the integral sign, we can easily
obtain the first equality of (3). We show the second equality. First, we prove
the second equality in case of v =x by the induction, that is,

DD p = ¢. (2.3)
If «x =1, then
7' (1) = —J dip(t+ 7)dt = —]hm( p(t+h) —o) =9() (24)
0 1— 00

for all reR;. If (2.3) holds for some x € N, then by (2) and (2.4), we have
GG g = 7 (=d) (~d) o(e) = (=) ot) = p(0).

Thus, (2.3) holds for all x € N. Moreover, for a positive real number «, (2)
shows that

97%9%p = 77 (—d) "y = ¢,

because [x] e N. Thus, we obtain (2.3) holds for all positive real numbers .
Next, we show the second equality in case of x >v. By (2), we have

G g% = g K1=9 (g [y, (2.5)
Put  =v+ [k] —x >0. Then, (2) and (2.3) show that (2.5) is equal to
@w(_d)ﬂ — gnthg- '7]( d,)[”]( d{)fﬂ-[’?](/): gj*“[”](_d[)[’d‘[”]gp,
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where [-] is the Gauss symbol. Since [x]—[y]=[x—v] and n—[y] =
[k —v] —x +v, (2.5) is equal to 2" "p. Thus, we obtain the second equality
in case of x > v.

Finally, we show the second equality in case of x <v. Since x —v <0
and —x < 0, (2) and (2.3) show that

Q—V@Kgp — @K—V@—K@I\'(p — 9](‘—"(p.
(4) By using (2) and differentiating under the integral sign, we have
@K@V(p _ D@—({K'H[V})-H{-&-V(_dt)(KPrM(0.

If [x]+[v] =[k+v], then we can directly obtain the equality of (4). If

[K] + [v] = [k+v] +1, then (2) and (2.3) show that
D@—(!’K-\-&-M)-&-K-&-v(_dt)D(Pr[ﬂ(p _ 9—]’K+V1+Ic+vg—l (—dt)(—dt)[KJrv](ﬂ _ QK-‘rV(o.

This completes the proof.
We give some examples of fractional derivatives of elementary functions.

ExamMpLE 2.2. Let k>0 and v be real numbers. Then, we have the
following.
(1) @Ve—K[ — Kl’e—l\'l'

r
(2)  Moreover, if —ic < v, then P't7* :M

I (x)

Ry

3. Fractional derivatives of the fundamental solution

In this section, we study fractional derivatives of the fundamental solution
of the parabolic operator L® and give the proof of Theorem 1. First, we
begin with recalling the definition of L(*-harmonic functions. We explain
about the operator (—4,)*. Since the case o =1 is trivial, we only describe
the case 0 <a< 1. Let CX(H) be the set of all infinitely differentiable
functions on H with compact support. For 0 < a < 1, (=4,)” is the convo-
lution operator defined by

(-4 Wnt) = ~us Jim | @) ) -2y (1)
=V Jx—y[>0

for all Y € C*(H) and (x,t) € H, where ¢, , = —4*n">I'((n+ 22)/2)/I"(—)

>0. A continuous function u on H is said to be L(®-harmonic on H if u
satisfies the following condition: for every Y € C*(H),

J lu- LPY%|dV < oo and J u-Ly dv =0, (3.2)
H H
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where L® = —9,+ (—4,)" is the adjoint operator of L®. By (3.1) and
the compactness of supp(y) (the support of 1//) there exist 0 <t <1
< oo and a constant C >0 such that supp(L®y) c S =R" x [t;,5,] and
IL“Y(x,1)| < C( +|x[)™"** for all (x,7)eS. Thus, the integrability condi-
tion [, [u- L¥y|dV < oo is equivalent to the following: for any 0 < £ <
1 < o0,

J;Z JR” (o, O](1 + [x]) " 2dV (x, ) < . (3.3)

Next, we introduce the fundamental solution of L®. For xeR", the
fundamental solution W® of L(* is defined by

1
W (x, 1) = (zmﬂLf"p(‘f'f2“+¢f1x-é>df (>0

0 1<0,

(3.4)

where x - ¢ denotes the inner product on R”. It is known that W® is L®)-
harmonic on H and W® e C*(H), where C*(H) is the set of all infinitely
differentiable functions on H. Furthermore,

W@ (x,1) >0 for all (x,/)e H and J W (x,t)dx =1 for all reR,.
’ (3.5)

Let 0 <a<1, feNj, and ke Nyg. Lemma 1 of [5] says that there exists a
constant C > 0 such that

020k W) (x,1)| < C(t + |x|**) ADoK (3.6)

for all (x,t)e H. Moreover, W satisfies the homogeneous property (see
section 3 of [4]), that is,

aﬁak (X l) . (n+]pl) /20— k(al)’ak )( —I/Zyx 1)

for all (x,7) e H.

Now, we describe properties of fractional derivatives of the fundamental
solution. Here, we define a function w(x), which is frequently used throughout
this paper. For a real number x, let

k] k=0
Mm{o K < 0.

Basic properties of fractional derivatives of W(*) are given in the following
theorem. The assertions (1) and (3) of Theorem 3.1 are (1) and (3) of Theorem
1, respectively.
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Tueorem 3.1. Let 0 <a <1, feNj, and x> —3- be a real number.
Then, the following statements hold.

(1) The derivative 0*Z*W® (x,1) = 2FP W) (x,1) is well-defined, and
there exists a constant C > 0 such that

P g W) (x,1)| < C(t + |x‘2a)—(n+\ﬁ\)/2c<—/<

Sfor all (x,t) e H.
(2) Let v be a real number such that x +v > —4-.  Then,
208G W (x,1) = L g W) (x, 1)

Sor all (x,t) e H.
(3) Pgrw® is L™-harmonic on H.
4) 65@[’( W) satisfies the homogeneous property, that is,

069;( W) (x, l) = f("*\/}\)/zaﬂf(af@tk W(a))(lfl/Zax, 1)
Sor all (x,t) e H.

Proor. (1) Let e Nj and x > —4. be a real number. By (2.1), (2.2),
and (3.6), it is easy to see that the derivative 0/ @ W) (x,1) = 2! W (x,1)
is well-defined. By (3.6) and (2) of Example 2.2, there exists a constant C > 0
such that

o0
087E W (x,0)] < C J Tl W ) (x, 1 4 7)|dx
0

B CJOO Tca(h‘)*h’*l(t T |_x|2a)7<n+‘ﬂ|)/2a7w(lc)d‘[
0

C@;<(U(K>7K>([+ |x|2u)—(n+\[)’|)/21—(u(1c) _ C(l‘+ |x|21)—(n+\ﬁ\)/295—x

for all (x,7) e H.

(2) By (1) of Theorem 3.1 and (4) of Proposition 2.1, we can easily show
the statement.

(3) For any 0 <t <t < o0, we can easily show that

t
[ e by sy 2 < (3.7)
n JR”

Therefore, by (3.3) and (1) of Theorem 3.1, we obtain the integrability condition
of (3.2) for &**W®. Next, we show that I Fgrw® . LWy dv =0 for
all Yy e CP(H). Since the case x €Ny is trivial, we only show this for
ke R\Np. Let y e C*(H). Thanks to (2) of Theorem 3.1 and (3.7), the
Fubini theorem implies that
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J P GE W (x, )LD (x, )dV (x, 1)
H

0
= 7J @) —x=l J 65@,@('{) W (x, 1+ 1)L (x, 1)dV (x, 1)dt
H

(4) By differentiating under the integral sign in (3.4), the Fubini theorem
implies that
1

af@th‘ W<°‘>(x, 0 = T JO @00 —K—1 J ” @[w(lc)ef(tﬂ)lé\z“ afjeixf dédt

n
B J |f|2m(x)€7tlé‘zximl Hfjﬂfeix-é
' j=1

! r ()1 il
X g eTH drdé
I'(o(x) —x) Jo

_ J et 8 T e ae.
n /:1

By making the change of variables & — ~'/2*¢] for all integers 1 < j <n,
we have

n

bW (x, 1) :J 1| E P eI 112 1B Héj{ﬂfeir'/%a /2 g
R/‘I -
j=1

— f("Hﬁ\)/Z%K(af@tlf W(a))(fl/zax, 1),

where &' = (&],...,¢)). This completes the proof.

In (1) of Theorem 3.1, we give upper estimates of fractional derivatives of
W@ . By (4) of Theorem 3.1, we can also give lower estimates of fractional
derivatives of W®. In section 4, we will show that the reproducing kernel for
the parabolic Bergman space coincides with a fractional derivative of W® with
suitable order. Usually, lower estimates of the reproducing kernel for the
harmonic Bergman space are given on the pseudo-hyperbolic balls in H. In
our case, lower estimates of fractional derivatives of W(*) are given on the
following parabolic Carleson boxes, which are defined in [6]. For (y,s) € H,
the parabolic Carleson Box Q®(y,s) is defined by

09 (y,s) = {(x,1) € H;|x; — ;| <275V2*(1 < j <n),s <1 <2s}.
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The proofs of (1) and (2) of Proposition 3.2 are similar to that of (2) of
Proposition 1 and Corollary 1 of [6], respectively. Hence, we omit the proofs.

ProrosITION 3.2. Let 0 <a <1, feNy, and k > —3- be a real number.
Then, the following statements hold.
(1) If each PB; is even, then there exist constants a, C >0 such that

inf{|0? 2 W (x,0)|; |x| < at'/?*} > Cr HED 22K
where o and C depend on n, o, f and k. Otherwise,
inf{|0?2 W@ (x,1)]; x| < at!/*} =0
for all o> 0.
(2) If each PB; is even, then there exist constants p, C >0 such that
C s~ BN 2ame < 6B g R @) (x — y 1 4 5)| < Cs (1PN 207
for all (x,t) e Q(y,ps), where p and C depend on n, o, f and k.

Finally, we show L7”(1)-norm estimates of fractional derivatives of the
fundamental solution in (2) of Theorem 1. By (1) of Theorem 3.1 and Lemma
3.3 below, we can directly obtain (2) of Theorem 1. This completes the proof
of Theorem 1.

LemMa 3.3 (Lemma 5 of [5]). Let 0 and ¢ be real numbers such that
0>—1and -+ 0+1—c<0. Then, there exists a constant C >0 such that

0
J - 5 dV(y,5) < C/2H0+1—c
H(t+s+]x— ™)

Sor all (x,t) e H.

4. Fractional calculus and reproducing properties on parabolic Bergman
spaces

In this section, we study properties of fractional derivatives of parabolic
Bergman functions and give the proof of Theorem 2. First, we present the
estimates of ordinary derivatives of parabolic Bergman functions. Let
O0<a<l, 1<p<oo, A>—-1, feNj, and keNy. The following estimate
is established in Lemma 3.4 of [9]: if u € b2(4), then u € C*(H) and there exists
a constant C > 0 such that

080  u(x, 1)) < Cr PR DR g, o) (4.1)

for all (x,7)e H. Basic properties of fractional derivatives of parabolic
Bergman functions are given in the following proposition.
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PropoSITION 4.1. Let 0<o<1, 1<p<oo, A>-1, feN{, and
K> —(%—&-X—l— 1)% be a real number. If uebl(2), then the following state-
ments hold.

(1) The derivative 0*@Fu(x,t) = 2F0Pu(x,t) is well-defined, and there
exists a constant C > 0 such that

|6€£2fu(x, t)| < Ct—|ﬁ\/2fxﬂc7(n/20<+/1+l)(l/p)HHHLP(;)

Sfor all (x,t) e H.

(2) Let v be a real number such that k +v > —(£+ A+ 1) Then,

1
5
20D u(x, 1) = P D u(x, 1)

Sfor all (x,t) e H.
(3) °g*u is L™-harmonic on H.

Proor. (1) Let feN{ and x> —(L£+ 1+ 1)% be a real number. And
let ueb?f(2). By (2.1), (2.2), and (4.1), it is easy to see that the derivative
P Dru(x,t) = 2F0u(x,1) is well-defined. By (4.1) and (2) of Example 2.2,
there exists a constant C > 0 such that

A

K 1 * (K)—K— <
P Tux D) 5 oo |0k . 1 1) e

< C(@[_((U(K)_K) t*\/3|/217w(;<)7(n/2a+i+1)(1/p)) ”uHLP()J

< th|ﬂ\/2a7;c7(n/2a+i+l)(l/p)”u”Lp()).

The proofs of (2) and (3) are similar to those (2) and (3) of Theorem 3.1,
respectively. This completes the proof of Proposition 4.1.

For 6 > 0 and a function u on H, we define an auxiliary function us of u
by us(x,t) = u(x,t+0). First, we show the reproducing property for frac-
tional derivatives of us in Proposition 4.5 below. In order to prove Propo-
sition 4.5, we need the following lemmas. We note that the Huygens property
described in Lemma 4.2 is important for our study. Furthermore, Lemma 4.3
is Remark 3.2 of [9].

LemMA 4.2 (Lemma 3.1 of [9]). Let 0<a <1, 1 <p< oo, and 1> —1.
If ue bb(A), then u satisfies the Huygens property, that is,

u(x,t) = J u(x — y,t—s) W(“)(y,s)dy

n

holds for all xeR" and 0 < s <t < 0.
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Lemma 4.3 (Remark 3.2 of [9]). Let O0<a<1,1<p< oo, and 1> —1.
For uebl(%), the function t— (g, |u(x,1)|"dx is decreasing on (0, 0).

LeEMMA 4.4. Let me Ny and x, v be real numbers such that m —v > 0 and
k+v>0 Then,

o0
J " et )" dr = ¢ B(m — v,k +v)
0

for all ¢ > 0.

PropoSITION 4.5. Let 0 <o <1,1<p< o0, A>—-1,andd>0. And let
v, i be real numbers such that v > —(% + A+ 1) %, k>0,andv+rx>0. Then,

us(x, 1) = Cypic JH DYus(y,8)DEW D (x — p,t +8)s"7 L dV(p,s)  (4.2)

holds for all uebl(X) and (x,t) e H, where C,i, is the constant defined in
Theorem 2.

Proor. Let u e bf(4) and 6 > 0. And let m,k € Ny such that m +k > 0.
First, we show that

(Cl +C2)m+kj
H

T+ 0 D"us(p, cls)@tk W (x — y, 1+ cas)s™ 1 v (y, 5)

(4.3)

us(x,t) =

for all (x,7) € H and real numbers c;,c, > 0. We prove the equality (4.3) with
meN and k =0. Since (3) of Proposition 4.1, Lemmas 4.2 and 4.3 imply that
9"u;s satisfies the Huygens property, we have

o0
J J Z/"us(y, c15) W (x — y,t+ ca5)s™ " dyds
o Jr

s}
= J DMus(x,t+ (1 + c2)s)s™ ! ds, (4.4)
0

where (3.5) and (1) of Proposition 4.1 guarantee that the integrand in (4.4)
belongs to L'(H,dV). Moreover, integrating by parts m — 1 times, (1) of
Proposition 4.1 implies that the right-hand side of (4.4) is equal to
-1
c1+ o

o0

0

[@;”’lu,;(x, t+ (c1 + cz)s)s"”l]

m—1 (% m—1 m—2
+ 2" us(x,t+ (c1 + ¢2)s)s™ ™" ds

crt+c)o
I'(m) J"‘ I'(m)
=———" | Gus(x,t+ (¢ + ¢2)8)ds = ————;us(x, 1).
(e1 +¢)" o il (a1t c2)s) (e1+¢2) 1)
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Therefore, we obtain (4.3) with m e N and £k =0. We show (4.3) with m € Ny
and k € N by induction on k. Let k=1. If m = 0, then the Huygens property
and (4.4) imply that

J U(S(% CIS)Qth)(x -t + CzS)dde
H

1 0
"o “ us(v, 1) W (x = 3,1+ cas)dy
2 [ Jr" 0

— Z—IJ sy, c1s) w® (x — y,t+ c25)dyds
2

- iu(s(x, 1) — . )u(s(M ) us (X, 1)-

c ca(c1 4+ ¢ 1+

If m > 1, then the Huygens property, (4.1), and (4.4) imply that

J D"us(y,c18)DW P (x — p, 1+ c28)s™ dyds
H

1 r [}
=—— J 2["us(y, c15) W(“)(x — y,t+ c8)dys™
€2 [JR" 0
_a G us(y, e1s) W (x — y,t + c28)s™ dyds
@ JH
+ 2 DMus(y, 1) W (x — p, ¢+ c8)s™ " dyds
@ JH
al'(m+1 I'(m+1
= Lm)ﬂué(x’ ) (7),““«5(% )
er(er + ) ea(er +e2)
r 1
= Lﬂ)ﬂu(;(x, 7).
(C] + Cz)

Therefore, (4.3) holds for all m € Ny whenever k = 1. Let k > 1 and suppose
that (4.3) holds for all m € Nyp. Then, (3.6), (4.1), and the assumption of the
induction imply that

H

"o U Dus(y, ) ZE W (x — .14 eas)dys™
n 0

- —J "N us(y, c18)2* W (x — y, 1+ c25)s™* dyds
H



Fractional calculus on parabolic Bergman spaces 483

m+k
+
2
al'(m+k+1)

__almr k) 4+
CZ(C] +C2)m+k+l

J D"us(y, c15)DF W (x = y, 1+ c28)s™ 1 dyds
H

I(m+k+1)
7”1%“6(3(7 1)
Cz(Cl —+ 02)

_I'(m+k+1) (1)
(Cl + C2)m+k+l oY b))
Therefore, we obtain (4.3) with m, k € Ny such that m+k > 0.
Next, we show the equality (4.2). Let v and x be real numbers such that
v>—(L+A+ 1)%, x>0, and v+x > 0. Then, by (2.1) and (2.2), we have

| Fiustr. 9 ZE WO =y, 9575 v (3,5
H

! " o)-v-1 o0
v 00, .
JH I'(w(v) —v) Jo “ o us(yy s+ T)dn

1 © D(K)—K— K
Xr(w(x)—z«)L O GO (x — y, 14 s+ 12)dn

x s" L dv(y,s). (4.5)

We assert that the integrand on the right-hand side of (4.5) belongs to
L'(H,dV). In fact, when x =0, (4.1) and (3.5) guarantee our assertion by
the condition v=v+x > 0. Also, when x >0, (4.1), (3.6), and Lemma 3.3
guarantee our assertion by the condition v > 7(£+i+ l)l and v+x > 0.

p
Thus, by (4.3), the Fubini theorem implies that

J Dus(y,8)DEW P (x — p,t+5)s" AV (y,s)
H

1 1 * w(v)—v—1 o(k)—x—1
_ Lol o
- 1 2
I'(w(v) —v) I'w(k) —x) Jo 0
“ J 75, (14 1)) GO WD (x — p. 1 4 (1 + 12)s)
H

x sOWFeW= gy (y. s)dradry

(o) + o))
I'(w(v) —v)I'(o(k) —x)

0 0 Tw(r()fchl
X J T;”(V)_V_l J 2 e® drrdr.
0 0 (Tl 410+ 2)&) v)+w(x

= us(x,1)
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Furthermore, by Lemma 4.4, we have

(rc)—rc—1

F(CO(V) + w(K)) J% w(v)—v—1 JOC T;U
T dtydt
F(C&)(V) — V)F(a)(l{) - K) 0 1 0 (Tl +1y 2)(1)(V)+(U(l() 26t
_I'(v+x)
vt

Therefore, the proof of Proposition 4.5 is completed.

The following lemma shows that the auxiality function us of u e b?(1)
converges to u in L”(1) as 6 — 0.

LEMMA 4.6. Let 0<a<l1, 1<p<oo, A>—1, d>0, and uebi(4).
Then,

(;li,r(% llus — ullLp(zy = 0.
Proor. Let ueb?(4). Then, by Lemma 4.3, we have
J s Cx, )72 dV (x, 1) < J (o, D76 dV (x, ).
H H
Moreover, the Fatou lemma shows that
J lu(x, 0)[Pt* dV(x,t) < lim ian |us(x,0)|"t* dV (x, 1).
H 0=0" JH

Therefore, we obtain ]irgl lusll Loy = llull 1o(zy- Hence, the desired result is
()*) + ~
obtained by the Egoroff theorem.

Now, we give the reproducing properties of fractional derivatives of the
fundamental solution. The reproducing property in Theorem 2 is obtained by
Theorem 4.7 with k = A+ 1.

THEOREM 4.7. Let 0<a <1, 1 <p< oo, and A > —1. And let k be a

real number such that k > %. Then, the reproducing property
unt) = G| u(r)ZE WO =tk 95 V(s @46)
H

holds for all uebl(l) and (x,t)e H, where C. is the constant defined in
Theorem 2.  Moreover, (4.6) also holds whenever p=1 and k= 1+ 1.
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Proor. Let uebf(A) and (x,7) € H. Then, Proposition 4.5 implies that

u(x,t) — CKJ u(y, )2, W (x—y, t+ S)SK_l dVv(y,s)
H

< |u(x,t) — us(x, )|

+

usx, ) — c,(j u(y,)ZEW D (x — y 1+ )5 dV(y,5)
H

< Ju(x, 1) — up(x, )] + ch-j 459, 5) — u(y, )|
H

X |D) w® (x—y,t+ s)|s’“71*i/1’ dV(y,s) (4.7

for all 5>0. If p=1 and x> 1+1, then |ZFW® (x — y,t+s)|s" 1 is
bounded. Therefore, Lemma 4.6 implies that (4.7) tends to 0 as 6 — 0F. If
p>1and x> %, then by the Holder inequality, (4.7) is dominated by

lu(x, 1) — us(x, )]
. 1/q
+ Cllus — ull (5 <J A W (x — y, 1+ s) |15t 1=HP) dV(y,s)) ’
H

where ¢ is the exponent conjugate to p. Therefore, Lemma 4.6 and (2) of
Theorem 1 imply that (4.7) tends to 0 as 0 — 0". This completes the proof of
Theorem 4.7.

5. Generalization of reproducing properties

In this section, we give generalization of reproducing properties in The-
orem 4.7. The following proposition gives upper estimates of derivative norms
of ueb(2).

ProposiTiION 5.1. Let 0<a<1, 1<p<oo, and A>—1. If a real
number v satisfies the condition v > —*L then there exists a constant C >0
such that ||t"Zul|p;) < Cllullpry for all uebli(2).

Proor. Let ueb?(1). Then, by Theorem 4.7 with x = 4+ 2, we have

u(x, l) = C).+2 JH u(y7s)gtl+2 W(x) (X =y i+ S)SLLI dV(yv S)' (51)

By (1) and (2) of Theorem 1, we can differentiate under the integral sign on the
right-hand side of (5.1). Therefore, we have

7 u(x, 1) = cﬂzj u(y, )2 WS (x =y, 14 5)sH AV (p,s).
H
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Furthermore, by (2) of Theorem 1 and the condition v > —%, the Fubini
theorem implies that

Du(x, 1) = Cﬂzj u(y, )22 WO (x — p e 4 5)s T aV(y,s). (5.2)
H

Suppose p>1 and let ¢ be the exponent conjugate to p. Then, by the
condition v > —*t1 "we can choose a real number 6 such that —(v 4+ A4 1) <
§<1 and —(1+2) <%<v. Thus, by the Holder inequality and (2) of
Theorem 1, there exists a constant C > 0 such that

< CA+2J Uy, ) |Z 2 (x = 14 5)|s"r5 0P @Y (y,5)

. ) 1/p
< Cin (J u(y,9)[7|2; P2 W O (x = y, 14 9)|s™ 1 dv(y, S))
H

) 1/q
« <J |91v+/1+2 W(oc)(x _ y’t+s)|s0/p+A+1 dV(y, S))
H

: 1/p
< C(J lu(y, s)|Ps’§+,1+l|@[v+A+2 W@ (x— y, t49)|dV(y, s)) A1/9)(O0/p=v)
H
Therefore, by the Fubini theorem and (2) of Theorem 1, we have

[t

Loy < C | u(y, 5) [P0l
H

x | APt G2 ) (x —p t ) |dV (x, £)dV (), 8)
JH

<C lu(y, S)|psfo/q+i+1s0/qfl dV(y,S) = CH””L"(X)'
H

Suppose p =1. Then, by (5.2) and the Fubini theorem, (2) of Theorem 1
implies that

18" 2 ull 1
< CJ u(y, s)|s’1+lj DWW (x — y, 14 5) |0 dV (x, £)dV (y, )
H H

< cj u(y, )57 157 dV (y,5) = Cllull .
H

This completes the proof.
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Now, we give a generalization of reproducing properties in Theorem 4.7.

THEOREM 5.2. Let0<oa<1,1<p<oo,and > —1. And let v and k be

real numbers such that v > —L;l and K > A—f. Then, the reproducing property

u(x,1) = Cyi jH Dy, 8)TEW D (x = y, 14+ )8 AV (ps)  (53)

holds for all uebl(L) and (x,t)e H, where C, is the constant defined in
Theorem 2.  Moreover, (5.3) also holds whenever p =1 and x =1+ 1.

Proor. Let uebf(A) and (x,7) € H. Then, Proposition 4.5 implies that

u(x, 1) = Gy JH Du(p,)DEWD (x — y 1+ 5)s" L dV (,s)

< u(x, 1) — us(x, 1) + Cerch |2} us(y,5) = D u(y, s)|s" 7
H

X |DEW D (x — p,t+5) s dV (y,s) (5.4)

for all §>0. If p=1 and x> 1+1, then |ZFW® (x — y,t+s)|s" 1 is
bounded. Therefore, Proposition 5.1 and Lemma 4.6 imply that (5.4) tends
to 0asd—0". If p>1 and k> ’1%1, then by the Holder inequality and
Proposition 5.1, (5.4) is dominated by

|u(x, 1) = us(x, 1)

. 1/q
+ Cllus — ull s (JH |@;€W(“)(x — y,t+5)| s gy (), S)) ,

where ¢ is the exponent conjugate to p. Therefore, Lemma 4.6 and (2) of
Theorem 1 imply that (5.4) tends to 0 as 0 — 0". This completes the proof of
Theorem 5.2.

The author wishes to thank Professor Masahiro Yamada for his advice
and private communication for the preparation of this paper.
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