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ABSTRACT. We define elementary automorphisms of the n-dimentional vector group
over an algebraically closed field of positive characteristic and show that they generate
the automorphism group of the vector group. We also give a necessary and sufficient
computational condition for a d-tuple of p-polynomials to be a component of an n-tuple
of p-polynomials defining an automorphism of the vector group.

1. Introduction

Let k be a field and p its characteristic. Let k denote an algebraic closure
of k. We consider the direct product k” of the additive group k to be an
algebraic group, which is denoted by G;. We call G an n-dimensional vector
group. Let End G and Aut G, denote the k-endomorphism ring and the
k-automorphism group of the algebraic group G, respectively. For every ring
R, let M,(R) be the ring of n x n matrices with components in R.

For 1 <i<mn, let A; = (4i,...,An) be a homomorphism from G, to G,
where 1; =1€End G, and 4; =0€End G, for j#i Let n;:G, — G, be
the projections. Then ) !, ;o7 is the identity on G). Let ¢ be a homo-
morphism from G to Gf. Then we may write ¢ = (m10¢,...,740 @), and we
have

n

7T[O¢:7T[O¢O<Z}vjoﬂj>:Z(n[0¢0}~j)onj (1)
=1

J=1

forevery 1 <i<d. Let¢;=mogo/;foreveryl <i<dandl<j<n If
n=d, then a mapping ¢+ (¢;) is a ring isomorphism from End G, onto
M, (End G,).

Suppose that p =0. Then every k-endomorphism of G, is given by a
linear polynomial [2, Proposition 12.2], so that End G, is isomorphic to k.
Denote by GL,(k) the unit group M, (k)" of the ring M, (k). Then we have
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End G} = M, (k) and Aut G = GL,(k). Suppose p > 0. We call a polyno-
mial of the form

> arr 2)

i=1 r>0

with ¢, € k a p-polynomial in n variables. Every k-endomorphism of G, is
given by a p-polynomial in one variable [2, Proposition 12.2] (in the case where
k is algebraically closed, [1, VII, §20.3, Lemma A]). Hence every homo-
morphism ¢ : G" — G is given by a d-tuple (fi,...,fy) of p-polynomials in
n variables, namely y(x) = (fi(x),..., fa(x)) for any x e G,. In particular,
Aut G, is isomorphic to GL;(k). However Aut G, with n > 2 is larger than
GL, (k).

From now on, we assume that k& is an algebraically closed field of
characteristic p > 0. In this paper, first, we give a subgroup of AutG)
such that the subgroup and GL,(k) generate Aut G, (Theorem 1). Second,
we say that a d-tuple Y, = (fi,..., fs) of p-polynomials is a component of an
automorphism of G if there exists an (n — d)-tuple ¥, = (fut1,...,fu) of p-
polynomials such that (V,¥,) = (fi,..., fa, fasc1,---, fa) 1S an automorphism
of G]. We give a necessary and sufficient condition for a d-tuple of p-
polynomials to be a component of an automorphism of G, (Theorem 2).

2. Generators of the automorphism group

Let ¢:k — k be a ring homomorphism. Let BY) = (¢/(by)) for B=
(b)) € M,,(k), where ¢’ means the iteration of ¢ with itself i times and ¢° i
the identity. The set of formal power series Y., 4;0’ is a ring under the
additon and multiplication defined as follows:

o =3 (4t 3

i=0

o0

MS

—0 =

f:A,O’l zw:B,af Z( Z AiB/(i)>G’11' 4)

i=0 J m=0 \i+j=m

(=}

Let M, (k)[[o]] denote this ring. It is immediate that 4 =3, 4,0' belongs
to the unit group M, (k)[[g]]" if and only if 49 € GL,(k). Let M,(k)[o] be a
subset of M, (k)[[o]] that consists of formal power series > ;. ,4;6' such that
A; =0 for all but finite . Then M,(k)[o] is a subring of M, (k)[[g]]. We
consider the case where ¢ is the Frobenius map F, namely F(¢) = for
t € k. There exists a ring isomorphism @ from End G, onto M, (k)[F| sending
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an n-tuple (fi,...,f,) of p-polynomials f;(T) = Za,-j,Tj” " in n variables to
>, A:F’, where A4, is a matrix in M, (k) whose ij-component is a; for every
r>0. The inverse @' of @ is given as follows:

&N (A)(x1,...,x0) = (x1,...,x,)'4  for 4eM,(k), (5)
O NF)(x1,...,x0) = (F(x1),...,F(xn)), (6)

where ‘A4 is the transpose of 4. Hence we can identify the ring End G/ with
the subring M, (k)[F] of M, (k)[[F]]. Thus

Aut G = {4 e M,()[[F]]" | 4, 4" € M, (K)[F]}. (7)

Let S, be the symmetric group of degree n. For 7€ S,, let p(r) =
(0ie(j)) € GLy(k), where 6 is the Kronecker delta. Then p: S, — GL,(k) is

an injective homomorphism. Let ¢ =@ !(p(z)). Then, for (x,...,x,) € G,

'E(xl,...,xn) = (x.[—l(l),...7xf—l(n)). (8)
Hence 7 is regarded as an n-tuple (7;-1(y),...,T;1(,)) of p-polynomials in n
variables.

LEmMA 1. Let
m .
A=Ay— ) AF' (9)
i=1

be an endomorphism of G, where Aye GL,(k) is a diagonal matrix and
A;ie M, (k) for 1 <i<m. 1If A; is nilpotent and upper (resp. lower) trian-
gular for every i =1, then A€ Aut G, and

mn
A7 = 4"+ BF (10)
j=1

for some upper (resp. lower) triangular nilpotent matrices B;.

ProOOF. Let

1 2 - on
r-(n w1l ... 1)65,1. (11)

Suppose that A4; is nilpotent and lower triangular for every i > 1. Then

t714% = p(r) ' Aop(z Zp Aip(t (12)
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Besides, p(r)flep(T) is diagonal, and all p(f)flA,-p(r) are upper triangular and

nilpotent. Hence we may assume that A; is upper triangular and nilpotent for
every i > 1. Since Ay e GL,(k), we have 4 € M,,(k)[[F]]". Let

B=A4"=) BF/ (13)
j=0

It suffices to show that there exists an integer jo > 0 such that B; = O for any
j>jo. Let B;=0 for j <0. Then the condition 4B = E, implies

By =4;", (14)
1 m .

AoB; = 4B + -+ 4,B",  for j=>1. (15)

We can show that B; is nilpotent and upper triangular for every i>1 by
induction, and that By, 1, ..., B(i41), are the sums of at most m products of at
least / 4+ 1 upper triangular nilpotent matrices by induction on /. Thus B; = O
if j > mn. ]

Let

m
P! = {Z A;F!
i=0

0 <m < 00,4y € GL,(k) is diagonal and
. . , (16)
Ay, ..., A, are nilpotent and upper triangular

P = {Em:A,-Fi
i=0

where F° is the identity. From Lemma 1 and the argument in its proof, we
obtain the following result:

0 <m < 0,4y € GL,(k) is diagonal and (17)
Ay,..., A, are nilpotent and lower triangular |’

COROLLARY 1. P} and P} are subgroups of AutG,. Furthermore, if
te S, is given by (11), then P! =2"'Prz.

DerFINITION 1. When n>2, we call 4eGL,(k)UP] an elementary
automorphism of the vector group G.

We recall the discussion in [1, §20.4]. Let f be a non-zero p-polynomial
of the form 3, 3> ¢, T?', which is regarded as a homomorphism from G/
to G,. We define the pricipal part Z(f), Nv f and Deg f of the polynomial
f as follows. Let fi(T;) =3, oc;T/ for 1<i<n. For each 1 <i<n
such that f; # 0, let r(i) be the integer that satisfies p’() = deg f; and c(i) the
leading coeflicient of f;. For each 1 <i <n such that f; =0, let r(i) =0 and
¢(i)=0. Then let
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2(1) =T (18)
i=1
Nv(f) = #{i| fi # 0}, (19)
and Deg(f) = ir(z‘). (20)

i=1

It is clear that f is a linear polynomial if Deg(f) =0. Assume that
Nv(f) =2 and Deg(f) > 0. First, we consider the case where

r(1)>--->r(n). (21)

Then, by assumption, there exist 1 <m <m’ <n such that c¢(m) #0 and
c¢(m') #0. Since k is algebraically closed, we can choose an element a € k"
such that #(f)(a) =0 with ¢ =--- = a,,-1 =0 and a,, # 0, and define the p-
polynomials g; as follows:

gl(T) =1T; for i < m, (22)

gm(T) =anTy, (23)

r(m)—r(j)

and gi(T)=T; +a;TF for j > m. (24)

Then ¢(x) = (91(x),...,9s(x)) is an elementary automorphism of G. Define
r'(i) and (i) for fo¢ in the same manner as r(i) and c¢(i) for f, so that

n

P(foh)=) ¢ (O (25)

J=1

Then the degree of the polynomial f o ¢(T) =3, fi(g;(T)) in T,, is at most
p"™ and the coefficient of 72" is 2(f)(a) =0, that is,

P(fod)=cmTl " Z TP (26)
j#EmM
with r'(m) < r(m). Therefore
Nv(f o ¢) <Nv(f), (27)
and Deg(f o ¢) < Deg(f). (28)

In the case where the inequality (21) does not hold, let 7€ S, be the
permutation such that r(z(1)) >--- > r(z(n)). Then, there exists an elemen-
tary automorphism ¢’ of G/ such that
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Nv(fotog¢') <Nv(foz)=Nvf, (29)
and  Deg(fotog¢’) < Deg(fot)=Degf. (30)
Lemma 2. Let f(Ty,...,T,) be a non-zero p-polynomial in n variables with

n>2 For every 1 <v<mn, there exist a finite number of elementary auto-
morphisms ¢, ..., ¢; such that fo¢ o---o¢;, is a p-polynomial in T,. If the
polynomial f is irreducible additionally, then there exists an elementary auto-
morphism ¢, such that fop,o---od,0¢, (T)=T,.

ProoF. Unless Nv(f) =1 or Deg(f) =0, we can find a permutation
t€ S, and an elementary automorphism ¢’ of G/ described above such that
Nv(fo¢) <Nv(f) and Deg(fo¢) < Deg(f), where ¢ =%t0o¢’ is a com-
posite of two elementary automorphisms. Thus there exist a finite number
of automorphisms ¢,,...,¢,_; of G such that f' = fo¢ o---0¢, ; satisfies
either Nv(f”) =1 or Deg(f’) =0. If Nv(f’)=1 and f’ is a polynomial in
T;, let ¢; be the transposition (j,v) € S, or the identity mapping according as
Jj#vor j=v. If Deg(f')=0 and hence f' =), b;T; then let ¢,(x) =
(D2 ayxj, ..., > anx;), where (a;) € GLy(k) is a matrix satisfying >, bia; =
Ojy. Then fo¢ o---0¢, is a p-polynomial in 7.

If f is irreducible, then fo¢, o---0¢; is an irreducible p-polynomial in
T,. Since an irreducible p-polynomial in one variable is linear, we have

Sopo-0g(T)=aT, (31)
for some a € k*. Hence let

¢ (T) = (T1,...,Tv_1,a ' Ty, Tyy1,..., Ty). (32)

The following two Lemmas will be used later:

Lemma 3. If ¢(x) = (fi(x),..., fu(x)) € Aut G)}, then f; is irreducible for
every i.

Proor. The map sending f € k[T),...,T,] to fodek[Ty,...,T,] is an
isomorphism of k-algebras whose inverse is f — fo¢ !. Now
po¢ (T)=(fiod (T),...., fiog (1)) = (T1,..., o). (33)
Hence f; is irreducible for every i.

LemMMA 4. Let X\ and X, be objects of a category € and f : X; — X5 a
morphism.  Suppose that there exists the product Xi X X, such that the pro-
Jection pry: X1 X Xo — Xo is an epimorphism. Then, f is an isomorphism if
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and only if (idy, o pry, f opr,) with components idy, opr, and fopr, is an
isomorphism, in which case (idy, o pr;, f opry) ' = (idy, o pry, /=" o pry).

Proor. Hom-sets hom(X;, X;) and hom(X; x X5, X; x X;) are monoids
with respect to their compositions. We will show that y:hom(X3, X3) —
hom(X; x X2, X1 x X») that sends f to (idx, opr;,fopr,) is an injective
monoid homomorphism. Since

(idy, o pry, f o pry) o (idy, o pry,g o pry) = (idy, o pry, fogopr), (34)
y is a monoid homomorphism. Since pr, is an epimorphism, f +— f opr, is
an injective mapping from hom(X>,X>) to hom(X; x X3,X;). Moreover
S (idy, opr;, f’) is an injective mapping from hom(X; x X2, X») to
hom(X; x X3, X; x X3). Hence y is injective.

For T =(Ty,...,T,), x=(x1,...,x,) €k and 1 <i<n, we write T
and x) for (Tj,...,T,) and (x;,...,x,) respectively.

DerFiNnITION 2. Let n>2 and 1<d<n. For 1<i<n, a d-tuple
(fi,-.., fa) of p-polynomials in k[T,...,T,] is said to be sweepable in T;
if f;ek[TV] for 1 <j<d and f; is irreducible.

In particular, a d-tuple (fi, ..., fs) of p-polynomials is sweepable in 77 if
and only if f; is irreducible.

LEmMMA 5. Let n>2 and 1 <d <n. Suppose that f = (fi,...,[d) is
sweepable in T; for an integer 1 <i<n. Then there exist a finite number of

elementary automorphisms ¢y, ...,¢; of GZ‘HI and an elementary automorphism
n of GZ such that

nofo ¢(T<l)) = (Tith(T(i+1))a s 7hd(T(i+l>))> (35)
where ¢ is the composite ¢, 0---o¢; and hy, ..., hy are p-polynomials.

PrROOF. An irreducible p-polynomial in one variable is linear. Hence, by
Lemmas 2 and 3, there exists ¢ € Aut G;HH that is a composite of finite
number of elementary automorphisms and that satisfies

Jio(TV) =T, (36)
Then, for j > 1, we may write
Jio (T = g;(T0) + hy(T"Y), (37)

where g; € k[T;] and h; € k[TU] are p-polynomials. Define 7€ Aut G? by
ﬂ(xla .- 'axd) = (xl7x2 - gZ(xl)a sy Xd — gd(xl))7 (38)

which is desired.
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THEOREM 1. Let n>2. Then Aut G) is generated by GL,(k)U P

Proor. Let ¢ =(f1,...,fn) € Aut G, where f; are p-polynomials in n
variables. By Lemma 3, the n-tuple (fi,...,f,) is sweepable in 7;. Hence,

by Lemma 5, there exist elementary automorphisms ,...,;, # of G such
that the composite & =# o0 ¢ o) satisfies
$(x) = (e, (X)), (X)), (39)

where y = 0---oy; and x' = (x2,...,x,). Let &' =(fy,...,f]). Then, it
follows from Lemma 4 that &' belongs to Aut G

If n=2, then f)(T»)=aT, with aek* since f/ e AutG,. Hence
p=n"odoy !, where A(xi,x;) = (x1,ax;). Now that Theorem 1 holds
when n =2, we can proceed by induction on n. Assume that Aut GZ‘I is
generated by GL,_1(k)UP/~!. Then &' =¢&{o---0¢, where & are elemen-
tary automorphisms of G/'.  Let &(x) = (x1,&/(x")). Then & are elementary
automorphisms of G and (¢ =¢jo0---0&,. Since  =nogoy, ¢ is a com-
posite of elementary automorphisms of Gj. O

3. Components of an automorphism

We say that a d-tuple Y, = (fi,..., f4) of p-polynomials is a component of
an automorphism of G, if there exists an (n — d)-tuple ¥, = (fu41,..., fa) such
that (Y, ¥,) = (fi,..., fa, fas1,- .., fu) is an automorphism of G.

It is false that every homomorphism from G to G¢ is a component of an
automorphism of G]. We give a necessary and sufficient condition for a d-
tuple of p-polynomials to be a component of an automorphism of G. Clearly
an n-tuple ' = (fi,...,fn) of p-polynomials in n variables is a component of
an automorphism of G/ if and only if f € AutG). The following theorem
gives a computational criterion for the n-tuple f to belong to Aut G} in
particular.

THEOREM 2. Let n>2 be an integer, d an integer with 1 <d <n,
and fi,...,fa€k[T\,...,T,) p-polynomials. A d-tuple f = (fi,...,fs) is a
component of an automorphism of Gl if and only if there exists a sequence

(D DY of (d—i+ 1)-tuples fU) of p-polynomials in k[T] that satisfies
the following:
W) Sy

(2) £ are sweepable in T; for 1 <i<d
(3) There exist ¢; € Aut G" ' and 5! € Aut G~ such that

nio fOog(TV) = (Tp, fH(THY)) (40)

for 1 <i<d.
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In particular, a single (f1) is a component of an automorphism of G if and only
if fi is irreducible.

Proor. We already know that if an n-tuple (fi,..., f,) of p-polynomials
defines an automorphism of G/, then each f; is irreducible by Lemma 3.
First, assume that f is a component of an automorphlsm of G). Let
= f; for 1 <i <d. Then there exist p-polynomials hh FISERRE ,h,, such that
h<1 (h<1 S >) € Aut G”. By Lemma 3, i) is sweepable in 7;. Hence,
by Lemma 5, there exists an automorphism ¢,,#, € Aut G/ such that

moohV o ¢ (T) = (T, K2(T?), ..., K@ (T?)). (41)

By Lemma 4, h@(T®)=(hP(T@),... i?(T®)) belongs to Aut G''.
Repeating the same argument, we see that there exist ¢;,7; € Aut G;H'H such
that

1

nio h o g (TW) = (T, ALV (TUD), . HHD (704 (42)

for 1 <i<d. Write ;= (n;,-..,1;,) and A = (h @ n), and let nl =
(Riis - - - mig) and (W)Y = (hm . h;)) Then (h')?(T®) is sweepable in T;.
Moreover we have (& ’) =f n and

nj o (W) o g (TW) = (T, (") (1Y), (43)

since 77; depend only on x; and x;. Therefore we may take (4 /)(i> as f
Conversely, assume there exists ¢; € Aut G~ "1 such that

190 g (TD)
= (T1, g\ (T + £50(TE), gyt (@) + £ (1Y), (44)
Define 7/ € Aut G/~ by
7i(xr, o, xa) = (i xi1 — gin (), xa — it (). (45)

Then we have 5/ o fU o ¢,(TW) = (T;, f+V(T0+D)).  Define #; € Aut G? and
W, € Aut G, as follows:

(X1, Xa) = (X1, - Xim 1, 1 (Xiy -, Xa)), (46)
lpi(xlv"'vxn) = (xl,...,xi,l,(/ﬁ,-(x(i))). (47)
We can show by induction on i that

nio--onofVoy o oyy(T) = (Th,.., T, f(TED)). (48)

In particular,

ngo--—-onofWoiyooyy(T)=(T,...,Ts). (49)
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Lety=1#n,0---on,and y =y, 0---ov,. Then (o fDoy(T), Ty1,...,T,)
defines the identity mapping on G”. Let &(x) = (17 (X1, .+, Xa), Xds1, -+, Xn)-
Then ¢ e Aut G" and &(T) = (fV oy(T), Tys1,...,T,). Hence

Eoy™N(T) = (fYN(T), ha(T),... . ha(T)), (50)

where y~'(T) = (h(T),...,h,(T)). Therefore f() is a component of an
automorphism of G/.
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