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ABSTRACT. Parabolic Bergman space b7 is a Banach space of all p-th integrable
solutions of a parabolic equation (8/0t + (—4)*)u =0 on the upper half space, where
0O<oa<land 1< p< . In this note, we consider the Toeplitz operator from b/ to
b} where p <gq, and discuss the condition that it be compact.

1. Introduction

Let Rj_“ be the upper half space of the (n+ 1)-dimensional Euclidean
space (n > 1). We denote by X = (x,¢) a point in Rj’r+1 = R" x (0, c0), and by
L™ the a-parabolic operator on R’f’l:

0
L% = — 4 (=4,)%,
ot (=4x)
where A, := ail e 8)%” is the Laplacian on the x-space R” and 0 < o < 1.
We consider the parabolic Bergman space on the upper half space

b = {ue L?(V);u is L-harmonic on RY™'},

where 1 < p < oo and V is the Lebesgue measure on Rﬁ“. We give the
definition of L®-harmonic functions in §2 (see also [3]). The orthogonal pro-
jection from L2(V) to b? is an integral operator with kernel R,, called the o-
parabolic Bergman kernel (see [2]). Then for a positive Borel measure x on
the upper half space Rffl, we can consider the Toeplitz operator with symbol
u, defined by

(1) (X) = | R, YY) Y).
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In this paper, we only consider Borel measures u such that 0 < u(K) < oo for
all compact sets K. Then we call such a measure a positive Borel measure,
simply.

B. R. Choe, H. Koo and H. Yi [1] studied the Toeplitz operators on the
harmonic Bergman spaces on Ri“. It was shown in [2] that when o = 1/2,
our 1/2-parabolic Bergman spaces coincide with their harmonic Bergman
spaces. Our investigation generalizes some results in [1].

In our previous paper [4], we treated the boundedness of the Toeplitz
operator Ty, =T, ) ,: b} — b, where p <gq, related to that of the Carleson
inclusion 1, =1, 4 : b — L9(u). In this paper, we shall discuss their com-
pactness. We also treat the parabolic Bloch space

By = {ue C'(R™);

lull 5, = lu(Xo)| +  sup ("> Vau(x, 0)] + ]0u(x, 1)]) < o0},

1
(x,0)e R

where Xy = (0,1) and V, denotes the gradient operator on the x-space R". It
is natural to consider %,/R rather than b,° when we treat with ¢ = oo, where
R is considered as the set of constant functions.

First, we shall state the results obtained in [4] with some definitions. We
introduce some auxiliary functions. Let u be a positive Borel measure on
R"™' teR and m be a nonnegative integer. For Y = (y,5s)e R"", we
put

A(Y) o= 57T Q1))
FEMY) = s ) [ R X, ) d(X),
where Q¥ (Y) is an a-parabolic Carleson box, defined by
OW(Y) :={(x1,...,Xp, 1);5 < 1 < 25, lx; — i < 27V =1, n), (1)

and where R}’ is a modified reproducing kernel, defined by

(_2)}11
RI'X,Y)=R](x,t;p,5) = ' s"O0V Ry (x,t; p,8).
m!

We note that R? = R, and write simply " := ﬂ% A relation between the

above two functions is stated in Lemma 3 below.

DeFiNniTION 1. Let 7€ R and let 4> 0 be a Borel measure on Rfr“.
(i) wis called a 7-Carleson measure (in the o-parabolic sense) if ||/2§y)||% < oo,

where | - ||, stands for the usual supremum norm.



Compact Toeplitz operators 179

(i) p is called a vanishing 7z-Carleson measure (in the a-parabolic sense) if
11m ,uf( )(Y) =0, where .o/ denotes the Alexandroff point (infinity of the
one pomt compactification) of the upper half space R”“
We denote by &, the vector space generated by {R;"(-, Y)}yepm-
Remark that &, is dense in 2 for 1 <p< oo when m>1. If 1 <p <+oo,
then &) is also dense in b2. Theorems obtained in [4] are the following.

THEOREM A. Let 1 < p < q < o0 with p # o0, q;élandpulf—l—i—l—
Let u be a positive Borel measure on R"+1 and m >1 be an integer. Th
we have the following inequalities:

1
q
en

”T#JLCIH < C1||ﬂ£a)||>o = C2||/11('ar)n||3c’

where T, , 4 is the Toeplitz operator b? — b} or b — %B,/R according as g #
or q= o0, and ||Ty p || denotes the operator norm. Here we remark that the
above positive constants C,, C, can be taken independently of u.

Under some additional conditions, the opposite inequalities also hold.

THEOREM B. In the same situation as above, we assume, in addition,
J|R;"(X, Y)ldu(X) < oo for every Y e R"™"! (2)

for some integer m > 1. Then we have
1A% < Csll Tpqll,
where the above positive constant C3 can be chosen independently of .
Concerning the theorem, we give a remark.

REMARK 1. In (4], we showed Theorem B under the condition
J\R;”(X, Y)ldu(X) < oo for V-ae. YeR!. (3)
Remark that if T, , . is bounded, then (3) is equvalent to (2) (see [4, Theorem

2)).

The above theorems are closely related to the boundedness of the Carleson
inclusion.

THEOREM C. For 1 <p<qg<oo, put t=¢q/p. Let u>0 be a Borel
measure on Rj’fl. Then there exists a constant C4 > 1 independent of p such
that the inequalities

1Al 1
CrU AP < tup, o]l < Calla™)Y
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hold when u is a t-Carleson measure, where 1, =1, , , denotes the inclusion map
P =
bY — Li(u) : ,,u=wu and |1, 4|| denotes the operator norm.

REMARK 2. In the above theorem, even when u is a t-Carleson measure, the
inclusion map 1,, which we call the Carleson inclusion, is not necessarily injective.

Now, we shall state our main results.

THEOREM 1. Let 1 < p <gq< oo with p# 0 and put t=1+,—, and
let u be a positive Borel measure on Rf’r+1 satisfying (2). Then the following
statements are equivalent:

(i) The Toeplitz operator T, ,, is compact;
(ii) u is a vanishing t-Carleson measure, ie., limy_, ﬂg“)(Y) =0

(i) limy_., 2*(Y)=0.

REMARK 3. In the above theorem, we can also handle the case where
p=1. In this case, we use the notion of ‘“‘s-compact operator” instead of
“compact operator” (see §2 later, c¢f. [6]) and when p =1, q = o0, we have to
replace /zi“) by ﬂﬁ:‘)n with m > 1 in (iii). We can state the above assertions in
a unified form if we use the notion of “‘s-compact operator” (see Theorem 3

below ).

We shall also give a characterization of the compactness of the Carleson
inclusion.

THEOREM 2. For 1<p<qg< o, we put t:=q/p. Then 1,,, is *-
compact if and only if u is a vanishing t-Carleson measure.

Throughout this paper, C will denote a positive constant whose value is
not important, not depending on measures u or functions u, and not necessarily
the same at each occurence; it may vary even within a line.

The authors would like to thank the referee for a set of useful
remarks.

2. Preliminaries

In this section, we recall fundamental properties of L(®-harmonic functions
and compact operators.

In order to define L(®-harmonic functions on RTI, we shall recall how
the adjoint operator L® = —0/0t + (—4)* acts on C*(R"'"), the space of all
infinitely differentiable functions with compact supports on Rﬁ“. Since the
case o = 1 is trivial, we only consider the case 0 < o < 1 here. Then (—4)" is
the convolution operator defined by —c¢, ,p.f Jx| ™", where p.f. stands for the
finite part,
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Cna = =4 "2 ((n+ 20)/2) /T (—0) > 0
and |x| = (x} +--- +x2)"/2. Hence for p e C*(R""),

0 . —n—20
E99(x,1) = — L p(x,1) — e hmj (0(x+ 3,1) — p(x, 1)) |y d.
ot J10 |y|>0

It is easily seen that if supp(ep), the support of ¢, is contained in {|x| < r,
1] <t<t}, then

L0 <26 swp | lo(r.oldy)

11 <s<lp
for (x,t) with |x| > 2r.

DeFiniTION 2. Let 0 <o <1. A continuous funcion u on RTI is
said to be L®-harmonic, if L®@Wu=0 in the sense of distribution, i.e.,
JuL®g dV =0 for every p e C*(R"").

Next, we introduce the fundamental solution W of L®, defined by

W (x, 1) = { (()27[)*" [r €xp(—1|E[ + V=Tx - &)dé ; z g

When =1 or o =1/2, we know the explicit form. In fact, for 7> 0,

ntl
W(l)(x f) = (4nt)fn/26—\x|2/4t and W(l/z)(x f = F( 7 ) ¢ .
7 ’ (n+1)/2 (tz =+ |x|2)(n+1)/2

The following homogeneity of W(® is useful:
QLeEW ) (x,1) = IR QG gy ) (1712, 1),

where = (f;,...,0,) is a multi-index and k£ >0 is an integer.
The following estimate plays an important role in our argument.

LemMa 1 ([4, Lemma 1]). Let p=(f,,...,P,) be a multi-index of non-
negative integers and k > 0 be an integer. Then there exists a constant C > 0
such that

‘agat]‘ W(OC) (X, Z)| < C(l+ |x|2a)7(n+|ﬁ\)/2a7k
1
for all (x,t) e RT .

We list some properties of a-parabolic Bergman kernels R, and R]'. Re-
call that

Ry(x, 8 p,8) := —26,W<“)(x —nt+s),

(_2)m+1

T W (x — y t ).

Ry (x,8y,8) ="
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These kernels have the following reproducing property: Form >0, 1 < p < o
and for every ueb?, RI'u=u, ie.,

Ryu(x, 1) = JRZ?(X» 6y, 8)u(y,s)dV(y,s) = u(x,1). )

Lemma 1 gives the following estimate for R!'. For an integer m >0,
there exists a constant C > 0 such that

|RY(x, 6 p,8)] < Cs"(t+ s+ |x — y\z‘x)*("/z‘““)*m. (5)

We also need an estimate from below. Then there exist constants C > 0
and p > 0 such that

R (x5 3,5)| = €020 (©)

for all (y,s) e R"™™" and (x,7) e Q¥ (y,ps) (|5, Corollary 1]).

If m> (£+ 1)(%— 1), then we have

1R C, Y)”Ll’(l/) = Csn/221)(1/p=1) o

with some constant C > 0 independent of ¥ = (y,s5) € R”"'. Indeed, (5) and
next lemma ensure [|R}'(+, Y)| 1,y < 0, so that the homogeneity of W gives
the equality (7).

LemMMmA 2. Let ypeR If —1<y<ny-— (2'1_“_,_ 1)5 then
J (45 -+ |x = p[7) 7V (x,1) = 7/

with some constant C > 0 independent of (y,s) € Rffl.

LemMA 3. Let it >0 be a Borel measure on R"™'.  Fort>1— (£ + 1)71
and an integer m > (%) (%4— 1), we have the following relations:
(i) w is a t-Carleson measure if and only if ﬂg‘% is bounded.
(i) wu is a wvanishing t-Carleson measure if and only if limy_ ., ﬂf,)n(Y)
=0.

ProOOF. (i) is shown in [4, Lemma 6], and the “if” part of (ii) also follows
from [4, Lemma 6]. Hence we will show the “only if” part of (ii). We
assume that u is a vanishing z-Carleson measure. We use the following
Whitney type decomposition of R”*'. For v=(f,...,,.k) € Z""!, we put
ty =2k x,:=262g, ... B) and Q,:=QW(X,), where Q¥ (X,) is the
Carleson box defined by (1) and X, = (x,,#,). Then in a similar manner
to the proof of [4, Proposition 2|, we have
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A (Y) = 520/ jR;"(X, Y) du(X)

< Cs 2m+(2—1)(n/20+1) Z J (I+S+ ‘X | ) 2(n/20414m) dﬂ( )
yeZ! 0,

< Cs2m+(2—r)(n/2a+l) Z (tv +5+ |x1 | ) n/21+1+m)ﬂ(Qv)
vezZ!

— Cs2m+ —7)(n/20+1)

% Z I+S+|XV y| ) n/2a+1+m)t([rfl)(n/2oc+1)ﬂ(a)(XV)V(Qv)

T
‘Ezﬂ+l

< Cs2m+(2—r)(n/2c<+l)
xj(t+s+|x v n/21+1+m)t(r—l)(n/2o<+1/2 (X)dV (X).

Now let 0 > 0 be arbitrary given and let us take a compact set K in R”*1 such
that 4% (X) <6 for every X e R"™\K. Then we have

A%(Y) < €8+ C||al)]| s+ @024
X J (l —+ 5+ |x _ y| ) 2(n/20+1+4m) rfl)(;1/20:+1)dV(A,)7
K

which implies

This completes the proof.
Next, we recall some general properties on compact operators.

DEeriNITION 3 (cf. [6]). Let 2, % be Banach spaces and 7 : 2 — % be a
bounded linear operator. Assume that Z has a predual Banach space.
(i) T:2 — % is said to be weakly compact if for every sequence (i), in 2
such that w-lim;_., u; =0, Tu; converges to 0 in %.
(ii) T:2 — % is said to be #-compact if for every sequence (u;); in 2" such
that w*-lim;_., u; = 0, Tu; converges to 0 in %.
(i) 7:2 — % is said to be compact if for every bounded sequence (u;);
in %, there exists a subsequence (), such that (Tu;), converges
in %.

The relations of these notions are given by the following lemma.
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LemMmaA 4. Let 2, % be Banach spaces with X = Z* for some Banach

space Z. Then we have the following:

(1) If T:Z — % is =-compact, then T is compact.

(i) If T:%Z — % is compact, then T is weakly compact.

(i) If a Banach space X is reflexive, i.e., & = X, then the notions of “‘weakly
compact”, “compact”’ and “x-compact” for bounded linear operators from
X to W are equivalent to each other.

LemMMmA 5. Let 2, % be Banach spaces with & = Z* for some Banach
space %. The space of all x-compact operators T : X' — ¥ is a closed subspace
in the Banach space of all bounded linear operators.

Proor. Let (T%), be a sequence of x-compact operators which converges
to a bounded operator 7 in the norm sense. Take any sequence (u;); in
Z such that w*-lim; ., u; =0. First, we remark that sup,|ju;|| < co by the
uniform boundedness principle. Then we have

1 Tu|| < (| Tu; — Tiws|| + | Toewil| < NT = Tiel| gl + | Ty |-
Since T} is *-compact, letting j — oo, we have

limsup || Tw;|| < || T — Ti|| limsup [|u;],
J— o J—o0

which shows our desired result lim;_ || 7u;| = 0.

Let %, denote the a-parabolic little Bloch space,

By = {u €%,; lim
(x,0)— ot

(2|l )]+ o, ) = 0}

(see [2] for detail). Note that %, is separable. In this paper, we always
consider the predual of 5. as %, 0/R.
We close this section by remarking the following facts.

LemMMmA 6. Let 1 < p < oo. For m> (ﬁ+ l)(%— 1), we have

R"(.. Y
Y=o \ [[R7 (-, Y)ll o
in b, where b? ~ (b!')" if 1 < p < oo and b} ~ (B,,/R)*. Here p' is the

exponent conjugate to p.

Proor. Take an arbitrary sequence (Y;); = ((»;,5;)); in R which con-
verges to .o/ and put

RMX,Y))
vi(X) =
’ Ry (-, Yj)”u(V)
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We may assume w*-lim;_.,, v; =v for some v e b)), because the sequence is
bounded in b%.
Let 1 < p < oo. For every XGRT_I, since R,(X,-)eb?,

U(X) = <Ua RM(X7 )> :jli’n; <Uj7Ra(Xa )>

= lim v;(X) = lim R}'(X, )zj,)S]§'1/2a+1)(1/p’)

s J—m
= 0,

by (4), and (5), (7), where {-,-> denotes the pairing of the duality.
Let p=1. Since Ry(X,-) € B,,, we have

llm <vja R%(X, )> = <U7 R%(X7 )>
j—oo
By the definition of the pairing on b! x (%,.0/R) (|2, Theorem 9.3)),

Cvpy Ry(X, )y = =2 J v, (Y)s0,R,(X, Y)dV (Y)

_ J o (Y)R(X, Y)dV(Y)

= 1;(X).

The last equality follows from (4). Hence v(X) = lim;_, v;(X) for every

X eRTl. On the other hand,

__ R Y)
IR G5 Yl i)

as j— oo by (5) and (7), which implies v = 0. This completes the proof.

v;(X)

— 0

Lemma 7. Let 1 <p < oo. A sequence (u;); in b, converges to ueb)
in the w*-topology, if and only if the sequence (u;); is bounded in b} and
converges to u uniformly on every compact set in Rf_“.

Proor. First we shall show the “only if” part. Assume w*-lim;_, u; =
u. By the uniform boundedness principle, (uj)j is bounded in bZ. Then
[2, Proposition 5.2 and Theorem 5.4] shows the local uniform boundedness
and the equicontinuity. Taking any subsequence (u,), which converges to
some v € b2 uniformly on every compact set in RTI, we have

klim Uy (X) = khm <uj/n Rx(Xv )> = ”(X)

for every X e R""', because R,(X,-) is in the predual of b? and it has
the reproducing property (4). Next we show the “if” part. By the w*-
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compactness of bounded sets, we may assume the sequence (uj)j converges
to some veb? in the w*-topology. By the “only if” part, which we have
already shown, we find that (uj)j converges to v uniformly on every compact
set, which implies v = u and this completes the proof.

REMARK 4. The above assertion also holds for B, = {u € B,;u(Xy) =0}
where Xo = (0,1). Here we consider B, ~ B,/R ~ (b})*. In fact, by using [2,
Proposition 7.2 and Theorem 7.3] instead of [2, Proposition 5.2 and Theorem
5.4] and by taking R,(X,-) := R,(X,-) — R,(Xo,-) € b} instead of R,(X,-), we
can carry out the above arguments.

3. Measures with compact support

From now on, we start to prove our theorems. First, in this section, we
treat measures whose supports are compact. In this case, we need not assume

P =gq.

ProposITION 1. Let | < p< oo, 1 < ¢ < o0 and >0 be a Borel measure
on Rf’l with compact support. Then
(1) the operator T, ,, is =-compact if q > 1, and
(ii) the operator 1, , . is *-compact if q < co.

Proor. We first show the boundedness. For ueb’, by (7) and [2,
Proposition 5.2], we have

Tl < IR D)oVl Y)

< Clull, Js*f("/z“*“ du(y,s),

where 1 =141-1" Remarking the boundedness of the inclusion b)° = %,,
which follows from [2, Theorem 5.4], we also have the boundedness of
Typoo: b — %,/R. Since

1/q
iy < sop (0| ([ ) < Clul,
Y esupp(u)
the boundedness of 1, , , can be easily verified, where the last inequality above
follows from the boundedness of the point evaluation [2, Proposition 5.2].
Next, to show the compactness, we take an arbitrary sequence (u;); from b}
which converges to 0 in the w*-topology. We may assume that (Lt_,)j be in &,
for m > 1, because &, is dense in b7. Since T,u;(X) = [ Ry(X, Y)u;(Y)du(Y),
Lemma 7 implies that
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Tyl < € IR ¥l (V) ld(Y)
< € [P0 Dy 3,9)d(5) — 0

as j— oo for 1 < ¢ < oo. We also have

1/q
llay < sup ujl-(Jdﬂ) 0
supp( )

as j — oo. These complete the proof.

REMARK 5. In the above proposition, when q = oo, we have |T,ul, <
C||Tyull,, < Cllull, for uebl. Hence T,b} = b, N Ry holds. In fact, for any
ue gm;

100,(Ty) (x, 1)] < jva,Ra(x, £y, $)u(y,8)|du(y,5)

< sup  |t0;R,(X,Y)] sup |u| Jd,u
Y esupp(u) supp( )

— 0 as X — .

By [2, Lemma 9.2], we see T,u e %,,0.

4. Proof of Theorem 1
We begin with the following proposition.

PROPOSITION 2. For 1 < p<g < oo with p# o and q # 1, we put 7:=
%—i— 1-— é. If limy_ ﬂg“)(X) =0, then T, , is *-compact.

Proor. Take an exhaustion (w;); of R"' and put

W= /‘|w, and Vj = U=

Then by the assumption that limy_ ., ﬂg“)(Y) =0, ((1?,)5“))] converges to 0
uniformly on R"™'. Theorem A shows

T, — T, | = Il < Gl 5], — 0

0

as j— oo. Hence T, is x-compact, because each 7T}, is x-compact by Prop-
osition 1. O

Next, we consider the converse assertion.
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+1 .
ProPOSITION 3. Let u>0 be a Borel measure on R satisfying (2) for

somem>1. Forl<p<gq<oowithp# oo and q # 1, weputr::%—i—l—é.
If Typq is =-compact, then limy_, /15“,31()( )=0.

ProoOF. Since u is a 7-Carleson measure, we have
| Rt a0 = [ TRz 1) REC VIOV
for Y e R™"' by [4, Proposition 3]. Hence it follows from (7) that
FOMY) = [ TRIC,Y) - RIC, Y st

<N TuR G V) oy - IR Y) gy - 5~ @210

= CITuR;(, Y)

m -1
Lu(V) " ||R1 () Y)”Lp(V)

o RICY)
IR )l

if 1 <g< . When g= co, we similarly have the estimate
R™(. Y
(R
IR Yl o)

m 2®(Y) =
Jim 7%, (Y) =0,

=C

Li(V)

an(Y)y<c

2,/R

Therefore

because of the #-compactness of 7, and Lemma 6.
We can now prove our main theorem.

THEOREM 3. Let 1 < p <q < oo with p# 0, q# 1 and put t=1+,—1,
and let p be a positive Borel measure on Rff’l satisfying (2) with some integer
m > 1. Then the following statements are equivalent:
(i) The Toeplitz operator T, , , is *-compact;

(ii) u is a vanishing t-Carleson measure, i.e., limy_ /25“)(1’) =0,
(iil) limy_ @om(Y) =0;
(iv)

iv) limy_ .y, ﬂ%(Y) =0 for every integer k > (£ +1)(52).

Proor. In Propositions 2 and 3, we have shown the implications
“(ii) = (1)” and “(i) = (iii)”’. Lemma 3 (ii) shows the implication “(iii) =
(ii) & (iv)” and we have the theorem.
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Since b7 is reflexive for 1 < p < oo, Theorem 1 follows from Theorem 3.
Finally, we give a remark.

REMARK 6. When q = o0 and T, ) o is x=-compact, the image of T, , o is
in the little Bloch space %,0/R, which follows from Remark 5 and the proof
of Proposition 2.

5. Proof of Theorem 2

Finally, we consider the Carleson inclusion. Combining the following
propositions, we have Theorem 2.

PROPOSITION 4. For 1 < p < g < o, we put 7:=gq/p. If limy_ ﬂ@(y)

=0, then 1,,, is *-compact.

PrOOF. Let (w;); be an exhaustion of R"" and define 7 : b2 — L9(p)
by yu=u-1, €Li(u) for ueb]. Putting u:=pul, and v;:=u—p; we
have

tim 1(5), =

from assumption. Here we remark that for u € b2, by Theorem C,

U u|

1p.q = )l gy = Nall oy < Call(3)

which shows

Lr(V

1
g — 11l < Call (3P4 —

as j — oo from assumption. On the other hand, i is #-compact from the -
compactness of 1, , 4 by Proposition 1. Thus we see that 4, 4 is *-compact,
because ] 1u(,.) = 12l

PROPOSITION 5. For 1 <p<gqg<oo, we put t:=q/p. If 1,p4 is *-

compact, then limy_, ,LZ@(Y) =0.

PrOOF. Let m > (£ + )(% —1). For Y e R""", restricting the domain of
the integral to Q®(y,ps), we have the estimate

()

by (6). Since 1, , is *-compact, the left hand side tends to 0 as ¥ — ./ by
Lemma 6. Then we have

> Cal" (y, ps)
La(p)

T

i () =
}Ln}q/'u (¥)=0.
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6. A relation between Toeplitz operators and Carleson inclusions

In the definition of the Toeplitz operator, we may use a modified kernel
RJ'. Then the treatment is a little simpler, especially for the case p =1 or
g = o0. Nevertheless, in this paper, we only consider the Toeplitz operator
defined by the original Bergman kernel R,. Hence the Toeplitz operator T, is
formally self-adjoint. Moreover the formal adjoint of the Carleson inclusion i,
is closely related to 7}, ie., T, = 1,1, holds. In this section, we explain this
relation more exactly.

We consider a positive Borel measure y satisfying (2) with m > 1. In this
case, 1, =1, , 4 is defined densely on b? and we can define the adjoint operator.

REMARK 7. Let u be a positive Borel measure on Ri“ satisfying (2) for
some m > 1. Then, for every 1 < p,q < oo, the inclusion 1, ,,: b5 — L(u)
defined on &, is closable. In fact, let (uj)j be a sequence in &, such that
there exist u e bl and ve LI(y) with lim;_,, u; =u in b and lim;_,., u; = v in
Li(u). Then u=v u-ae.

Next, we remark that T,u(X) is defined pointwise for each u € &,, i.e.,
1) = | R, Y)u(¥)du( )

is well-defined for all X € R”"' and T,u is L®-harmonic on R"™'. Indeed,
since the estimate (5) shows |R,(X,-)| < Ct~"/2**1) for each fixed X = (x,1) €
R"!', the integrability

J|Ra(){, Y)u(Y)ldu(Y) < Cr ) J uldy < oo

follows from (2). This estimate gives the Huygens property of T,u ([2, (4.1)]),
which shows that T,u is L®-harmonic ([2, Proposition 2.5]).

PROPOSITION 6. Let 1 < p,q < oo with p# o0, ¢ # 1 and put ©:= 4+,
where q' denotes the exponent conjugate to q. Let u be a positive Borel
measure on Rfl satisfying (2) for an integer m > 1. For ueé,, Tucb]
(B, when q = o0) if and only if (14 p)u is in the domain of (1,4 )" and
Tyt = (4y,q',2q') " (. p,op)ut holds.

Proor. First we remark that tp is the exponent conjugate to tq’, since
#—l—# = l., We assume that u € &, satisfy T,ueb! (%, when g = ). Let
ve &, < bl be arbitrary, take J > 0 and put vs(x,7) = v(x,#+J). Then by the
Schwarz inequality and (7), we have

J|u(y,s)|J|R%(x, t,y,s+0)vs(x,0)|dV (x,t)du(y,s) < co.
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Hence the Fubini theorem yields
[ s+ Ot )aur.9) = [ ) Tyt 1+ S)av .1

_ J v(x, 1) Tu(x, )dV (x,1).
{r>d}

Letting 6 | 0, we have [vudu= [vT,udV, because v is bounded and vT,u e
L' (V). Then

<(’u,p7fp>“» (’u,qﬂrq’)w = <T/4u7 vy,

which implies (1, p,zp)u is in the domain of (1, 41,z0)" and (1, 41,24) (L p,op)tt =
T,u. The opposite direction is trivial, which completes the proof.

COROLLARY 1. Let 1<p<qg<oo with p#ow, q#1 and put tv:=
%—i—% €[1,2). Let u be a t-Carleson measure on RTI. Then, both operators
Lipap B2 — LP(p) and (1,4 2q')" : L7 (1) — (bL)" = b (B,/R when q = )
are bounded, and

Tpg = (g o) (tp,op)

holds.
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