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Norm estimates for the Bernardi integral transforms of functions
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ABSTRACT. In this paper, we obtain sharp norm estimates for the Bernardi integral
transform of functions belonging to the class #'(4,B), —1 < B< A <1, which is a
subclass of the well-known class of convex univalent functions. As a consequence, a
number of open questions arise naturally, concerning % *(A4, B)—a subclass of the well-
known class of starlike univalent functions, and many other classes.

1. Introduction

Let .o/ denote the class of functions f analytic in the unit disk 4 =
{zeC:|z| <1} with the normalization f(0)=0= f'(0)—1 and %% the
subclass of o7 consisting of all locally univalent functions, namely, L% =
{fed:f'(z) #0,ze€ 4}. 1In the sense of the Hornich operations ([6], see
also [9]), we may regard ¥% as a vector space over C and we can define the
norm of f € LU by

/")
Gl
It is known that ||f|| < oo if and only if f is uniformly locally univalent, that
is, there exists a constant p = p(f) > 0 such that f is univalent in each disk of
hyperbolic radius p in 4. Furthermore, || f|| < 6 if f is univalent in 4 and,
conversely, f is univalent in 4 if ||f|| <1, and these bounds are sharp (Becker
and Pommerenke [1]). For more geometric and analytic properties of f
relating the norm, see [11]. Many authors have given norm estimates for
classical subclasses of univalent functions (see [2, 8, 12, 15, 19, 20]).

In the sequel, # will stand for the class of functions f analytic in the unit
disk 4 and #, will denote the subclass {f € # : f(0) =a}, for aeC.

11l = sup(1 — |z[*)
zed
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We say that a function ¢ € # is subordinate to € # and write ¢ <
or ¢(z) < y(z) if there is a function w € #; with || < 1 satisfying ¢ = ¢ o w.
Note that the condition ¢ <y is equivalent to the conditions ¢(4) < y(4)
and ¢(0) = /(0) when  is univalent.

In this paper, we consider the subclasses .¥*(A4,B) and #'(A4,B) of </
defined by (see Janowski [7])

. _ ‘Zf/(Z) 1+ A4z
% (A,B)—{fe&{. o < 1+BZ}

and

f(A,B)z{feyf;1+Zf"’(z) - 1+Az}.

f'(2) 1+ Bz

Here we assume that —1 < B < 4 < 1, but a relaxed restriction on A, B will be
used in the last section. These classes are widely used in the literature. For
0 <a <1, we note that

(1 =2a,—1) = F*(a) and H(1—20,—1) = A («)

are the classes of starlike functions of order o« and convex functions of order o,

respectively. We note that f € ¥*(4, B) if and only if J[f] € #°(4, B), where

J[f] denotes the well-known Alexander transform of f defined by

giop
t

I = | D di= 1)« (g1 - 2)).

0

Here * denotes the usual Hadamard product (or convolution). For y > —1,
the Bernardi integral transform J,[f] of f € .o/ is defined by

+1(
BINGE) =2F Ly + by 22 1) =22 [ o an ()
0
where F(a, b;c;z) denotes the Gaussian hypergeometric function and is defined
by

2~ (a),(b)
F(a,b;c;z) = no_ci gt zed
(@562 = 2 ), ¢

where (a), =a(a+1)...(a+n—1) is the Pochhammer symbol (here (a), = 1)
and c¢ is not a non-positive integer. In this paper, we consider the Bernardi

integral transform of functions in the class #°(4,B). In order to state our
result, we define the quantity L(4,B,y)

y+1 2 F(2—A/B,y+2;y + 3;|Blx)
LA7Ba - A_B . 1— s
( 7= )<V‘|‘2> Osgl,lxlzl( ¥ )F(l — A/B,y+ 1;y + 2;|B|x)
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where A, B, y are related by

—-1<B<A<min{l,B+1}, B#0,—1<yand -2<-A4A/B<y+1.
(2)
In a recent paper, the following result was proved (see [3, Theorem 1]).

THEOREM A. Let o be a constant with 0 <o < 1. For every function
feAH(a), the Alexander transform J[f] of f satisfies the inequality ||J[f]| <
L(x). The bound L(a) is sharp and satisfies L(«) < 2(1 — a) for each o. Here,
L(x) = L(1 — 20, —1,0).

The main aim of this paper is to extend Theorem A in the following form:
THEOREM 1. Let A, B, y be real constants satisfying the condition (2).

Then for every f e A (A,B), the Bernardi transform J,[f] of [ satisfies the
inequality ||J,[f]|| < L(A,B,y). The bound L(A,B,y) is sharp and satisfies

I+ [B)(4-B)(y+1)

L(A,B,y) <
( 7) )

Here we remark that Theorem 1 reduces to Theorem A if one chooses
A=1-20, B=—1 and y=0. For the special case B= —A4, Theorem 1
yields the following simple result:

COROLLARY 1. Let 0<A<1 and y>0. We have then

zf"(z) 1+ Az
CEREVE

The bound L(A,—A,y) is sharp and satisfies

1+

= HJ/U]H =< L(A’ _A’ y)

2A(1+ A)(y + 1)
y+2 '

L(A> _Avy) =<

2. Preparatory results

For convenience sake, we will use the terminology ‘“‘starlike” and “‘convex”
in a broader sense in what follows. A function f e # is called starlike
(respectively convex) if f is univalent and if the image f(4) is starlike with
respect to f(0) (respectively convex). As is well known, f is starlike (respec-
tively convex) if and only if zf”(z)/(f(z) — £(0)) (respectively 1+ zf"(z)/f'(z))
has a positive real part. In particular, f € # is convex if and only if zf'(z) is
starlike (with respect to the origin).

The following result is due to Ma and Minda [14, Theorem 1] (see also

[12]).
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LEmMMA 1. Let e #| be starlike and suppose that g € .o/ satisfies the
equation

For f e .o/, the condition 1+ zf"(2)/f'(z) < Y(z) then implies f'(z) < ¢'(z).
We also need the following result due to Hallenbeck and Ruscheweyh [5].

LEmMA 2. Let p(z) and q(z) be analytic functions in the unit disk A with
p(0) =1=¢q(0). For a>0 suppose that the function h(z) = q(z) + vzq'(z) is
convex. Then the condition p(z)+ azp'(z) < h(z) implies p(z) < q(z).

Combining Lemmas 1 and 2, we obtain the following result:

ProOPOSITION 1. Let y > —1 be given. Suppose that the function y(z) =
14+29"(2)/9'(z) is starlike and that the function ¢'(z) is convex for a given
function g€ of. If a function f € .of satisfies
#"(2)
J'(2)
then the inequalities || f|| < ||gl| and ||J,[f]|| < |1J,[g]|l hold.

1+

W), zed

Proor. First, by Lemma 1, the hypothesis implies that f’(z) < g'(z).
Then we can see from [3, Proposition 5], that || f|| < |lg|ll. Now we proceed to
prove the inequality ||J,[f]]| < [|/,[g]ll. It is enough to prove that (J,[f])'(z) <
(J,l9])'(2). It is easy to see that the Bernardi transform J,[g] of g defined by
(1) satisfies the equation

2(Ll9)) (2) + 94 1g)(2) = (v + D)g(2)
and so,
219" (@) + (o + D(leD) ' (2) = (7 + Dg' (2).
In a similar fashion, we have
2(LUD" @)+ 0+ DD () = 0+ 1)1 (2).

Set p(z) = (J,[f])(z) and ¢(z) = (J,[g])'(z). Then, the condition f”(z) < ¢'(2)
is equivalent to

'@+ +DpE) =0+ Df'(2) <+ 1)g'(2) =24'(2) + (7 + Dg(2).
This shows that

+q(z), zed.
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Since ¢'(z) is convex, by Lemma 2, we get
LD (2) = p(2) < q(z) = (J,19])'(2)
for y > —1. We thus proved the required inequality.

The following result is due to Kiistner [13, Theorem 1.5] (see also [3,
Lemma 7]).

Lemma 3. Suppose that a,b,ceR satisfy —1<a<c and 0<b<c
Then there exists a Borel probability measure u on the interval [0,1] such that

Fla+ 1,b+ 1;¢+ 1;2) J] du(t) iy

F(a,b;c;z) - ol —1tz’

3. Proof of Theorem 1
Recall that

#"(2) 1 +A4z
f'(z) S 1+Bz ¢4 8(2),

fex(4,B)= 1+ zed,
where ¢, 5 is known to be a convex function and therefore starlike. Define
g € o/ by the relation

zg"(z) 144z

1
+ g'(z) 1+ Bz’

zed. (3)

A simple computation shows that

g/(z) _ { (1 —|— BZ)A/B_l lf B ?5 O7
e if B=0.
Then by Proposition 1 it suffices to check the convexity of g’(z), to establish
the inequality |[J;[f]] < [|;[g]ll-
Clearly, ¢’(z) is convex whenever 0 < |4| <1 and B=0. Next we con-
sider the case when B # 0. Set h=g¢g’. By the defining relation (3) we then
have

h(z) 1+Bz

Taking the logarithmic derivative of both sides and multiplying with z, we
obtain

zh"(z)  zh'(2) Bz

hW(z)  h(z) ~ 1+Bz
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Therefore,
1+Zh”(z)_1+zh’(z) Bz 1+ 4z Bz _1—|—(A—B)z
h(z) h(z) 1+Bz 1+Bz 1+Bz  1+B:
We write
1 +(4-B)z
S(Z) —W, ZeA.

Since the Mobius transformation S(z) has no pole in the unit disk 4, the image
S(4) is the disk centered at 17f£;3> and radius 422, Clearly the points
S(—1) and S(1) are diametrically opposite points to this disk. Therefore, A(z)
is convex (equivalently, S(z) =1+ zh"(z)/h'(z) has a positive real part) if
and only if S(—1)>0 and S(1) >0. The last condition is equivalent to
A <B+1. For the case B# 0 this shows that ¢'(z) is convex provided
A<B+1.
We next compute the value of ||J,[g]||. For B # 0, we see that

g'(z) = (1+ B2)"*' = F(1,1 — 4/B;1; —Bz). (4)
Then it follows easily that
(1)) = F(Ly + Ly +252) x g'(2)
=F(l,y+ 1;7+2;z) « F(1,1 — A/B; 1; —Bz)
=F(1—-A/B,y+1;y+2;-Bz).

Thus,
)", p(rH1\F(2—A4/By+2y+3;—Bz)
(J},[g])/(z) = -5 (y+2> F(1—A/B,y+1;7+2;,—Bz)’
If -1 <B<0, then by Lemma 3 the inequality
‘uy[g])“(z) _ Gl
Sl @) Bla)'(20)

holds for B< 4 and -2 < —-4/B<y+1. Now we have

(2—A4/B,y+2;y+ 3;—Bx)
(1—A4/B,y+1;y+2;—Bx)’

= (A—B)(y; sup (1 —xz)li

0<x<1
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If 0 < B< 1, similarly we have

y+1 2 F(2—4/B,y+2;y+3;Bx)
=(A4-B)|—— 1 - .
Il = 4 = B) (5 ) sup (1) R =R

0<x<1
So, for 0<|B| <1, B<A4 and —2< —A/B<7y+1 we obtain

v+ 1 2 F(2—A/B,y+2;y+3;|Blx)
L9l =(A—-B)(—=] sup (1—
1751911l = ( )<y+2>0£‘1121( VFU—A/B,y+ 1,7+ 2 Bl

= L(A,B,y).

The sharpness is clear, as L(A4, B,y) = ||J,[g]|| for g e (A4, B) defined by (4).
Next, to establish the bound for L(A4,B,y), that is to prove

L4, 8.9) < (14 18D - 3 (25).

it is enough to show, for 0 < x < 1, the inequality

F(2—A/B,y+2;y+3;|B|x)
F(1—A/B,y+ 15y +2;|Blx)

(1—x%) <14 |Bjx<1+|B|.

Now by Lemma 3, we can write

F(2—A/B,y+2;y+ 3;|B|x) Jl 1—x2

(1-x?%) F = |, T du(t)

(1—A4/B,y+1;9+2;|Blx) Jo

for a Borel probability measure g on the interval [0,1]. Since

1—x2 1 — |B|*x2
1—¢Blx — 1—|Blx

=14 |Bjx <1+ |B| for 0 <t <1,

the desired inequality follows. O

4. Concluding remarks

Let B, 7, A and B be real numbers and suppose that >0, f+7y >0,
—1<B<1 and B<A<1+y(1-B)p"". For fe"(4,B), we consider
g = Jg,[f] defined by

) (2 1/
9(z) = Jp,f1(2) = V”L z'f‘fﬁ(z)dz] . zed (5)

zV

Moreover, we define the order of (univalent) starlikeness of the class
Jp, [ (A4, B)] by the largest number J =d(4, B; f5,7) such that

Il (4. B)] € 7°0).



26 R. PARVATHAM, S. PoNNusaMy and S. K. SaHOO

Before we propose a general problem, we recall a special case of a result from
[16].

LemMma 4. Let f >0, f+ vy > 0 and consider the integral operator defined
by ().
(@) If -1<B<1and B<A<1+y(1—B)p~", then the order of (uni-
valent) starlikeness of Jg ,[S (A, B)) is given by

O(4,B:f,7) = inf, Req(z),
z|1<

where ¢ is given by

1 Y
z) = —-=
1= o 8
with
1 B((A-B)/B)
J (1 +BZZ) PV de if B#0,
0 1 + BZ
0()={ "
J P~V exp(BAz(t — 1))dt if B=0
0
and
_ f—yBz _ (+1)B
q(z)_ﬁ(1+Bz) when A = 7 , B#0.
(b) Moreover, if -1 <B<0, B < A <min{l +y(1 - B)f ",

—(y+ 1)BB™"}, then

1 B+y
5(4,B: B,y) = q(—1) = — —yl. (6
(4,B;p,7) = q(-1) BIFpED) pry+ 1B V] (6)
(c) Furthermore, if  0<B<l, B< A<min{l+y(1-B)g",
(2B +7y+1)BR™"'Y}, then

B — (1) = 1 b -

Under the hypotheses of Lemma 4, when f e.%"(4,B), we get by [20,
Theorem 2]

1.5 A1l < 6 — 49,

where J is given either by (6) or (7) with the corresponding conditions.
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As a special case, we mention the following: if f € & *(a) and f, y are real
numbers such that >0, f+y >0 and

—y—1
max{O,—Z f=v }£a<1,

B 2
then Jg,[f] defined by (5) is in &*(J), where
_ _1 p+y B
5_5Wﬁ”y‘ﬁbagm1—@m+y+num gk ®)

Consequently, by [20, Theorem 2], we have the estimate
5.5 f11l < 6 — 49,

where J is given by (8).
In particular, for fe.*(a) and max{0,—y} <o <1, we have J,[f]e
S *(0(a,y)), where

y+1
(120 —a)p+21/2) ®)

5 = 5(0(7 y) = F
Thus, we have
I L/11 < 6 — 40,

where J is given by (9). Consequently, the following result gives a norm
estimate for the Bernardi integral transform of functions that are not neces-
sarily univalent.

COROLLARY 2. Let y>—1 and fe S*(—y). Then

rz+7)
J <6—-4|—2 2L __y|
1< 6 - 4|ty
ProoF. Recall the well-known identity (see [18, p. 69])
T'a+b+Hrk)
F(2a,2b;a+b+1/2;1/2) = ARV
(G 2ba b+ 1/251/2) = R (s + )
Choose a=1/2, b=1—a and o = —y. Then (9) yields
rG+y)

o(y) =0(=y,7) = _y+m
2

which may be written in terms of beta function given by

1
M”:‘”+BuﬂJ+wy
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Thus, for f e 9*(—y) we notice that J,[f] € ¥ "(6(y)). Therefore, we have
[ < 6 —44(y)

and the conclusion follows.

PROBLEM 1. Find the sharp norm estimate for J,[f] when f e %*(—y).
More generally, find a sharp norm estimate for Jg,[f] whenever f e 5*(a),
o< 1.

A number of problems of this type may be raised for various integral
transforms. For example, there exist conditions on A(#) and subfamilies % of
o/ such that the integral transform of the form

1

f(tz ﬁ
vineE = [ a0l a res
is close-to-convex or starlike or convex, respectively (see [4, 17, 10] for details).
In view of this, one can ask for the norm estimate for V;(f) when f runs over

suitable subclasses # of /. We remark that for the choice A(¢) = (1 + y)¢’
(y > —1), V;(f)(z) reduces to the Bernardi transform of f.
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