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The aim of this paper is to give a new approach for considering the
question concerning the oscillatory criteria for differential equations with devia-
ting argument.

We will deal with the differential equation

(E) Lny(t) + h(t, y{<p{t)\ yf{cp{i)\ ..., f-l\q>(t))) = 0, n > 1

where h:JxRn->R, cp:J-+R, a{: J -»(0, oo), i = 0, 1, , n, are continuous
functions, J = [£0, oo), and

Loy(t) = ao(t)y(t), Lty(t) = a^L^y^y , i = 1, 2, ...., n .

Under a solution y(t) of (E) we will understand a solution existing on some ray
[Ty, oo) and such that

sup {|.KOI: *! ̂  f < oo} > 0 for any t± ^ Ty .

The following basic assumptions will be used:

2. > ;oM^> ;o J)
; i»- J)

;
w- i )>0 for all teJ and any ^ G J R , i = 0, 1, . . . . ,

n- I, yo=£0;

3- y o M ^ y o ^ i ' - ' - ' y / . - i ) ^ f o r all t e J a n d a n y y f e R , i = 0, 1, . . . . ,
n - 1, y 0 * 0;

4. l im (p(0 = oo as t -• oo.

DEFINITION 1. A solution y(t) of (E) will be called oscillatory if there exists
an increasing sequence {ti}^=1 such that l i m ^ tt = oo and y(tt) = 0, i = 1,
2, A solution j;(0 of (E) will be called nonoscillatory if it is not oscil-
latory, i.e. there exists Ty' ̂  Ty such that y(t) > 0 or y(t) < 0 on the interval
[T;, oo).

It follows from the assumptions 1.-4. and from the equation (E) that to
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each nonoscillatory solution y(t) of (E) there exists such a number Ty" ̂  Ty that
on the interval [T/, oo) each quasiderivative Lty(t\ i = 0, 1, , n has a
constant sign and therefore, Lty{t\ i = 0, 1, , n — 1 are monotone functions
on [7J,", oo), so that lim^^ Lty(t\ i = 0, 1, , n — 1 exist in the extended sense,
i.e. lim^^ \Lty{t)\ is finite or oo, i = 0, 1, , n — 1. Then for the nonoscil-
latory solutions the following two cases are possible:

a) l im^^|L ty(t) | = oo for all i = 0, 1, . . . . , n - 1 .
We note that in this case, if l i m ^ J L , , . iy(OI=oo, then l i m ^ J L ^ r ) ^ oo for
i = 0, 1 , . . . . , n - 2 and sgn LH^y(t) = sgn L^(t), i = 0, 1, . . . . , n - 2.

b) There exists k e {0, 1, . . . , n - 1} such that lim,^Lfc<y(r) is finite,
l i n v ^ Lty(t) = oo • sgn y(0, i = 0, 1, . . . . , k - 1, and l i m , ^ Lty(t) = 0, i = k + 1,

REMARK 1. The case a) cannot occur if the assumptions 1., 2., 4., are
satisfied. Indeed, in such a case for a nonoscillatory solution y(t), y(t) ^ 0 on
[7^, oo), we have y{t)Lny(t) < 0 which implies that IL,, .^^)! is nonincreasing
and therefore l im ,^ L^^t) is finite. Thus, k^n — 1.

REMARK 2. The number k in the case b) is uniquely determined and is
such that (see [1, Lemma 2 and Lemma 5])

i) if the assumption 2. holds true, then
( - l)i+1y(t)Lty(t) > 0, i = k + 1, . . . . , n - 1, for t > Ty and n even,
( - ijyifjUyit) > 0, i = k + 1, . . . . , n - 1, for t > Ty and n odd;

ii) if the assumption 3. holds true, then
( - iyy(t)Lty(t) > 0, i = k + 1, . . . . , n - 1, for t > Ty and n even,
( - l)i+1y(t)Liy(t) > 0, i = k + 1, . . . . , n - 1, for t > Ty and n odd.

DEFINITION 2. We will say that a nonoscillatory solution y(t) of (E) be-
longs to the class Vn if the case a) occurs, i.e. l i m , ^ Lty(t) = oo • sgn y(t\ i = 0, 1,

, n — 1. We will say that a nonoscillatory solution y(r) of (E) belongs to the
class Vk9 k e {0, 1, . . . , n - 1}, if the case b) occurs.

Evidently the classes Vk, k = 0, 1, , n, are disjoint and each nonoscil-
latory solution of (E) belongs to one and only one class Vk.

Our aims are to state the conditions which guarantee that lim^^ Lky(t) = 0
for each solution y(t) e Vk, k e { 0 , 1 , . . . , n — 1} and to state the conditions which
guarantee that the class Vk, k e {0, 1, . . . , n — 1}, is empty. For the case cp(t) = t
these problems were discussed in [1] and for the case cp(t) # t in [2], [3], [4]
and others.

Let t0 ^ c < t < oo. Denote
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Differential equations with deviating argument

P0(t9 c) = 1 , Pt(t, c) = a~1
l{s1)dsl a2

1(s2)ds2 • • • | a^{s^dst,
Jc Jc

187

i = l , 2 , n — 1 ,

Qn(t, c) = 1 ,

fSj+1

aJ
1

(sn.2)dsn-2

(sJ)dsj9 j = 1, 2 , . . . . , n - 1 .

It is easy to see ([1, Lemma 3]) that

lim Pt{U c) = oo , lim Qt(t, c) = oo , i = 1, 2, . . . . , n — 1
f-»oo f-*oo

and

LEMMA 1 ([1, Lemma 4]). Let z(t) be such that z(t)=AO on [tl9 oo) and
Lnz(t) exists on [tl9 oo) and suppose that z(t)Lnz(t) g 0 on [tl9 oo), where the
equality may hold at isolated points eventually. Let the assumption 1. be valid.
Let k e {0, 1, . . . , n — 1} from b). Then there exists a T1^t1 such that

sgn z(t) = sgn Lkz(t) for t^Tx .

Ifn + k is even, then \Lkz(t)\ increases on [Tl9 oo) and there exist two constants
0 < cx < c2 such that for t > Tx

0<c1< \Lkz(t)\ < c2

and

U c)
<c2,

Ifn + k is odd, then \Lkz(t)\ decreases on [T1; oo) and there exists a constant
c> 0 SMC/I that, for t>Tt,O< \Lkz(t)\ < c and

0
^oo Pk(t, C)

- 0 .

LEMMA 2 ([1, Lemma 6]). Let z(t) be such that z(t) ^ 0 on [tl9 oo) and
Lnz(t) exists on [^,00) and suppose that z(t)Lnz(t)^O for t^tx where the
equality may hold at isolated points eventually. Let 1. be valid. Then there
exists T1^.t1 such that the following is true:
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/ / k 6 {0, 1, . . . , n — 1} is the number from b), then sgn z(t) = sgn Lkz(t) for
t>T1. If n + k is odd, then \Lkz(t)\ increases and there exist two positive
constants cl9 c2 such that

0 < c1 < \Lkz{t)\ < c2 for t>Tx

and

Ifn + k is even, then \Lkz(t)\ decreases and there exists a positive constant
c3 such that

0<\Lkz(t)\<c3 for t>Tl9

0 <
,̂ 00 Pk(t, C)

LEMMA 3. Let y{t) e Vk, k e {0 ,1 , . . . , n - 1}. Then

(3)

(4)

0, t/z^n there exist constants ock > 0, Pk > 0 and Tk> t0 such that

PROOF. This follows from l'Hospital's rule, Lemma 1 and Lemma 2.

THEOREM 1. Let the conditions 1.-4. be satisfied. Let G{t,«): [t0, oo) x
[0, oo) -* R+ be continuous and nondecreasing in u for each fixed t and such that

(5) \h{t,yo,y1,...,ym-1)\^G{t,\yo\)

for all (y0, ylf..., yn-i) e R". Moreover, let k e {0, 1 , . . . , n — 1} and suppose
that

(6) j , ^ pk((p(s),c))ds= oo

for all t^ Tk such that cp(s) > c for s > Tk, c ^ t0 and for each a > 0, or

(7) lim sup ~^-Qk+1(s, t)G[ * pk(q>(s), c))ds > 0

for each a > 0. Then for each y(t) e Vkwe have l i m , ^ Lky(t) = 0 .
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PROOF. Let y(t) eVk9 k e {0, 1, . . . , n - 1} and let l im ,^ Lky(t) = ck =£ 0.
Then, respecting the fact that l i m , ^ L^it) = 0, i = k + 1, , n — 1, inte-
gration of the equation (E) gives

(8) Lky(r) = ck + ( - i r * 4

where y(t) = (y(t), /(0> • • • > /""^W). Let 7̂  > t0 be such that y(r) has a con-
stant sign for t ^ T̂  and such that sgn y(t) = sgn Lky(t) for £ ̂  Ty. Let M ̂  Ty

be such that q>(t) ^ Ty for r ^ M. Then for s ^ t ^ M ̂  Ty we have sgn y((p(5)) =
sgn y(Ty) = sgn Lky(t). Multiplying the preceding equality by sgn y(Ty) we get

sgn y(Ty)(Lky(t) - ct) = ( -

for t > w or
'i

, f °° IK

Using (5) and (4) and the monotonicity of G we have

(9) \Lky{t) -ck\^ —— 6 k + 1 (s , t)G ( s, — ^ — Pk((p(s), c) j ds

for t ^ w. The expression on the left hand side is bounded, but this contradicts
the assumption (6). If the assumption (7) is satisfied, then we get once more a
contradiction because lim^^ \Lky(t) — ck\ = 0.

THEOREM 2. Let all assumptions of Theorem 1 be satisfied. Then in the
case that the condition 2. holds true the sets Vk are empty for n + k even. In the
case that the assumption 3. holds true the sets Vk are empty for n + k odd.

PROOF. From Theorem 1 we see that for y(t) e Vk, k e {0, 1, . . . , n — 1},
lim^^ \Lky(t)\ = 0. But from Lemma 1 it follows that |Lky(£)| increases if
n + k is even and from Lemma 2 it follows that |Lkj;(f)| increases if n + k is
odd. This leads to a contradiction.

Let us denote

y(t) = sup {s ^ t0 : cp(s) ^ i] for all t ^ t0

and

m(t) = m a x {y(t)91}, t ^ t 0 .

Thus m(t) ^ t. From the continuity of cp(t) we have cp(s) > t for s > y(t), and
cp(s) ^ t for s ^ m(t), £ ̂  t0. Evidently lim^^ m(t) = oo.
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REMARK 3. It follows from the definition of the classes Vk, fce{0, 1, . . . ,
n — 1}, that for any y(i) e Vk9 lim^^ Ln-iy(t) is finite. Thus

r°°
lim a£l{(10) lim a;l(s)\h(s, y(<p(s)))\ds = 0 .
t-oo Jt

Taking the assumption (5) into the consideration we have

(11) lim f °° a;1(s)G(s9 \y(cp(s))\)ds = 0 .

Our following considerations are now based on this fact.
Let the assumptions of Theorem 1 be satisfied. Then lim^^ Lky(t) = 0 for

y(t) e Vk, k e {0, 1, . . . , n — 1}, and therefore from (8) we have

J. "(12) Lky(t) = (-l)»-k+i | a;1(s)Qk+1(s, t)h(s, y(<p(s)))ds , t ^ Ty ,

where Ty is such that

(13) s g n Lky(t) = s g n y(t) = s g n y(cp(s)), s ^ t ^ T y .

If the condition 2. is satisfied, then

s g n y(t) = s g n Lky(t) = s g n h(s, y((p(s))), s ^ t ^ T y .

Therefore in this case ( - l)n~k+1 = + 1 .
If the condition 3. is satisfied, then

s g n 3^(0 = s g n Lky(t) = - s g n h(s, y((p(s))), s ^ t ^ T y .

In this case (-l)n~k+1 = - 1 .
a) Consider the case that y(t) >0 for t^>Ty and let k> 0. Then from

(12) we get

(14) Lky(t) = I a^(s)Qk+1(s, t)\h(s9 y(q>(s)))\ds, t> Ty

in both cases 2. and 3. An integration of (14) between u and v9 Ty^u^v and
the application of Fubini's theorem give

(15) Lh-iy(v) - Lh.iy(u) = P fl^(s)|fc(s, y(v(s)))| P ak\t)Qk+1{s9 t)dtds

4- r^WI/ i feyMs)) ) ! [Va?(t)Qk+i(s,t)dtds.
Jv Ju

Taking into consideration that L^^t) > 0 and that both terms on the right
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hand side are nonnegative, we get

(16) Lk_iy(v) ^ f" a;\s)\h(s, y(<p(s)))\ f a^(t)Qk+1(s9 t)dtds
Jv Ju

for v > u ^ Tr From the definition of Qk+1(s, t) it follows that for t g v ^ s

(17) G*+ i (M)£G*+i(M).

Using this fact we see from (16) that

(18) Lk^y(v) ^ [V ak\t)Qk+M t)dt T a;Hs)\h(s, y(cp(s)))\ds .
Ju Jv

Repeating this procedure (k — l)-times, we get

(19)

(20)

> P -1
°yV = Ju Oi

Jv

Denote

Rk(v,u)= a\
Ju

w h e r e dwk = dtdtk^ •••dtl

(21) Loy{v) ^ Rk(v,

r

•«)

' a?(t2)- i
s, y(cp(s)))\ds,

Ju

Then we

a-\s)

Ju

have

|/i(s,J(fl)(s)))|is,

• •

Taking into consideration (5), monotonicity of G and the properties of m(t), we
have

Loy(v) ^ Rk(v, u) f °° an"
1

(22)

f" s, \y(q>(s))\)ds
Jm(v)

= Rk(v,u) [ a;1(s)G(s,ao1((p(s))\Loy(cp(s))\)ds .

Note that (p(s) ^ i? for s ^ m(v) so that |L0y(<jo(s))| ^ |Loy(i;)| because |Loy(t)| is
nondecreasing. Then since G(t, z) is nondecreasing in z,

(23) G(s9 aol(<P(s))\Loy(<p(s))\) ^ G(s, flo1^

and (22) implies that
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(24) Loy(v) ^ Rk(v, u) f °° a;1

Jm(v)

Respecting once more the monotonicity of G(t, z) in z, we have

s, ao1 ((p(s))\Loy(v)\) ^ a^"1(s)G(s, a o 1 ^ ^ ) ) ^ * ^ u)

x 1°° CWG^flo't

or

P a?(s)G{s, a-l((p(s))\Loy(v)\)ds ^ \ a;1(s)G(s, ao1(<?>(s))i?t(U, u)
Jm(v) Jm(v)

x \ d^l(x)G(x,ao1{q>(r))\Loy(v)\)dx)ds.
Jm(o)

Let us denote

(25) P ( » ) = P ° a;Hs)G(s,ao1(<p(s))\Loy(v)\)ds.
Jm(v)

Then we get

f00

(26) p(t;) ^ aw"1(5)G(s, flo1^^))**^, w)p(w))*, Ty£u<v.
Jm(v)

Taking (5), (23) and (26) into consideration, we obtain

a;1(s)G(s9 \y(cp(s))\)ds
m(v) Jm(v)

(s)G(s,ao1(q>(s))\Loy(v)\)ds =
Jm(v)

and 0 = l i m ^ L^^miv)) ^ lim^^ p(v) ̂  0. Thus

(27) lim p(v) = 0
y-*oo

b) Consider the case that y(t) < 0 for t > Ty and k > 0. Then from (12)
we get

-L^(t) = T fl.-1((28)

in both cases 2. and 3. An integration between u and v, Ty ^u < v, and the
application of Fubini's theorem give
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- Lk^iy(u) = a~1(s)\h(s9 y{(p(s)))\ cik
l{t)Qk+l(s, t)dtds

Ju Ju

f00 i Cv <
+ a;1(s) | / i(s,^(s))) | «k" W6k+ife t)dtds.

Jv Ju

Because Lk_x y(u) < 0 and both terms on the right hand side are nonnegative,
we have

r°° cv

-Lk_iy(v)^ a^s)|/i(s,j%>(s)))| ak
l(t)Qk+1{s,t)dtds.

J v Ju

Repeating the similar consideration as was done in the case y(t) > 0, we get

-Loy(v) ^ Rk(v9 u) an"
1(s)|/i(s, y(q>(s)))\ds , Ty^u<v,

J V

f00 1
-Loy(v) ^ Rk(v, u) an

 1(s)G(s, a0 (cp
Jm(v)

and finally

f00

(29) \Loy(v)\ ^ Rh(v, u) a;1(s)G(s9 ao1(^(s))|Lo}'(i;)|)rfs ,
Jm(v)

and

and

f°° a;l(s)G(s9aoH<P(s))\Loy(v)\)ds* f°° ^
J m(v) J m(v)

x T a-l

Jm(v)

l(x)G{x,a-o\cp{x))\Loy(v)\)dx)ds.
Jm(v)

Denoting

(30) [
m(t>)

we get

> f°° a"1

Jm(v)
(31) f̂(y) ^ an

 1(s)G(s, ao
1((p(s))Rk(vi u)q(v))ds , 7̂  ^ w < t;.

Jm(v)

Similar considerations as in the case p(v) give us that

(32) lim q(v) = 0 .

Thus for -Loy(v) = \Loy(v)\ and q(v) in the case that y(t) < 0 for t ^ Ty we
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have the same inequalities as for |Loy(i;)| and p(v) in the case that y(t) > 0 for

THEOREM 3. Let all assumptions of Theorem 1 be satisfied. Moreover,
suppose that for all fixed t^.t0

(33) y~lG{t, y) nondecreasing for y > 0

and that for k e {1, 2 , . . . , n — 1}

f°° 1 _ilim sup Rk(v, u) an
 1(s)c G(s, ao

1((p(s))c)ds > 1(34)

for some c > 0. Then the set Vk is empty.

PROOF. Let y(t) eVk, k e {1, 2 , . . . , n - 1}. Taking the fact that l i m ^
|Loj;(t;)| = oo into consideration, we see that for c > 0 there exists vx > u ^ Ty

such that |Lo;y(t0| > c for all !;>!;! . Then from (24) (or (29)) and (33) we get

for a31v>v1. But this leads to a contradiction with (34).

THEOREM 4. Let all assumptions of Theorem 1 be satisfied. Moreover,
suppose that for all fixed t ^ t0

(35) y^Gfay) nonincreasing for y>0

and that for k e {1, 2 , . . . , n — 1}

(36) lim sup a;1(s)c"1G(s, Rk(v9 u^ivWcids > 1
y->oo J m(v)

for some c > 0. 77ien t/ie set Vk is empty.

PROOF. Let y(t) e Vk, k e {1, 2 , . . . , n — 1}. Taking into consideration that
lim^^^ p(i>) = 0 (lim^^ (̂i?) = 0) and p(v) > 0 (q(v) > 0) for all v > u9 we see that
to c > 0 there exists v2> u^Ty such that c > p(v) (c > q(v)) for all v > v2.
Then from (26) ((31)) we get

m(t;)

) ao(q>(s))Rk(v9

for all i? > v2. But this leads to a contradiction with (36).
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DEFINITION 3. We will say that the equation (E) has property A if in
the case that n is even all solutions of (E) are oscillatory and in the case that
n is odd each solution y(t) of (E) is either oscillatory or lim^^ Lty(t) = 0,
i = 0, 1, . . . . , n- 1.

DEFINITION 4. We will say that the equation (E) has property B if for n
even each solution y(t) of (E) is either oscillatory or l im ,^ L,y(t) = 0, i = 0, 1,

, n— 1 or belongs to the class Vn, i.e. lim^^ \Lty(t)\ = oo, i = 0, 1, ,
n — 1, and if for n odd each solution y(t) of (E) is oscillatory or belongs to the
class Vn

Now we can state the summary result.

THEOREM 5. Let all assumptions of Theorem 1 be satisfied, a) / / 2. holds
true and if (33) and (34) {or (35) and (36)) hold for k = 1, 2, . . . . , n - 1, then the
equation (E) has property A.

b) / / 3. holds true and if (33) and (36) (or (35) and (36)) fco/d /or k = 1, 2,
, ft — 1, t/ze/t the equation (E) /ias property B.
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