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§1. Introduction

In paper [14], Mustafid and Kubo have obtained a description of the
asymptotic distribution for symmetric statistics based on samples of identically
distributed independent random elements XKtl9 ..., XntH9

(1.1) lUo Z hk(Xm9Ml9...9XntMk),
l < S l < - < s k < n

in terms of multiple Poisson-Wiener-Ito integrals, where hk is a symmetric
function. Central limit theorems of symmetric statistics (1.1) have been obtained
by several authors. See e.g., Dynkin and Mandelbaum [7] and Mandelbaum
and Taqqu [13]. They obtained the asymptotic distribution of (1.1) in terms
of multiple Wiener-Ito integrals under a suitable normalization. A problem
of limiting distribution of symmetric statistics is closely related to that of
(7-statistics or von Mises statistics. An alternative approach to the limiting
distribution is due to Dehling, Denker and Philipp [5], [6] and Dehling [4].
They described limiting distributions in terms of multiple stochastic integrals
with respect to Kiefer processes.

The aim of this paper is to generalize the result of Mustafid and Kubo's
paper [14] to the non-identically distributed independent random elements case.
Even in the simple case when the symmetric statistics are symmetric poly-
nomials, investigations in this direction have been considered by some authors.
Teicher [16] described the asymptotic distribution of symmetric polynomials in
terms of Hermite polynomials and in the other limiting distribution, Avram and
Taqqu [1] described the asymptotic distribution in terms of a multiple integral
with respect to a Levy process. The results of this paper are stated in Section 3.
In Section 2, we recall some results on convergence properties of Radon
measures and Poisson random measures. In Section 4, we present examples.

§2. Convergence in distribution

Let X be a locally compact second countable Hausdorff space. Let si
denote the topological Borel field in X and 0b the ring of all bounded (i.e.
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relatively compact) sets in sf. A measure X on (£, srf) is called a Radon
measure if X(B) < oo for all B e &. Let Jt(X) be the family of all Radon
measures on X. Let %>(X) be the space of all bounded continuous functions on
X and JT(3£) be the space of all continuous functions on X with compact
support. By a vague topology of Jf(X) we mean the weakest topology under
which

== IA e Jt(J£) -> A(/) == I / (x

is continuous for / e JT(X). We use some basic properties of Radon measures
written in [14] and refer to Kallenberg [12] for further details.

Let I be a Radon measure on (3E, s/). We define a class of bounded sets
^ A b y

@x = {Be »\ X(dB) = 0} ,

where dB denotes the boundary of B. A random measure {Px(B) = Pk{co, B\
Be$) is called a Poisson random measure with intensity A, if for any natural
number p, any disjoint sets Bl9 . . . , Bp e & and any non-negative integers ql9 . . . ,

e x p [ - X ( B X ) - • - -
, q

A sequence of random elements Xn converges to X in distribution sense and
is denoted as Xn -> X, if the distribution vn of Xn converges weakly to the distri-
bution v of X, that is,

lim [f(x)dvn(x)= [f(x)dv(x)9

for any / G

Let Xnli . . . , Xnkn (1 < kn < oo), n = 1, 2, . . . , be sequences of independent
random elements on X with distributions vn>1, . . . , vn kn e Jf{X\ respectively.
We assume the following:
(A.I) Xn = YJ=I vn,i converges vaguely to a X e Jf(X) without atoms as n -> oo,
(A.2) lim max vB>f(X) = 0 for any compact set K .

n—*co i

LEMMA 2.1 ([12]). For v, vl9 v2, ...eJf(X\ the following two statements
are equivalent:

(i) vn converges vaguely to v as n -» oo,
(ii) lim vn(B) = v(B) /or a// B e @x .
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We define a sequence of random point measures {Mn} by

where 3X is the Dirac measure at x. Then the following theorem is seen by
Corollary 7.5 of Kallenberg [12] and Theorem of Polak [15].

THEOREM 2.2. In order that Mn given by (2.1) converges in distribution to a
Poisson random measure with intensity k as n —• oo, it is necessary and sufficient
that

lim £?=i Fr{SXni(B) = 1} =

lim max Pr{dXni(B) = 1} = 0 , 5 e J A .
n -* oo i

§3. The asymptotic distribution of symmetric statistics

In this section we generalize the results of Mustafid and Kubo's paper [14]
to the case of non-identically distributed independent random elements. Let
XKtl9 ..., Xnkn (1 < kn < oo), n = 1, 2, ..., be sequences of independent random
elements on X as in Section 2 which satisfy the assumptions (A.I) and (A.2).
For a symmetric function hk(xl9..., xk\ we define symmetric statistics based on
samples XHtl9 ..., Xnkn, n = 1, 2, ..., by

_ , , _ hk(Xmtai,...,XHtMk) forfe</cn,

0 for k> kn .

NOTATION 1. Denote by tf(X) the set of all sequences h = {hk}k>0 of
continuous symmetric functions which satisfy the following conditions:
(K.I) there exists a compact set K such that for any k > 1

nk\Xl> •• -J Xk) — U iMXi, . . . , Xfcj f iV ,

(K.2) there exists a constant H > 1 such that for any /c > 0

By the same method as in [14], we investigate the asymptotic distribution
of the symmetric statistics

(3.1) IS
for h = (h0, hlt ...)e JfX£). We will show that the limiting distribution is
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expressed in terms of multiple Poisson-Wiener-Ito integrals with respect to a
Poisson random measure Px with intensity l\

(3.2) = Z?-o^ l-[hk(xu...,xk)dPx(x1)-dPx(xk).

For the Radon measure k, let $(3L) be the space of all sequences of
symmetric step functions h = {hk}k>0 of special forms as follow: there exist a
natural number p > 1 and disjoint sets Bu ..., Bpe$x such that each hk is
expressed in the form

'h0 k = 0,

K(xk) =

0 p<k,

Z K.~..ikXBiAxi)~'XBAxk) l < f c < p ,
ii ik<P

where coefficients htl ik, 1 < il9 , ik < p, are symmetric and hiit Jk = 0, if
is = it with some 5 # t. We denote

x* = (x 1 , . . . , x k )6 l* and dX\xk) = dk^y- dX(xk).

As in [14], for a given Radon measure v, we define a norm \\h\\v of a sequence
of symmetric functions h = {/ifc}£Lo by

x I'' * I IM^. yk'JMxj, zl-j)\dvj(xJ)dvk-j(yk-j)dvl-j(zl-j),

where k A / is the minimum of fc and /. We define a norm || • || by

(3.3) ||fc|| = lim | | % n [ > \ M \ \ h \ \ X n > \ \ h
n->oo \ n-*oo

NOTATION 2. Denote by J^(X) the set of all sequences h = {hk}k>0 which
can be approximated by elements of $(£) with respect to the norm || • ||, that is,
for any h e Jf(X) and any e > 0, there exists an hE e S(X) such that

By the same way as in [14], we have the following estimation of the
covariance,
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E\<r£(hk)or(g,)\ < I I

xE\hk(xmt.l,...,xm..J,:

•J«*.
for kn>k,kn>l and that

for kn< k or kn < /, where the sum £ # is extended over all different sh

1 <i <k + I — j such that 1 < s1 < • • • < s,- < kn, 1 < sj+1 < • • • < sk < kn and
1 < sk+1 < - < sk+l-j < kn. Then we have

(3.4)

i

From the definition of multiple Poisson-Wiener-Ito integrals, for h e <?(£), (3.2)
can be expressed by

w{h) = Ef-i i Z *.. iMB& • • -WJ .
K- l<ii,.~,ik<P

(cf. [10], [11] and [14]). The symmetric statistics Yn(h) for h e £{X) can be also
expressed by

Yn(h) = Xf=i I I *i l i....aii<1(^..1)-ZB lk(^. J •
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LEMMA 3.1. For he ^(X),

Yn(h) -i W(h) = YJ=, ^ I K-MW'''*W

as n - • oo.

PROOF. We consider the family of indicator functions %Bi, , XB • Then
for each n > 1, Jf^, = (x^tX^), ••, XBp(

Xn,i)% 1 < * < K> i s a n independent p-
dimensional Bernoulli array which satisfies the following

lim 2 > i Pv(XBj(XnJ) = 1) = lim ] > i v,.^^) = A(^.), j = 1, . . . ,

lim max Pr(xBj(XnJ) = 1) = lim max vMi (Bj) = 0 ,
n-*oo j , i n-»oo j , i

by Lemma 2.1 together with (A.I) and (A.2). Therefore, by Theorem 2.2,

as n -> oo, where P ^ ^ ) are independent Poisson random variables with means
^(Uj), 7 = 1 , , p. The assertion of the lemma follows from Corollary 5.1 of
Billingsley [2].

Similarly to the proof of Theorem 4.1 in [14], we have the following
theorem.

THEOREM 3.2. For h e Jf(X), Yn(h) - i W(h) asn-^oo.

PROOF. By Lemma 3.1 and (3.4), the estimation

fim |E{exp[itYB(fe)]} - £{exp [ir

< US |£{exp [ityB(*)]} - £{exp [itYn(h*)l}\ + GE |£{exp [(Yyn(^
£

- £{exp DtW(ht)']}\ + |£{exp pfW(*8)]} - £{exp LitW(h)]}\

< i S \t\ \\h - h°\\Xn + \t\E\ w{h°) - w(h)\
n-*ao

<2\t\\\h-h*\\<2\t\e

is shown, for hE eS{X) with \\h — he\\ < e. Since e > 0 can be chosen aribitrary,
the characteristic function of Yn(h) converges to that of W{h). Thus we see the
assertion.
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Let h = {hk}k>0 be in tf(X). Then we can choose a compact set K with
X(dK) = 0 which satisfies (K.I). For a given e (0 < s < 1), let L be so large as

(3-5) I ? . L B=o ( f c _ 1
y ) , . ,H^ + 2 [ l (JC) + 1]V*™*>+1> < £ .

We may suppose that the topology of X is given by a metric d(-, •). Since fik,
1 < fc < L, are continuous and have compact supports, there exists a (5 > 0 such
that

IM**) - M / ) l < * W ) + 1)"2L if max d(xh y() < 5
l<i<k

holds for any k, 1 < k < L. Then there exist disjoint sets Bt e &x, 1 < i < p,

such that diam(^) < d, X{Bt) < ^-L~2{k{K) + 1)~2LH'2L~2 and (Jf=1 5f = X (cf.

[14]). Furthermore, by (A.I), there exists a natural number N such that for
any n > N, 1 < i < /?,

(3.6) An(X) < A(K) + 1 and An(Bt)

Choose an element x(0 G B, for each i. For fe, 1 < k < p A L, put

_ fft(x(£l),..., x(£k)) if i/s are all different,
'"1'-'I'k = { 0 otherwise.

For k > p A L, put fc,-lf...fI-k = 0. Define h\ for fc > 1 by

(3.7) H(xk)^ X

and define he
0 = hQ. According to the proof of Theorem 4.3 in [14], we have

the following lemma.

LEMMA 3.3. Let h = {hk}k>0 be in Jf(3E). Then the function hk(x
k) given

by (3.7) satisfies that for xj e B(i x • • • x Bij9

J otherwise.

THEOREM 3.4. The space tf{X) is included in Jf(X). Hence,

Yn{h) - i W(h) as n -> oo ,

for any h e X (X).

PROOF. For a given h e jf(3E), let he = {^}?=0 be given by (3.7). By (3.5),
(3.6) and Lemma 3.3, we have
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1
II" — n nn — 2^k,i=o

!• • • [ \ (h k - h°k)(xJ,

k+l+2(i (i<r\\k+l~j

< (4e2 + e)e3 + 2e .

Thus we see the first assertion in the theorem. The second assertion is obvious
from Theorem 3.2.

REMARK. Let XnU , Xnkn (1 < kn < oo), n = 1, 2, , fc^ sequences of
non-identically distributed independent random elements on X such that Mn given
by (2.1) converges in distribution to a Poisson random measure with intensity X
without atoms as n-^ oo. Then for h e Jf(£), Yn(h) -+ W(h) as rc -• oo.

PROOF. By Theorem 2.2 and Lemma 2.1, we have the assumptions (A.I)
and (A.2). Hence, the assertion of the remark follows from Theorem 3.4.

§4. Examples

EXAMPLE 4.1. Symmetric polynomials for indicator functions. Let XHtl,
. . . . , XHtkn (1 < kn < oo), n = 1, 2, . . . . , be sequences of non-identically distri-
buted independent random elements on X as in Section 2 which satisfy the
assumptions (A.I) and (A.2). For a given set B e $x, define an h = {hk}k>0 by

ho = l

hk(x
k) = cokxB(xi)''' lB(xk) for co> -1 and k > 1 .

The symmetric statistics (3.1) can be written as the sums of symmetric
polynomials

Y.(h) = £ k i co* X XB(Xn,Sl) • • • Xs(Xn,Sk).
l<Sl< -<sk<kn

By the representation of Yn(h) in the form
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(cf. [7] and [8]), we have

log Yn(h) = £?=i log {1 + a>XB(XHti)} = log (1 + co)Mn(B),

where Mn is the random measure given by (2.1). Then by Lemma 2.1 and
Theorem 2.2,

a s

T h e r e f o r e ,

YH{h) l ( l + i D /m " ~ ^

a n d

as n -> oo.

EXAMPLE 4.2. Non-interacting particle system. Consider a stochastic non-
interacting particles travelling in d-dimensional Euclidean space Rd. The par-
ticles can overtake and meet each other without delay. Let Xt be the initial
position (non-random) of the ith particle and Vt be its constant velocity (but
random) which are identically distributed independent d-dimensional random
variables (cf. [3], [17] and [18]). Put Xt(t) = Xt + Vtt, the position of the ith
particle at time t. We assume the following:

(4.1) simultaneously expand the cube / and increase the number of particles
keeping the density X constant (0 < k < oo), i.e. for any cube /, limiJi^ {the
number of Xt e I}/\I\ = A, where |/| is the volume of /.

(4.2) the distribution of Vt is absolutely continuous with respect to the Lebes-
gue measure on Rd with the density g(u) which is almost everywhere continuous
and bounded on every bounded d-dimensional interval.

For any given d-dimensional interval J, define

vtti(J) = v [ ( J - Xt)lt] ^ P r [ ^ eJ- Xt)/t] .

By the assumptions (4.1) and (4.2), we know that the sequence {Xt(t)} satisfies
the following

(4.3) lim£<vM(J)

(4.4) limmaxvf>/(/) =
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for any cube / (see [3] and [17]). Then by Lemma 2.1, (4.3) implies that

Y,t vt,i converges to X- Lebesgue measure vaguely .

Therefore, the sequence {Xt(t)} satisfies the assumptions (A.I) and (A.2) in

Section 2. Thus we have the following theorem:

THEOREM 4.3. Under the assumptions (4.1) and (4.2), we have for
d)

I hk(XSi(t),...,XSk(t))
--- <sk<oo

as t ^ co.
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