
HIROSHIMA MATH. J.
20(1990), 137-157

Positive generalized white noise functionals

Yoshitaka YOKOI

(Received May 10, 1989)

§1. Introduction

Let \x be the measure of Gaussian white noise (with variance 1) defined on
the space E* of all real tempered distributions. That is, the characteristic
function C(£) of \x is given by

C(« s f e^d^x) = exp l~ f \Z(u)\2du\

where £ is an element of the real Schwartz space E = {all real valued, C00- and
rapidly decreasing functions on R} ([3] and [21]). The elements of (L2) =
{q>; §E*\(p(x)\2dfi(x) < oo} are called Brownian functionals ([7]). In [6] we can
see the idea of generalized Brownian functionals constructed on the theories of
Sobolev spaces and Gel'fand triplets. Many authors have greatly developed
the analysis of not only Brownian functionals but also generalized Brownian
ones, e.g., [6] - [8], [13] ~ [17], [19], [20], [22] and [25]. Some of them
treated the problem of positive generalized Brownian functionals and pointed
out that it would be important in the light of quantum field theory or relating
to the Feynman path integral.

In this paper we also consider positive generalized functionals in the white
noise calculus, which is developed in a somewhat more general situation. That
is, we prepare a real separable Hilbert space Eo and a self-adjoint operator D
such that D > 1 and that D~h° is of Hilbert-Schmidt type for some h0 > 1,
construct a Gel'fand triplet E ci* Eo <=^ E* by equipping Eo with increasing and

with the characteristic functional of /x:
compatible norms {\\DP- ||£o}p=0, and observe a triplet (£f) <=+ L2(£*, p)

= exp |^-i

We show that every element of the space (Sf) of test functionals has a unique
continuous version on £* and the product of every two elements of (5^) again
belongs to (Sf) (cf. [15] and [18]). Using these results we prove that any
positive continuous linear functional on (£f) is the linear form given by the
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integration of the continuous version of the test function against a positive finite
measure: Let We (9") be positive. Then, there exists a positive finite measure
vy on (£*, @) such that

-I{iF,(P}= <p(x)dvy(x) for each <p e

where q> is the continuous version of q>. This result is an improvement of
Theorem 3.2 and its Remark in [22].

Moreover, since (^) is very small, the space (S?') of generalized functional
can include important functionals. In case Eo = L2

eal(/?) and D = 1 +
u2 — (d/du)2, (£?') includes the following generalized functionals, a kind of
renormalizations: :B(t)n\, :exp [AB(t)]: and :exp[cJxB(u)2Jii]: for c < 1/2, A and
t e R. The latter two are positive.

We will give the definition of positive generalized functionals and several
propositions which are equivalent to it.

We should mention Sugita's work [26] which was already done just before
ours within the framework of Malliavin calculus. In the white noise analysis,
we also have obtained the very similar results at least to outward seeming.
However, we would like to note that we could not guarantee the existence of
continuous versions for test functionals and that we could not grasp functionals
like :exp [Afl(f)]: for A, t e R or :exp[c jRB(u)2du]: for c < 1/2, if we rigged the
space (L2) (cf. [2]) by a compatible sequence of norms {\\(I — L)p/2'\\(L2)}™=09

where L is the Ornstein-Uhlenbeck operator in the sense of [26]. In contrast
with it, we make the rigged Hilbert space (5?) ̂ ( L 2 ) cz^(^?f) by operating
Y,n=o © Dp ® DP ® •' ' ® DP ( = the sum of n-times tensor product of ZF's) in the
space of the Fock representation of (L2), where D is the ordinary differential
operator I -\- u2 — (d/du)2. We note further that, for n-ple Wiener integral
/„(/„) of smooth /„, (/ - L) multiplies fn by (1 + n) but does not differentiate
it.

Our main theorem is applied to the argument of Dirichlet forms in infinite
dimension [9]. We hope that the results of this paper will find more applica-
tions in quantum field theory, in particular, with relation to the Feynman path
integral.

The contents of this paper are organized as follows:
§2. The real rigged Hilbert space equipped with a sequence of norms induced

by a self-adjoint operator.
§3. Summary of Gaussian measure and white noise functionals on E*.
§4. The spaces of test functionals and generalized functionals.
§5. Positive generalized white noise functionals and main theorem.
§6. Concluding remarks and examples.
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§2. The real rigged Hilbert space equipped with a sequence of norms induced
by a self-adjoint operator

Let Eo be a real separable Hilbert space with inner product (£, rj)0 and D a
densely defined self-adjoint operator on Eo such that

A) D > 1 and
B) D~h° is of Hilbert-Schmidt type for some integer h0 > 1. Let Ep be

the domain of Dp and U\\p= \\DP£\\O for £ e Ep (p = 0, 1, 2, • • •)• We note that
Dp = ff >WF(/l) (/? G Z), where F(-) is the spectral measure of D. We will use
what these spectral decompositions afford us without saying explicitly. Since D
is a closed operator, the norms | | | |p are compatible. We should also notice
that the range of D is the whole space Eo and that D"1 is a bounded operator
of Eo into Eo with HZ)"1!! < 1. We readily obtain (Ref. Chap. I, [1]):

PROPOSITION 2.1. (a) Let 0 <p < q and p = ||Z>~11|. Then, Eq a Ep and
U\\P<Pq-pU\\qfor£eEq.

(b) Ep is a Hilbert space with inner product (Dp£, Dprj)0 for every p = 0,
1,2, . . . .

(c) The inclusion mapping ip+h0,p
: Ep+h0 ~* £p> *s °f Hilbert-Schmidt type

(d) E = P)̂ °=o Ep is a nuclear space.

Now let us consider the dual space of E. Let £_p be the completion of
Eo by the norm | |x| |_p= ||D~px||0 for every p = 0, 1, 2, . . . . Then we easily
see (Ref. 4.2, Chap. I, [2]):

PROPOSITION 2.2. (a) E__p is identified with the dual space of Ep for every
p = 0, 1, 2, . . . .

(b) If 0 < p < q, then E_p is naturally identified with a linear subspace of

E-r

(c) IfO<p< q, then \\x\\.q < pq-p\\x\\_p for every x e E_p.
(d) The inclusion mapping i_p-p-ho: £_p->£_p_j,o is of Hilbert-Schmidt

type with S = H ^ . ^ J H - S = P ^ I I H - S -

(e) E* = (J^= 0£_p is the dual space of the nuclear space E.

There are various topologies for the space £*, e.g., the weak, the strong
and the inductive limit ones. Let us choose the inductive limit topology for
E*. By the inductive limit topology we mean the one which is locally convex;
i.e., every fundamental neighbourhood of the origin in E* under this topology
has the form:
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(2.1) {S?=o ^PyPl ^P — 0 except for a finite number of p's,

I ?=ol^ l< l and \\yp\\-p<ep with ypeE.p}

where {ep} J=o is an arbitrarily given sequence of positive numbers. We call the
set of the form (2.1) the convex envelope of the set

REMARK. In the above case, the inductive limit topology and the strong
topology coincide.

The triplet E <=L» E0 CL*. £* is called a rigged Hilbert space or a Gel'fand
triplet.

Next, let us introduce some notations relating to the symmetric n-fold
tensor product of a Hilbert space. Let AT be a Hilbert space over K (= R or C).
We denote the symmetric n-fold tensor product of X by X®n. If we treat the
n-fold tensor product of a vector x e X in X®n we denote it by x®n. Besides,
®j xfnj w ^ ^ Z i nj = n *s ̂ e symmetric n-fold tensor product of n vectors in
all, consisting of n,- x/s for each ;. In particular, (X)"=1 Xj or xx (§) x2 ® • • • ® xn

is the symmetrization of xx ® x2 ® • * • ® xn. In the case of n = 0, X®n denotes
K. Thus, if we denote the complexifications of £, Ep (p e Z) and E* by H, Hp

(p e Z) and H* respectively, we can easily construct the rigged Hilbert space
H®n ^ H®n ^ H*®n f o r e v e r y n WQ ^ u s e t h e s a m e s y m b o l s /) and < •, • >

for the complexifications of the operator D and the canonical bilinear form
< •, • > between E* and E.

§3. Summary of Gaussian measure and white noise functionals on E*

We assume the following condition from now on:

(3.1) 0 < p ^ | | Z ) - 1 | | < l .

This condition is satisfied if, e.g., 1 < a < D for some a. The ordinary dif-
ferential operator 1 + u2 — (d/du)2 is an important and typical example that
satisfies this condition for a = 2. We will discuss the generalized functionals of
the velocity process of a Brownian particle later on (in §6), using this operator.

The canonical bilinear form for (x, £) e E* x E is denoted by <x, £>•
Bilinear forms <*, > define cylinder sets. For any n > 1, any ^ e E, •••,
any £„ e E and any n-dimensional Borel set Bn, the set of the form {x e £*;
«x , €!>,-•-, <x, £n})eBn} is called a cylinder set. We denote the smallest
cr-algebra containing all cylinder sets by J*.

By Bochner-Minlos' theorem ([21]), a probability measure fi on the mea-
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surable space (£*, J*) is uniquely determined by the equation:

(3.2) C(£) = exp - - ||f ||§ = exp p<x, O ] ^ W for { e £ .

Actually /i is already supported on E_ho by Gross-Sazonov's theorem ([3]) since
D~h° is of Hilbert-Schmidt type.

We will denote the space L2(£*, ^ , fi) briefly by (L2) according to the
notation in [7]. We call the elements of (L2) Gaussian white noise functionals
or simply white noise functionals. In case Eo = L?eal(R), white noise functionals
are called Brownian functionals, [7]. Note that (L2) is a complex Hilbert space.

We summarize here the Wiener-Itd decomposition of (L2):

(3.3) (L2) = Y,n=o®K

and the ^-transform:

(3.4) (<T(p)(Z) = f <p(x) exp p<x, O ] ^ W for 9 e (L2) and { e E .

Let //k(w) be Hermite polynomials:

(3.5) Hk(u) = ( - l)k exp [w2] ̂ Y exp [ -w 2 ] , fe = 0, 1, 2, • • •

and {Cj}f=o be a complete orthonormal system of Eo. {Cj}f=o c a n liye i
since £ is dense in Eo. Then, the polynomials of <x, Cj>'s of degree n,

(3-6) UjH

are called Fourier-Hermite polynomials. Let Jfn denote the subspace of (L2)
spanned by all Fourier-Hermite polynomials of degree n. We have

PROPOSITION 3.1. Let Y,}*1) = n, then

IL ».,

=»'"c«) n,-

(a)

(c) II(X),- ^
(d) (L2) = £?=o 0 f̂n {orthogonal sum).

Proposition 3.1 defines the isomorphism between (L2) and the Fock space

= Z^=o © s/riHo"1 o v e r ^o with weights y/rH. To describe more exactly,
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we define some notations. Let k, n, • • • be sequences of non-negative integers:

k = (k09kl9k29'~), n = (nO9nl9n29~')> '" - We write \k\ =YjLokj9 k\ = Yljkjl

\ ) = IT/I / ) ' k <n if kj < rij for every j > 0, and n A k = (n0 A fc0,
\kj \kjj
n1 A k1,-",nj A £,,-••).

We call /„ G //f^ the representation kernel, or simply, the fcerne/ of cpn e J^n

n, Z®n)Ht for i e £.

PROPOSITION 3.2. (a) Let <pe(L2) and suppose that <p =
(pM G J^n (n> 0). T/i^n /or every n > 0 t/i^re exists a unique vector fn in H
such that

(3.7)

and

(3.8) ?

(b) (L2) fa isomorphic to the Fock space <P0 = ^ * = 0 ® y/n\H$n over Ho

with weights <s/nl. This isomorphism is given by the correspondence

(3.9) F: (L2) 3 £ „ % cpn ̂  (fX=o e ^n=o 0

PROOF, (b) is clear if (a) is proved. So we prove (a). We can take
{(2fln!)"1/2n iHBj(2-1/2<x,C/»;|ii| = n} as an orthonormal base of J^n by using
Proposition 3.1 (a). Therefore every q>n e J^n has the expansion cpn = Xi»|=n
)S),(2''ii!)-1/2njHnj(2-1/2<x,CJ» with \\<h\\2

a.2) = Y,m.m\pm\2 in (L2). Then it
follows from Proposition 3.1(b) that the ^"-transform of q>n is given by

(3.10)

Consequently the kernel / , of cpn is given by

By Proposition 3.1 (cX n\ \\fn\\
2

H^ = Xw=.IPn\2 = ll^ll2^) for every n > 0. D

REMARK. In the case where the basic space Eo is Lleal(R\ q>n(x) is the n-ple
Wiener-Ito integral of/,. (See [10].)

§4. The spaces of test functionals and generalized functional

In this section, we firstly construct a Gel'fand triplet which has (L2) as
an intermediate space, i.e., (£f) <^{L2) c=->(^')- We will call (^) and (Sf1) the
space of test functionals and the space of generalized functionals respectively.
Secondly we state and prove, according to our case, two properties of the space
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of test functionals: 1) every element of (9) has a continuous version as
a functional on the space E* and 2) (^) is an algebra, in particular (£f) is closed
under the product of two elements of (£f\

For each p > 0, let €>p be the Fock space over Hp with weights y/n\:

(4.1) *p = E?-o<

The inner product (•, •)# of <PP is defined as follows:

(4.2) ((/X=o> (0X«o)*F = Z"=o *!(/», A)H#- for (fX-o and (#X=o e <Pp .

Then the Fock spaces &p form a descending sequence: • a &p<^ - a &0.

DEFINITION 4.1. Let (<9̂ ) be the inverse image of &p by the isomorphism
F of (L2) onto 0O . We write (Sf) = f l^= 0(^ ,) and call (6f) the space of test
white noise functionals or of test functionals.

We can identify the dual space of <PP with 0_p = ££L0 ® N/nI//?iJ
l by using

Riesz' Lemma. Therefore the dual space (5fp)' of ( ^ ) is isomorphic to &_p.
We see that the spaces (£fp) can naturally form an increasing sequence:
(L2)' = (Sf0)' cz ••• c ( ^ y cz •••. Let us identify (L2) and its dual space (L2)r

under the bijective conjugate linear map from (L2)' onto (L2) induced by Riesz'
lemma.

DEFINITION 4.2. Let (<9%) denote the dual space of (^p). We write
(Sf1) = (J*=0(^_p) and call («5̂ ;) t/ie space of generalized white noise functionals
or of generalized functionals.

is topologized by the projective limit topology of {(^)}£L0. It
would be natural that (&") is topologized by the inductive limit topology of
{(^_p)}*=0. From now on we adopt these topologies. Thus we have obtained
a new Gel'fand triplet (^) ci* (L2) <̂> (9") (Ref. [2]). More exactly we have

PROPOSITION 4.1. / / 0 < p, then
(a) the inclusion mapping i(#>p),(#>p+q+h y {9p+q+ho) -> ( ^ ) is of Hilbert-Schmidt

type for sufficiently large q > 1 and
(b) (^) = p |^= 0 (^ , ) is a nuclear space.

PROOF. These properties are clear from the fact that each Fock space 0P

has an orthonormal base

(4.3) U"=o {(0 , ' ' ' , 0, (/i!)"1'2 <§>; 0P)®"J, 0, 0, • • •); |n| = n} ,

T T
0-th n-th
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w h e r e {Qp)}jL0 is a n o r t h o n o r m a l b a s e of Hp s uch as {CjP)}jL0
 c E- F o r

< (1 -

p2^<l(5=| |D-"o| |H_ s) . •

To state that every element of (Sf) has a continuous version and that (9*) is
an algebra, we prepare two lemmas which are easily proved by elementary
combinatorics ideas.

LEMMA 4.1. Let (X, (•, •)) be a finite dimensional vector space with inner
product (•, •) and {(y}j be an orthonormal base of X. For any choice {£*}?=!
(n > 2) of n vectors from the base {(,},• and for fn = f x ® • • • ® £n e X®n, define

fn\n-2k ^

fn\n-2k = (Zn-2k+l > Zn-

and for general fn e X®n define fn\n-2k linearly. Then, for the symmetric n-fold
tensor product fn = ® ; £$% we have

LEMMA 4.2. Let X and {Cj}j be the same as in Lemma 4.1. Let

/-. = L , - E « M « « , - ^ I ® : - ® c l m and gn = Zj1---
1LjJu-j^H®---®^ be

any symmetric tensors in X®m and X®n respectively. Define fm ®k gn by

fm ®k 9n = / + n _ 2^\ | Zff e S(m+n-2fc) Z^i ' " Z*w Z i i ' ' " ZiV, aii - imf t i - J n

x Cff(ll) ® ' ' ' ® Cff(im_k) ® CffOl) ® ' ' ' ® CaUn-k) fork<m An,

w h e r e ® ( m + n — 2 k ) i s t h e p e r m u t a t i o n g r o u p of s y m b o l s { i l 9 •••, i m _ f c ,

71,---,;n_k}. Tfcgn, for fm = (g)/®m^ and gH = &j$"J with \m\ = m and
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|n| = n, we have

fm ®k
(m - k)l(n - k)l ^ fm

mini L.*<mA

DEFINITION 4.3. Let the kernels fm and gn of cpm e Jfm n (£f) and \\tn e

tfn n ( ^ ) be expressed in the following form, using orthonormal base {Cjp)}£Lo of
Ep, respectively:

fm = Z i ^ ' Z i ^ f - i J i f ® •• '® C£} W i t h ll/mllH*« = Zi i '^Zin . I^V-UI2

and

^ = Zjl ' ' ' Zjn ftv-JnOf ® ' • * ® Cjf With H l̂l J*» = Z ^ * * * Zin ^-Jn^ '

(1) For 2/c < n, define /n|w-2k by

(2) For k <m A n, define /m ®fc gfn by

Using Schwarz' inequality, we obtain the following estimations: for p > hOi

(4.4) WU-ikWi**-** < WfnWhfnS^p2**-™

and

(4.5) \\fm ®k gn\\
2
Hpm+n-2k) < + J _ I I / . I I ^ I I ^ I I ^ ^ V ^ " ^ •

Further, these estimations tell us that fn\n-lk and fm ®k ^n do not depend on p.
Clearly, fn[n.2k e H®(w"2k) and /m ®, ^n e Hf(m+n~2k) hold for any p > 0.

PROPOSITION 4.2. Suppose that cpne 2tfnc\(£f) (n > 0) and that fn is the
representation kernel of cpn (n > 0). For every x e £*, write

Then (1) <pn(x) = 3n(/B)(x) /^-a.e. x e £ * and (2) 3M(/n)(x) "is continuous in
xeE*.
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PROOF. (1) Let <pn = Xw=Bai0)(2"/i!)-1 /2ri J^(2-1 /2<x, Cj°>». Then, the
kernel /„ of <pn is given by /„ = £ w = X > r 1 / 2 <§>,• Cj0)®"'- By the formula
Hn(u) = id

{ki2o(-ifnl(2uf-2k/(n-2k)\k\, Lemma 4.1 and the estimation (4.5),
we have

(4.7) <pn(x) = £ M _ «g» J L j ; ^ . (-1)1*1
 (n

(2) We have to show that \3n(fn)(x + y) - 3W(/W)(x)| is small if y e E* is
small with respect to the inductive limit topology of £*. It is enough to show
it for |<(x + yfm - x®m, /m>| (n > m > 0). Let x e E.q and let y = XP=O ^P

with X?=oUpl ^ !» ^ e £ _ p and ||j;_p | | < 5p. We can assume that Sp < 1 for
any p > 0 without loss of generality. Then we have

(x + y)®m -x®m = >

By dividing the factor (E?=oVp)®('+1). i n t o t w o Parts Iw.vp.-vp.s,
<S)j=o (^P/P,) a n d Z P ^ Z P O V P . V - V P ^ P ^ O ^ P / P , ) . w e c a n o b t a i n t h e

estimation of |<(x + yfn - x®m, fm}\ (n > m > 0):

(4.8)

1

7

v P l v ...

| , | | | y p | | J ,

Therefore, for a previously given e > 0, if we choose dp for any p > 0:

(4.9) ^ = (m(l + | |x | |_ , r - 1 | | / m | | H ? m p"-T 1 e for p<q

and

^ = (m(l + ||x||_1,r"1ll/»llf l |-.r1« for q<p<oo,

we see that |<(x + y)®m - x®m, fm>\ < £q
P=01A,| £ + £?> , IA,| £ < e. D
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PROPOSITION 4.3. Suppose that cp = £JJLO cpn e {&>) with cpneJ^nn (£f) and
that fn is the kernel of cpn. Then

(1) S*=o 3n(fn)(x) converges absolutely for every x e E*. Moreover,
(2) if we write q>(x) = Yj?=o3n(fn)(x) for every x e £*, <p(x) is continuous in

x e £ * and q>{x) = q>{x\ /x-a.e. x e E*. {From now on, we denote this continuous
version of q> e {&*) by <p.)

PROOF. (1) By the estimation analogous to (4.8), we have

(4.10) £n% |3.(/.)(X)|

n'2"k

<V°° V[»/21 n'^ l l f l l A s.2kn2k{p-h0) II vIIn-2k

s Ln=o Lk=o (n_2/c)!fc! " ^ " " P p l | x"-^

= \\<p\\{yp)(l ~ (tpp-ho + ll^ll-p)2)"1/2 < oo

if dpp~ho + ||x||_p < 1. While, the condition dpp~h° + ||x||_p < 1 is satisfied for
sufficiently large p, because ||x||_p < pp~q\\x\\-q holds if x belongs to E_q for
some (? > 0. Recall that 0 < p = ||D-11| < 1.

(2) By the similar computation to the proof of Proposition 4.2,

(4.11) mfn)(x + y) - 3(/J(x)|

nn~k

V[/2] ; / - j , || || \n-2k-l\\f\\ A fi2kn2k(q-h0) \^q M M I . , ||(n-2k- l)!/c!

n\2~k

+ \\x\\-P)pr + Sp'+'-xoy

Thus, if r is sufficiently large such that (1 + ||x||_p + dpp~hQ)pr < 1 for any
p > q, we have
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(4.12) \$(x + y) - $(x)\

\\x\\-q

x \\yP\\-qP
r

^)(i - a + \\x\\-q + *p'"*o)Vrr1n^ii-,pr

^,(1 - (1 + 11*11-, + ̂ " W T ' W - p P ' •
Since r does not depend on yp's, if we choose <5p's as follows:

(1 + ll*ll-« + «P«-*°)2P2r)c for 0 < p < 9 ,
(1 + IWI-p + Spp'^)2p2r)B for 9 < p < oo ,

we obtain \<p(x + y) — <p(x)\ < ^P=O \hP\&PPr < e f° r vy e 1/ = the absolutely
convex envelope of (j£L0 {yp e E_p; \\yp\\.p < Sp}. •

Because of the estimation \cp(x)\ < ||^||(^)(1 - (Spp-h° + ||x||_p)2)"1/2 for
every fixed xe E* and sufficiently large p, we have the following corollaries:

COROLLARY 4.1. For any x e E*, q>(x) defines the functional dx of cp e
i.e., <^(-), ^(-)> = 9W, and Sx belongs to (ST).

COROLLARY 4.2. Suppose that (p, (pne(6f) (n = 1, 2, •••) and that cpn con-

verges to (p in (£f\ Then <pn(x) converges to cp{x) at each x e E*.

Now, let us show the second property of (Sf):

PROPOSITION 4.4 (Cf. Th. 7.4 and Th. 7.5 of [15]). Supppose cp and i// e {¥).

Then cp and (p\j/ e (£f). Moreover,

(a) \\(p\\{<?p) = ll<Pll(5£) for any p > 0,
(b) there exist a positive number K > 0 and an integer q > 0, both inde-

pendent of <p, ij/ and p, such that

PROOF. We give an outline of the proof of q>ij/ e {£f\ Suppose cp —
Zm=o (Pm and $ = Yn=o *l>n with cpm e Jfm and ^n e Jfn. Let the kernels of cpm

and \j/n be fm and gn respectively.
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Then by Lemma 4.2, the estimation (4.5) and the formula

Hm(u)Hn(u) = £ZLAo" 2kk\(™\QHm+n.2k(u),

we can obtain

(4.13) 3m(^m)3«(/«) = Yj^d1 ^M )( )^m+n-2k(gm®kfn) •

Thus

(4.14) ||3m(^m)^

if p > h0 and f̂ > 0. Consequently

(4.15)

if g is large enough for (1 + S2p~2h°)p2q < 1. This shows that K and q are
independent of cp, $ and p. Therefore cpij/ belongs to (5^). •

§5. Positive generalized white noise functionals and main theorem

In this section we prove our main theorem: Every positive generalized white
noise functional is expressed in terms of the integral given by some positive finite
measure on (E*, 0$). In proving this theorem, Minlos' theorem and the algebra
A, linearly spanned by exponential functions, play important roles. Firstly, let
us prepare two auxiliary propositions relating to exponential functions and the
algebra A.

PROPOSITION 5.1. For any £ e £ , exp[*'<x, £>] is ™ {&) <™d the mapping
Ci->exp [i<x, C>] from E into (Sf) is continuous.

PROOF. Suppose ( e E and consider the ^"-transform of exp [f<x, C>].
We see that for every <J e E

(5.1) {^ exp p<x, f>]}«) = C({ + 0 = S"=o i
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C o n s e q u e n t l y we h a v e

(5.2) | | e x p [ i < x , C > ] | | ( ^ ) = C ( C ) e x p [ i | | C | | J ] < Q O for a n y p > 0 .

Thus exp [i<x, C>]
The continuity of exp [i<x, (>] in C e E follows from the inequalities

(5.3) ||exp [i<x, Co>] -

and

II Co " Cll2 e x p , [ ( | | f ||p + II Co lip)2]

PROPOSITION 5.2. Let us define the algebra A a (<?) by

A = (L/ ft exP P<*> </>]; ̂ wite sum, ̂ . G C, ^ e

Then A is dense in (S).

PROOF. Since (S?)9 as a nuclear space, is topologized by the countable
Hilbertian norms {||'||(^)}^=o» w e have only to prove that A is dense in ( ^ ) for
each p > 0. If we denote the isomorphism between (£fp) and the Fock space &p

by F, then we obtain

Let g(t) = (in(n\y1(tQ®T=O' We can easily see that r
belongs to A, that g'(t) = limfc^0 (g(t + h) — g(t))/h converges in 0P for t e R,
and that ^'(0) = (0, iC, 0,0, •••) is in <Pp. Inductively, we have that gin)(0) =
(0, ~'90, inC®n, 0, •••) is in ^ p . It is well-known that the Fock space &p =
Z?=o ® y/nl&?m is generated by elements of the form (0, • • •, 0, C®w, 0, • • •) with
C e E and n > 0. These facts show that A is dense in (5^). (See [4].) •

Next, let us define positive generalized white noise functional.

DEFINITION 5.1. A generalized white noise functional We(9") is said to
be positive, denoted by ¥ > 0, if <!P, i//} > 0 for all ^ G (50 such that $(x) > 0
at every point x G £*.
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We note the following: If we recall the well-known fact that fi(U) is positive
(>0) for every nonempty open subset U of £*, the condition for i/t e {Sf) in
Definition 5.1 can be replaced by the condition that i//(x) > 0 for //-a.e. x e £*.

Let (&% denote the set {W\ ¥e{&")9 V > 0} ([24]).

DEFINITION 5.2. A generalized white noise functional W G (£/") is said to be
multiplicatively positive on A if (¥, aa> > 0 for all a e A.

Notice that oce A is continuous; i.e., a = a. Further we easily see that
We(6f') is multiplicatively positive on A if and only if <Sjr, exp [i<*, £>]> is
a positive-definite function of £ e £.

Now we are ready to prove our main theorem:

THEOREM 5.1. Suppose *¥£{£/")>. Then there exists a unique finite measure
vw on (£*, 3&) which satisfies that

(5.5)

/or all \// e (^).

PROOF. Let *F e {9?t)>. Since a(x) is itself continuous in x and dt(x)ot(x) >
0 hold for ae A and any x e £ * , we see that (W, aa> > 0 for a e / 4 , i.e.,
<^, exp [/<•, O]> is positive-definite in £ e E. Further, by Proposition 5.1,
<¥r, exp [i<-, £>]> is continuous in ^ e £. Therefore Bochner-Minlos' theorem
defines a finite measure v^ on (£*, ^ ) uniquely by the equation

(5.6) <!P;e'<-'<>>= I ei<x>s>dvy(x).
JE*

It follows from the linearity in cp of <<P, <p> and J£*^dvy that the following
equality holds:

(5.7) <^, a> = oi(x)dvy(x) for any a e A .

We want to extend (5.7) to the form (5.5).
Now let \// e (£f\ Using Proposition 5.2, we can approximate if/ in

with a sequence {an}*=1 cz A. Then |aB — ̂ | 2 converges to 0 in (^), because
the inequality

(5.8) ||aw - (A)(an - IA)II(^) < K ||an - ^||(Vp+g, for any p > 0

follows from Proposition 4.4. Next, to show that {an}*=0 is a Cauchy sequence
in L2(£*, ^ , vy/), we note that |aB — am|2 is in A and that
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(5.9) ||an - iA)(am - <A)II<̂ ) <K\\xn -

We have

(5.10)
JE*

= < ^ , \OLH - (Al2 - («„ -

= <<P, la, - iAI2> " < ^ ,

- <!P, (am - ^ (a , - tfr)> + <¥, |am - iA|2> .

The last four terms tend to 0 as m, n -> oo because of (5.8) and (5.9).
Since L2(E*, &, v^) is a Banach space, there exists an element x °f

L2(E*, @, v^) such that a,,-*/ (n^oo) in L2(£*, J>, v^). We can choose a
subsequence {a^jjii of {an}*=1 satisfying that

On the other hand, by Corollary 4.2, the continuous versions satisfy that

&nj(
x) -*$ 0" ~* °°) f°r a ny ĉ e £* .

It follows that x(x) — $(*) vy-a.e. x G £*. Clearly J£* aWj. dv^ -> j £ * / dv^
(7 -»• oo). Therefore < Y, ij/} = J£* x ̂ vv = JE* ̂  ^v^- •

THEOREM 5.2. Let Ve (Sf'\ ¥>0if and only if <W, e^^} is a positive-
definite function of £ e E.

PROOF. Suppose that We (&")>. For a e A, a = a and a(x)(a)~(x) > 0 at
every every x e E*. Thus <^, aa> > 0.

Conversely, suppose that Ye(&") and that (Y, exp [i<-, £>]> is positive-
definite in £ e £ . Then the same argument as in the proof of Theorem 5.1
holds and so, there exists a unique measure v^ such that

J
$dvw for all t

E*

In particular for \j/ e (Sf) satisfying \j/(x) > 0 at each xe E*

•J.
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§ 6. Concluding remarks and examples

We conclude by giving some examples of positive functionals. We con-
sider the velocity process of a Brownian particle in one dimensional space. If
we set

Eo = L2
eal(*), D = 1 + u2 - (f)2 and «, r,)p = f lD*£(u)Wl(u) du ,

V«V JR

it turns out that E = ^real(R) (the real Schwartz space), £* = ^r
f
eal(R) (the space

of real tempered distributions), H = ^ompiejc(R) and so on.

(A) The ordinary case.

Let We (L2). The following (a), (b), (c), and (d) are equivalent.
(a) ^ > 0.
(b) ^(x) > 0 n-a.e. x e E*.
(c) (<&~W)(l;) is a positive-definite function of £ e E.

(d) (W,(p(py>0 for all <pe(L2). That is, W is multiplicatively positive on

(L2).

The equivalence of (a), (b), (c) and (d) is easily proved by Bochner-Minlos'
theorem.

The measure Vy, corresponding to W satisfies dvw(x) = W(x) dfi(x), i.e., v^ is
absolutely continuous with respect to fi.

(B) The generalized case.

(B.I) The indicator function / [ O A f O v ( ] of the interval [0 A t, 0 v t] is
approximated in L2(R) by a sequence of C00- and rapidly decreasing functions
{£n}S=i c E. Therefore <x, /[OAr)Ov(]> = (L2)-limn_>00 <x, {„> is well-defined as a
function in (L2) (see [7]). Let us define the "Brownian motion" B(t):

This definition of the Brownian motion B(t) gives us the Gaussian random
measure W() which satisfies W{[S, t]) = B(t) - B{s) for s < t and it turns out
that 3n(/n) is the n-ple Wiener-Ito integral /„(/„) of the symmetric function,
fn e 5^(Rn), with respect to the random measure W.

Let us show that some of the multiplicative renormalizations stated in [20]
or [25] are positive.

(i) :exp [A5(£)]: (A and t are fixed real numbers).
This (generalized) functional is defined as a limit functional
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Bit + h)- [I exp U - ^ -J in (ST)

and its ^"-transform is C(£) exp pA£(f)]. As is well-known, C(f) exp [i'A£(f)] is
positive-definite in £ e E.

Accordingly, W = :exp \_kB{t)~\: is a positive generalized Brownian func-
tional. The measure v^ corresponding to *F is the one such as the distribution
of <x, O with respect to vw is the normal distribution N(A£(t), ||£|lo). v«p and ^
are mutually singular.

(ii) V = :exp c B(u)2 du : (c < 1/2).

Let A = {Ak} be a partition of a finite interval T into subintervals Ak with
the same length |A| and write VA = exp [ c£ k |A k # / |A | | 2 |A | ] , where AkB is
the difference B(tk, •) - B(tk-l9 -). The ^-transform of !PA/E[^A] G (L2) is
C((^)exp [c(2c — ^"^fclAK^,/Afc)o], which is positive-definite in £eE and
converges also to a positive-definite function CT(£) of £ G £ as | A| -• 0:

CTK) = C({)exp

Moreover, Cr({) tends to exp[ -2~ 1 ( l - 2c)"1||^||o] as T spreads out to
(—oo, oo). This functional of <J is the characteristic functional of the measure
of Gaussian white noise with variance (1 — 2c)"1. We can prove that there
exists a positive generalized Brownian functional W € (£?'), denoted by
:exp[c$RB(u)2du]:9 the ^"-transform of which is

To see how W = :exp[cj"«B(u)2du]: acts on W = Y,n=o hifn) e (&), let us
expand <!f, exp[i<-, ^>]> in the following way. (We can obtain the Fock
representation of W by doing this.)

= exp f - i r ^ ||{||2J = C({) exp
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Thus,

As expected, this is certainly the integral of \j/(x) with respect to the Gaussian
white noise with variance (1 — 2c)"1.

(B.2) We give another example: 5X for an arbitrarily fixed x e E*. As
mentioned in Corollary 4.1, this functional belongs to («S )̂. The ^"-transform
of Sx is given by (dx, exp [)*<•, £>]> = exp[i<x, £>]({ e E). Obviously this is a
positive-definite function of £ e E. Thus Sx is a positive generalized functional.
The measure v corresponding to 5X satisfies v({x}) = v(£*) = 1.

Further, if x e E* is fixed as above, we have

*'<*•<> = C«) exp[i<x, O ] exp \2T\5(u -v\

where

Y(g)(n-2fe)

From the above we can see how 8X acts on \j/e(y). In fact if
With / n ^

On the other hand the definition of 5X gives (Sx, i//} = $(x). Hence

(8)(n-2k) A f fi/ _ xl 6fc /- \

However we can easily see by direct computation that the n-th term of the
right hand side of this equality is equal to 3n(/n)(x) in (4.6).
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This fact suggests the validity of Proposition 4.2 from a somewhat different
point of view.
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