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1. Introduction

In this note we investigate the existence of boundary limits of locally
n-precise functions u on a domain G in R" which satisfy a condition of the form:

(1) J ¥(|grad u(x)|)w(x)dx < oo
G

with a nonnegative measurable function @ on G and a positive nondecreasing
function ¥ on the interval (0, 0); for the definition and basic properties of
locally p-precise functions, see Ohtsuka [4] and Ziemer [5]. The function ¥(r)
is assumed to be of the form r™y(r), where Y(r) is a positive nondecreasing
function on the interval (0, co) satisfying the following conditions:

() There exists A > 0 such that
ATWYE) SYr?) S AY(r)  forany r>0.
W) [owe™) ™M Vrldr < co.
For example,
Y(r) = [log (2 + r)]% [log 2 + )]" ' [log 2 + (log 2 + NI, ...,

satisfy the above conditions, as long as a > n — 1.

We shall first show that if [ ¥(|grad u(x)|)dx < oo, then there exists a
continuous function u* on G such that u* = u a.e. on G, and furthermore, in
case G is a Lipschitz domain, u* can be extended to a continuous function on
Gu0G.

Next, in section 3, we are concerned with the existence of limits at a given
boundary point £, in the case where u satisfies (1) with w(x) = A(]x — &|) for
a positive nondecreasing function 4 on the interval (0, c0). Then, in the next
section, we study the existence of boundary limits along certain subsets of G for
a function u satisfying (1) with w(x) = A(p(x)), where A is as above and p(x)
denotes the distance of x from the boundary 0G.

In the last section, we discuss the existence of limits at infinity, in case G is
unbounded and o = 1.
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2. Continuity of locally n-precise functions

First we give several properties on i, which follow from condition ().

(Y,) There exists A" > 0 such that /(2r) < A'Y(r) on (0, c0).
(,)” For each y > 0, there exists A, > 0 such that

A7) SYE) S AYE)  on (0, ).
()" Ife>0, then s(s™!) < AtY(t™') whenever 0 <s <t < A7,

For the sake of convenience, we introduce the function

U(r) = <f l//(t“)""‘"“’t"‘dt>l—I/n :
0

Then ¥ satisfies condition (i, ), too, and
3) Y(r) = My  forany r>0

with a positive constant M.
Our first aim is to establish the following result.

THEOREM 1. If u is a locally n-precise function on G satisfying
) f ¥(|grad u(x)|)dx < o,
G
then there exists a continuous function on G which equals u a.e. on G.

For a proof of Theorem 1, we use the following results.

LeMMA 1 (cf. [3; Theorem 1], [4; Theorem 9.11]). Let 1 <p<oo. Ifuis
a p-precise function on R" with compact support, then

u(x) =c iy J(xi — y)lx — y[7"(0/dy)u(y)dy  ae.onR",
where c is a constant independent of u.

LEMMA 2. Let E be a measurable set in R", and let g, w be nonnegative
measurable functions on E. Then, for any 6 with0 <6 < 1 and a > 0,

i/n
L lx — y|*"g(y)dy < Aé"‘(L Y’(g(y))w(y)dy)

1-1/n
X ([ Ix — yI7" Y x — yl"l)w()’)]_ll("””dy> +a7? J |x — y|t™" "%y .
E E
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Proor. Let E, ={yeE;g(y)=(a|x—y|)™®} and E,=E — E,. Then,
Yg(y) Z Y((lx — y)°) = A5 Y((@lx — y|)™') on E; and g(y) < e ’x —y|™°
on E,. Hence, Holder’s inequality implies the required inequality.
CoROLLARY. If E, g, 6 and a are as in Lemma 2, then

1/n~
J |x — y‘l—"g(Y)dy < M(J‘ 'I’(g(y))dy) Y(xR) + Ma-élEl(l—a)/n ,

where |E| denotes the measure of E, R =sup {|x — y|; y € E} and M is a positive
constant independent of o, x, g, E.

Proor. Taking w =1 in Lemma 2 and remarking that

f |x — [t "0y < Mri=?
E

for r =2 0 such that |E| = |B(x, r)|, B(x, r) denoting the open ball with center x
and radius r, we obtain the Corollary.

Proor oF THEOREM 1. Let B(xo, 2ro) = G, and take ¢ € Cg'(G) such that
¢ =1 on B(xy, ). Then, by Lemma 1, gu is equal a.e. to

o(x) =c Yy _[(xi — y)lx — yI7"(0/0y:) (ew) (y)dy -
Thus it suffices to show that v is continuous on B(x,, r,). We write

o(x) = ¢ Yiny J.(xi = yi)Ix — yI7"[(0/0y)p(y)Ju(y)dy

+ecyi J (xi = y)x — yI"e(y) [(0/0y)u(y)]dy = uy(x) + uy(x) .

We first note that u, is continuous on B(x,, 7). Let x; be any point of
B(xy, 1r9). Forr >0, we set

Uy, (%) = ¢ )iy n )(X.- = y)lx =y 7"e(y) [(6/0y;)uly)]dy .
For simplicity, put
f) =Y lo(L@/0y)u(y)]l -

We note that [g. Y(f(y))dy < o0, by condition (2). For x € B(x,, r), we derive
from the Corollary to Lemma 2
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[uy,(x)| < M, j lx — y|* "f(y)dy

B(x,,r)
1/n~
=M, <L( )Y’(f(y))dy> Y(r) + Myri™2,

where 0 <6 <1 and M,, M, are positive constants independent of x and r.
Consequently, lim,, SUp,cpe, nt2,(x) =0. Since u, —u,, is continuous at
x,, it follows that u, is continuous at x;,. Therefore, v is continuous on
B(xq, ry), and hence Theorem 1 is established.

REMARK. If P(r) =r? and p > n, then the same conclusion as in Theorem
1 is true.

Let A be a positive nondecreasing function on (0, o0) such that A(2r) < BA(r)
on (0, o0) with a positive constant B, and consider

1 1-1/n
K';.(r) = <f [w(s—l)A(s)]-ll(n—l)s—lds) .

THEOREM 2. Let G be a Lipschitz domain in R", and u be a locally n-precise
function on G satisfying

©) L ¥(|grad u(x)|)A(p(x))dx < o,

where p(x) denotes the distance of x from the boundary 0G. If x,(0) < co, then
there exists a continuous function on G U 0G which equals u a.e. on G.

ReMARk. If lim, o A(r) > O (in particular, if 1 =1), then «7(0) < 0 by
assumption ().

For a proof of Theorem 2, we need the following result, which is a key
lemma in the discussions throughout this paper.

LemMMA 3. If u is a locally n-precise continuous function on G, then for
any x, xo€G and ro>0 such that E(x,xq,1ry)={tx+(1—1t)y;0<t<1,
y € B(xo,70)} = G,

u(x) — | B(xo, 7o)| ™ f u(y)dY|

B(xq,ro)

< Mrg"(1x — Xof +ro)"j |x — z|'™"|grad u(z)|dz,

E(x,x9,r0)

where M is a positive constant depending only on the dimension n.
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REMARK. If x € B(x,, 1), then

u(x) — |B(xo, ro)| ™ j

B(xo,r0)

u(y)dy‘ <2'M |x — z|*7"|grad u(z)|dz .

B(xg,ro)

ProoF oF LEMMA 3. If 0 < ¢ < 1, then, in view of Example 1 given after
Theorem 3.21 in [4], we have

1
lu(x + e(y — x)) —u(y)l = f |x — yllgrad u(tx + (1 — t)y)|dt
for almost every y € B(xy, r,). Letting ¢ — 0, we obtain
1
[u(x) — u(y)l =[x — yl j |grad u(tx + (1 — t)y)|dt
0

for almost every y € B(x,, r,). Hence

u(x) — |B(xo, 1) ™" J

B(xg,ro)

u(y)dy‘

§ IB(xO’ "0)|_1 f

B(x0,r0)

1
|x — y|<Jv |grad u(tx + (1 — t)y)ldt)dy
o

< |B(xg, 1) ™ f |x — z||grad u(z)|

E(x,xq,ro)

x (f a- t)“'"dt)dz
{1—t2|x—z|(x—xo|+ro)~1}

= Mrg"(1x — xo| + 1o)" Ix — z|'""|grad u(z)|dz,

E(x,xq,r0)

since for z=tx+(1—0t)y, [x —z| =1 —-8)|x —y| =1 = )(|]x — xo| + 1o), Where
M is a positive constant independent of x, x,, 7, and u.

PROOF OF THEOREM 2. By Theorem 1 we may assume that u is continuous
on G. We shall prove that u has a finite limit at any £ € 0G. Since G is a
Lipschitz domain, there is a cylindrical neighborhood U of ¢ such that, by
a suitable orthogonal coordinate system, we can write

£E=0, UnG={x=(xy,x"); 0(x') <x; <h|x'| <p},

where h >0, p >0 and ¢ is a Lipschitz function on {x’ € R"™; |x’| < p} such
that ¢(0) =0. Let K be the Lipschitz constant of ¢. For any r >0 with
r <min {h/2, 2(K + 1)p}, let e,=(0,r) and o6, =r/3(K + 1). Then, for any



114 Yoshihiro MizuTa

x € B(0, 6,) n G, E(x, e,,0,) = UnG. Hence, by Lemmas 3 and 2, we have

u(x) - IB(en ar)l_l J u(y)dy

B(e,., 0,)

£ Mo, "(Ix — e[ + q,) J Ix — z|' ™| grad u(z)|dz

E(x,ep,0,)

< Mr' 0+ M, (I ¥(|grad u(Z)I)A(p(Z))dZ>1/n
E(x,e,,0,)

X—2z "'l 'l’ - 1-1/n
* (L( I | (lx ZI 1)1(p(z))| 1/(n—l)dZ>
X, €y, 0,)

for any x € B(0, 6,) n G, where 0 < § <1 and M, is a positive constant inde-
pendent of r. If x € B(0,05,)n G and z € E(x, e,, ,), then |x — z| £ M, p(z) with
a positive constant M,, so that

1-1/n
('[ ( lx —z|7"[W(lx — ZI"M(/)(Z))]‘”‘"“’dZ)
E(x,e,,0,)

2r 1-1/n
=M, ( J [!//(t_l)i(t)]‘“‘"‘“t"dt> < M,x;(0)
1]
with positive constants M; and M,. Therefore,

lu(x) — u(y)l = 2M, M4K2(0)< f ¥(|grad u(Z)I)l(p(Z))dZ>1/n +2M,r'7°

GNB(0,2r)

whenever x, ye€ G B(0, 6,). This implies that # has a finite limit at £ = 0.
REMARK. Theorem 2 fails to hold if G is not a Lipschitz domain. For

example, consider the set G, = {(x,));0<x <1, —x? <y < x°}, where a > 1.

If u(x,y)=x"% and —B + (a— 1)/2 >0, then u satisfies condition (3) with
G=G,and 1=1

3. Boundary limits, I

Let A be a positive nondecreasing function on (0, c0) such that A(2r) < BA(r)
on (0, oo) with a positive constant B, and let

k(1) = K4(r) + AT
Recall that
Ky(r) = < j 1 [l//(t")A(t)]“""‘“t“dt> "
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and
J(r) = <Jr !//(t")"”‘"‘”t‘ldt>1—l/" :
0

REMARK. (i) It is easy to see that x),(0) < co if and only if x, is bounded
on (0,1). In fact, if x;(0) < co, then lim, ;o A(r) ™) (r) = 0.

(i) If Ar)=rf (B>0), then x,(r) ~r?"j(r) (cf. the Appendix) and
K4(0) = oo.

In this section, we are concerned with the existence of limits at a given
boundary point &, for functions u satisfying

Q) L ¥(lgrad u(x))A(|¢ — x[)dx < oo .

THEOREM 3. Let ¢ € 0G, and suppose there exist xo € G, 1, >0 and g, >0
such that E(x, xq,70) = G for all xe GNnB(&, ¢,). If u is a locally n-precise
continuous function on G satisfying (4) and if k’,(0) = oo, then

lim, e ccq [ka(lx — ENI7Mu(x) = 0.

ProOF. We may assume that £ =0 and g, < |xo| —ry. First, we note
that there is a > 0 (depending only on x,, r, and ¢,) such that

lz| > alx| and lz| > a|x — z|

whenever x € G N B(0, ¢,) and z € E(x, xq, 1'o/2).
For x e G n B(0, &), by Lemma 3, we have

u(y)dy\ éle Ix — z|'"f(z)dz

E(x,x0,r0/2)

u(x) — | B(xo, "0/2)|_1 J

B(x0,70/2)
=M, + 1),

where f(z) = |grad u(z)|, M, is a positive constant independent of x,

m»

I, = |x — z|*""f(z)dz

J E(x,x0,r0/2)NB(x,r)

and

»

I, = |x — z|*""f(z)dz

J E(x,x0,79/2)—B(x,r)

for r with |x| <r < ég,. In view of Lemma 2, we obtain
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1/n
I =M, <J Y’(f(Z))i(IZI)dZ>
E(x,x0,ro/2)NB(x,r)
1-1/n
x <f lx —z[™"[Y(lx — Zl'l)i(IZI)]"”"'“’dZ> + M,
E(x,x0,ro/2)
for a positive constant M, independent of x and r. Now, let

E, = E(x, xo,79/2) — B(x, | x|)
and

E, = E(x, xo,79/2) N B(x, |x|) .

For z € E,, we use the inequality |z| > a|x — z| and obtain

1-1/n
(L I — 2" [Y(lx - z|‘1),1(|z|)]—1/<n—1)dz>

= Ma( § [lﬁ(t_‘)i(at)]'l"”‘l’t'ldt>l_1/" = Mki(Ix0),

IxI

where r; = |xo| + 70/2 + &, and M3, M, are positive constants independent of x.
For z € E,, we use the inequality |z| > a|x| and obtain

1-1/n
<L lx —z|™"[Y(lx — Zl“)l(IZI)]“”‘"'”dZ>

|x| 1-1/n
= M; [MMXI)]‘”"(J [l//(t“)]“""‘”t‘ldt>
(1]
< MG[A(xNI ™ (1x1)
with positive constants M5 and M. Hence

1/n
I = M7K1(|x|)(f S"(f(Z))l(IZI)dZ> + M,
E(x,xq,ro/2)NB(x,r)

with a positive constant M, independent of x and r. Similarly, by using the
inequality |z| > a|x — z|, we obtain

I, = Mus(r)q Y’(f(Z))l(IZI)dZ>1/" + Mg
E(x,xq,ro/2)—B(x,r)

with a positive constant Mg. Thus we establish
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u(x) — |B(xo, 10/2)| ! f u()’)dY‘

B(x0,70/2)

1/n
éMgkz(lxl)qG R Y’(f(Z))l(IZI)dZ)
NB(x,r)

1/n
+ MgK;(f)(L ?’(f(Z))l(IZI)dZ> + M,

with a positive constant My. Since k,(]x|) = oo as x — 0, it follows that

i/n
lim sup,-.¢,xeq [Ka(1x))] 7 u(x)| < MQ(I ‘I’(f(z))l(lzl)dz)

GNB(O,r)

for any r with 0 < r < &,, which implies the required result.

Now we consider a special domain
G ={x=(x,x)eR' x R" ;0 < x; <1,|x'| <x{}.

If a > 1, then G, is not a Lipschitz domain, and it does not satisfy the condition
in Theorem 3 at ¢ =0. However, we have the following result for this domain.

PROPOSITION 1. Let A be a positive monotone function on the interval (0, o)
such that B~*A(r) £ A(2r) £ BA(r) for any r > 0 with a positive constant B. For

a>1,let
1 -n+1
A1) = (J l(s)'”‘"'”s'“ds) .

If u is a locally n-precise continuous function on G, satisfying condition (4), then
(i) u(x) has a finite limit as x; = 0, x € G,, in case «;_(0) < oo;
(ii) limg, o req, [K1,(X1)]1'u(x) = 0 in case «, (0) = oo.

Proor. For each positive integer j 2 jo, let r, = Mj* "%, Here j, and M
are taken so large that 0 <r;<1/2 and r; —r;y, < p(e(j)) for j = j,, where
e(j) = (r;, 0). For simplicity, set 4(j) = B(e(j), p(e()))), j 2 jo. We shall show
the existence of N > 0 such that the number of A(m) with A(m)n A(j) # & is
at most N for any j. Letting § and y be positive numbers, we assume that
rj— Bri" < 1k + yriie. Then

JOU = (/G + k)Y DT < MR + y(j/(G + k)@ P].
Since K = infy.,<; (1 — xY“™D)/(1 — x) > 0, we derive
Jk/(j + k) = K* with K* = [M*7(8 + )]/K,

so that
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k = K*/(j — K*) when j> K*.

From this fact we can readily find N > 0 with the required property.
For 0 <r<1/2, let X(r)=(r,0)e G, and B, = B(X(r), p(X(r))). If xeB,,
then Lemmas 2 and 3 imply

u(x) — |B,|™ f u(z)dz| £ M, J |x — z|*~"|grad u(z)|dz
B,

B,

=M, (f ¥(|grad u(Z)l)l(IZl)d2>1/”/1(r)“’"¢(r")

+ M,re=9
so that
1/n
®) lu(x) — u(X(r)| = 2M, <L ¥(|grad u(Z)I)/l(IZI)dZ>

x AR (r®) + 2M,re 9

with positive constants M; and M, independent of x, y and r, where ¢ is
a positive number so chosen that ad < 1. Since Y (r*) < M(a)y(r) for r >0
with a positive constant M(a), we obtain

lu(e())) — u(e(j + k)| = |u(e(j)) — ule(j + D) + lu(e(j + 1)) — u(e(j + 2)| + -
+ lu(e(j + k — 1)) — u(e(j + k)|

< M, (f ¥(|grad u(z)|)/1(|z|)dz>”"
A(j,j+k)

X (Z_'i::kj—l l/';(m—l )n'[l(mll(l—a))]—n’/n)l/n’
+ 1‘43 z:zj m—a(l—&)/(a—l) ,

where 1/n + 1/n' =1, 4(j,j + k) = | Jj<m<j+x 4(m) and M, is a positive constant
independent of j and k. Here note that

Z{::kj—l l/”/(m—l)n"l(mu(l—a))—n'/n
itk
< M, f Py Ay
j
< M, fj_ l/,(&,—1)—1/(;1—1)8—1 <J‘S_1 A(tll(l—a))—l/(n—l)dt> ds
( j

j+k)~!

Gyt j+k
+ M5 (j l/l(s'l)‘”""”s"ds) (J‘ /l(tl/(l_a))_”("_l)dt>
0 j
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for sufficiently large j, where M, and M, are positive constants independent of
j and k. Since [} AV 9) Mgt < [(a — 1A, (s V)]V we find, by
(¥,)” and change of variables, that

(CRE P m™ Y Am A=) ™I < Mgk, (7 + K)YC7) < My, (144)

with positive constants Mg and M, independent of j and k.
First suppose x) (0) = oco. Then

lim SUPy - [Kla(r}+k)]_1|u(e(j + k))l < M3M7 (J;
(j»0)

1/n
¥(|grad u(Z)lM(IZIMZ) ,
which implies
lim; .o, [x;, ()1 u(e(j)) = 0.

If xe B, and r;,; <r <, then e(j) e B, and x, <r <r;. Hence, by (5),
[, ()17 ()] < Mg[x;, ()17 (u(e( )] + rf )

+ My [%(n-)]”"ﬂn)“""(J

Ga

1/n
¥(|grad u(Z)I)l(IZI)dZ>

with a positive constant Mg. Since

2 A ™ < ([B"A(r)]'l/‘"-” j

r

2r -1/n’
s""ds) Ar)™Vm < Myr@=Vin

with a positive constant M, independent of r, we see that [xla(xl)]"lu(x)l
tends to zero as x —» 0, x € G,.

If ),(0) < oo, then «x;_ is bounded and the above arguments imply that
{u(e(j))} is a Cauchy sequence and

lim; . ,, (sup {|u(x) — u(e(j)); x € Us,,,<rsr, B:}) = 0.
From these facts it follows readily that u(x) has a finite limit as x —» 0, x € G,.

REMARK 1. Let A(r)=r? for a number y. If y< —(n—1)(a—1),

then «) (0)<oo. If y>—-(@m—1)(a—1), then «} (0)=oc0 and «x, (r)~
rlr+m=1)a@=1)in

REMARK 2. Proposition 1 is best possible as to the order of infinity in
the following sense: if ¢ > 0, then we can find a locally n-precise continuous
function u on G, satisfying condition (4) such that

(©6) lim,, o,z eq, X1°[K2,(x1)] 7 ulx,, x') = 00 .
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In fact, let y(r) = [log (2 + r)]? and A(r) =r?, where f>n—1 and y +
(n—1)(@— 1)>0. Then Y(r) ~ [log (2 + r™1)]"" 1A/ and ,(r) ~ r?*~De"D
for r € (0, 1). Consider the function

“(xu x’) = x;[”*‘"'”("'l’]/”[log Q2+ xl-l)](n-l —B)n—4

for 6 > 1. Since k; (r) < M y(r)A,(r)"Y" with a positive constant M,, (6) is
satisfied. On the other hand, we have

1(8/0x,)u] < M, x71~D+e=D@=DIn[1og (2 4 x1)]@=1-Am=3
so that
Y’(Igrad u(xl, x)|) = szl—[1+)'+(n—1)a][log @+ x;l)]n—l—na )

Hence we obtain

1

f ¥(|grad u(x)|)|x|"dx £ M, J x v Dalflog (2 4 x71) 1 mx ] agx
Ga 0

< 00.

Thus u satisfies (4), and it is the required function.

4. Boundary limits, II

In this section we discuss the existence of boundary limits along a set
in G, for locally n-precise continuous functions u on G satisfying (3). Here
A is a positive nondecreasing function on (0, o) such that lim,;, A(r) =0 and
A(2r) < BA(r) for r > 0 with a positive constant B.

Let h be a nonnegative nondecreasing function on (0, co) such that h(2r) <
Mh(r) for any r>0 with a positive constant M, and denote by H, the
Hausdorff mesure with the measure function h.

For £e€0G and a set T, suppose there exist positive numbers ¢ and C
satisfying the following conditions:

(T,) &eoT;

(T,) for sufficiently small r > 0, there exist x,e G and d, > 0 such that

x, € B, r), cr <d, <r and E(x, x,,d,) = T whenever x € T n B(&, r);

(T3) ke (%) £ Ch(lx — &)™ if x € T, where

1-1/n
e.a(x) = ( f Ix = Y17y (x — yl“)l(p(y))]‘”‘"‘”dy>
GNB(&,2[5~x])

A typical example of T is a set of the form

{x = (x,, x) € R x R"™; g(|x']) < ax,}
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or a set similar to this set, where a >0 and ¢ is a positive nondecreasing
function on the interval (0, co) such that lim sup,_. ¢(t)/t < co.

ReEMARK. If G is a Lipschitz domain and A(r)=rf with 0 <B<n—1,
then we can prove that x, ;(x) ~ k;(p(x)) (see the Appendix).

THEOREM 4. Let u be a locally n-precise continuous function on G, and
suppose

) j | — y|*™"grad u(y)|dy < 0 for some r>0,
GNB,r)

©®) lim sup, 4o h(r)™* j ¥(Igrad u(y))A(p(y))dy = 0.
GNB(,r)

Then, for a set T = G satisfying the above conditions (T,), (T,) and (T3), u(x) has
a finite limit as x € G tends to ¢ along T.

REMARK. Let E, (resp. E,) be the set of & € dG for which (7) (resp. (8))
does not hold. If u satisfies condition (3), then we can show that H,(E,) = 0;
moreover, in case A(r) =rf and G is a Lipschitz domain, then, in view of
[2; Section 5], we see that B,_g, ,(E,) =0, where B, , denotes the Bessel
capacity of index (y, p) (see [1] for the definition of Bessel capacities).

PrOOF OF THEOREM 4. Let r, > 0 be sufficiently small, and take x, = x,,
and d, = d, having the properties in condition (T,). By Lemma 3, we have

u(x) — | B(xo, do)| ™! J

B(x0,do)

u(y)dy’ éle Ix — z|'7"f(z)dz

E(x,x0,dg)

for xe TnB(§ r,), where f(z) =|grad u(z)] and M, is a positive constant
independent of x. Thus it follows that

SUDy e ThB(z.ro) [U(X) — U(X0)| < 2M SUD,c 7B, ro) J |x — z|' "f(2)dz .
E(x,x0,d0)
If zeT(¢ a)— B(S, 2|1 —x|), then |x—z|2|f—z|—|x—¢l2[¢—zl/2, so
that

IX—ZII_"f(Z)dZ§2""j & —z|'"f(2)dz .

J‘E(x-xmdo)"B(é‘, 2|¢—xl) GNB(&, 2r)

On the other hand, by Lemma 2 and condition (T;), we have
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f |x — z|'™"f(z)dz
E(x, %0, 7o) B(&, 218~ 3))

< Myh(€ - XI)"”"<f

GNB(, 2(¢-x))

1/n
v(f (y))l(p(y))dy) + M,|¢ — x|'7
with a positive constant M,, where 0 < é < 1. Thus,

SUDx e TAB(E,ro) [u(x) — u(x,)| < Ma’é_é + M, f [&—z|! “"f(z)dz
GNB(E, 2ry)

1/n
+ M3 supg<,<2r, (ft(r)‘1 J Y(f (y))l(p(y))dy>

GNB(,r)

with a positive constant M, independent of r,. In view of conditions (7) and
(8), it follows that u(x) has a finite limit as x € G tends to £ along T.

Fora>1,aeR! and b = 0, set
S,(a, b) = {x =(x;,x')e R x R" 1, x, > a|x'| + b|x'|"}.

If G is a bounded Lipschitz domain and a > 0 is given, then, for each £ € G we
can find a; € R, b, 2 0, r, > 0 and an orthogonal transformation Z, such that

{&+ Eex; x € S,(ae, b))} N B(E, 1) =G .
For b > b;, put
T& b) = {& + Eyx; x € Syag, b)} N B, re) .

COROLLARY. Let G be a bounded Lipschitz domain and let a > 1. Let
{T,(& b); & € 0G, b > b} be given as above. If u is a locally n-precise continuous
function on G satisfying

j ¥(|grad u(x)])p(x)Pdx < o
G

with 0 < B < n — 1, then there exists a set E = 0G such that

(i) Hy(E) =0 for h(r) = supo<<, [P (©]™";
(i) if £ € 0G — E, then u(x) has a finite limit as x — ¢ along T,(&, b) for any
b > b,.

Proor. It is easy to see that, for fixed £€dG, T = T, b) satisfies
conditions (T;) and (T,). By Remark (ii) before Theorem 3 and the Remark
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before Theorem 4, we see that k, ,(x) ~ p(x)*™J(p(x)) if A(r)=rf. Since
p(x) = clx — &|* for x e T,(& b) with some ¢ >0 (depending on &, a, b; but
not on x), condition (T;) is satisfied with T = T (¢, b) and the function h given
in (i).

Let E=E,UE, in the notation given in the Remark after Theorem 4.
Since B;_gu a(Eg) =0 implies that E, has Hausdorff dimension at most f
(cf. [1; Theorem 22]) and since lim,, h(r)/rf =0, we see that H,(E,) = 0.
Hence H,(E) = 0, and the Corollary follows from Theorem 4.

RemArk. If f =0 in the Corollary, then u can be extended to a continuous
function on G u 0G, on account of Theorem 2.

5. Limits at infinity

In this section, we discuss the existence of limits at infinity of n-precise func-
tions on unbounded domains R" and G = {x = (x;, x') € R* x R"™*;|x| < 1}.

THEOREM 5. If u is a locally n-precise continuous function on R" satisfying
condition (2) with G = R", then [Y(|x|)] *u(x) = 0 as |x| = co.

Proor. By Lemma 3 we have

u(x) — |B(O, )| ! J u(y)dy

B(0,r)

=M, J |x — 2| 7"f(2)dz
B(0,r)

with a positive constant M, independent of x, where r =|x| and f(z) =
|grad u(z)|. For fixed r, > 0, taking o = r? with 6(y + 1) > 1 in the Corollary
to Lemma 2, we have

1/n .
J |x = 2| "f(@)dz < M, (f Y’(f(Z))dz) ) + Myri ==
B(0,r)—B(0,rg) R"—B(0,ro)

with a positive constant M, independent of r. Here, note that (r)=
(1)~ (log r)* V" for r > 1, so that lim,_, Y(r) = 0. Hence

3

lim Supy-., P(1x])™" |x — 2|""f(2)dz < Mz( j

J B(0, |x]) Rn—B(0,rp)

1/n
P(f (Z))d2> ,

which implies that the left hand side is equal to zero. Similarly,

r

u(0) — |B(0, r)| ™" u(y)dy

J B(0,r)

éMlj |z|'™"f(2)dz
B(0,r)

1/n
=M, j |z|'"f(z)dz + Ma(j Y’(f(Z))dZ> J() + Ms
B(0,ro) R"—-B(0,ro)
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where M, is a positive constant independent of r and r,, so that

lim, ,, Y ()™ (l B, )™ f u(y)dy> =0.

B(0,r)
Consequently, lim,_,, W (1x))1 u(x) = 0.
PROPOSITION 2. Let G = {(x,, x'); |x'| < 1}, and let u be a locally n-precise
continuous function on G satisfying condition (2). Then
limxr'oo.(xx.x’)eG [‘;(xl)]—lx}/"-lu(xl’ xl) =0.

REMARK. Proposition 2 is best possible as to the order of infinity, in the
same sense as in Remark 2 given after Proposition 1.

PrOOF OF PROPOSITION 2. Let X(r) = (r,0), re R!.. If x and y belong to
A(r) = B(X(r), 1), then, as in the proof of Theorem 5, we have

[u(x) — u(y)l = My sup, ¢ 4, f

|z — w|*™"|grad u(w)|dw
A(r)

<M, < f ¥(|grad u(w)l)dw)ll"l/;(r) + M,r2
A(r)

with positive constants M,, M, independent of x, y and r, where we used the
Corollary to Lemma 2 with « = r¥? in the second inequality. For any fixed r,,
let ry=ry+j/2. Ifr,<x, <r + 27", then

[u(x) — u(X(ro))| = lu(x) — u(X(xy))| + |u(X(x,)) — u(XE@) + -

+ [u(X (ry)) — u(X(ro))|

1/n - , - , ,
< Ma( i ¥(|grad u(W)l)dW> W0ey)" + Yoo Yy )
J E(ro, x4)

+ My(x72+ Yk or?)

»

1/n - ,
= M4< #(|grad u(W)I)dW> Y(x,)xi™ + Msrg"

o E(rg,xq)

where 1/n+ 1/n' =1, E(s,t) = Us<,<,A(r) and M;, M, are positive constants
independent of x and r,. It follows that

lim SUPy, +o0,xeq [V 0e1)] X7 [u(x)] < M, <j ¥(|grad u(W)I)dW>”n

E(ro, )

for any ry, which implies that the left hand side equals zero.
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Appendix

We now give a proof of k. ;(x) ~ x;(p(x)) given in the Remark before
Theorem 4. By a change of coordinate system by a Lipschitz transformation,
we may assume that G is the half space {x =(x,x');x; >0} and & is the
origin. For x = (x;, x") e G B(0, 1), let

Ey = {y =, ¥)y1 > x1/2} 0 B0, 2|x]) — B(x, x,/2),
E2 = B(-x: xl/z) >

Ey={y=(y1,¥%0 <y, =x,/2} n B(0, 2|x|)

and write

Ii(x) = f [x =y [¥(Ix — yI7)A(y,)17V" Vdy
E;

for j=1, 2, 3. Since y, =|y; — x;| on E; and A(r)=r? with 0<fB<n—1,
we have by properties (¥,)” and (y3)

3|x|

I(x) = M, j Y )Ar)] Ve Drtar

xp/2

3|x|
< My[x5y(xyt)]7 Yy j [rcA(r)] Y= p=1gy

x1/2
< My [P (e A(x,)17Y07D < M [ (x,)A(x,) """,

where 0 <e < f. If ye E,, then y, > x,/2, so that
x4/2 "
L(x) £ MsA(x,)"0 j ()17 Dr dr < Mg[Y(x,)Ax,)™"]" .
0

If yeE; then [0 ,x)—yl*+(x,/2)* <2|x — y> < 2[1(0, x) — yI* + x{].
Hence, letting r = |(0, x") — y|, by a computation similar to the above, we have

3|x|

L3(x) = M, f 4+ x) "D + x1) ™AV Ny

0

3|x|
= Msf [ () A(r) ] Yo gr

X1

+ Mex"[(xi")] oD J " 1y
0

< Mo[P(x,)A(x,) )"
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Consequently, we establish

’Cg,z(x) < Mlo'/;(xl)'l(xﬂ—l/" .

Conversely, we obtain

x1/2
I(x) 2 My Alx,)~eD J W] VeVriar

0o

= M, [Y(x,)A(x,) """,

and hence

K{,).(x) = M13|/7(x,)l(x1)_1/" .

On the other hand, we find, in view of (,)”, that

[k < My [rg ()]t J AT

< Mys[Y@Ar) ",

so that

Ka(x1) S Mygl(x,)A0x,) ™" < Mygki(xy) -

Since the constants M; ~ M,, do not depend on x € G n B(0, 1), the required
result has been derived.
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