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1. Introduction

In this paper we are concerned with the equation

(1.1) x"+/(x)x' + #(x) = 0.

In the last three decades many authors have investigated this equation as
well as the equation

(1.2) x"+f(x)xf + g(x) = e(t).

They have examined the continuability, boundedness, oscillation and periodicity
of the solutions of (1.1) and (1.2). The book of Sansone and Conti [9] contains
an almost complete list of papers dealing with these equations as well as a
summary of the results published up to 1960. The book Reissig, Sansone and
Conti [8] updates this list and summary up to 1962. The list of the papers
which appeared between 1962 and 1970 is presented in the paper of John R.
Graef [3], Among the papers which were published in the last twenty years
we refer to the following ones: [1], [2], [4]-[6], [10]-[12].

The study of the equations (1.1) and (1.2) was made under two main
assumptions:

(1) f(x) ^ 0 for all x, xg(x) > 0 for all x # 0 (see [1], [2]).
(2) f{x) < 0 for all |x| small, xg(x) > 0 for all x # 0 (see [3]).

Instead of the damping / Graef made the assumptions concerning the integral
F(x) of the damping /such as xF(x) > 0 for |x| ^ k > 0, F(x) ^ c > 0 for x > k
or F(x) ^ — c < 0 for x ^ — k. Opial [7], examining the existence of periodic
solutions, assumes that xg(x) i=- 0 for x / 0 and / and g are odd. In [4] it is
assumed that xg(x) > 0 for x / 0 and F(0) = 0. Throughout this paper we will
assume that

(1.3) x/(x) > 0, xg(x) > 0 for all x # 0; and / and g are continuous on R.

Our first aim will be to state what kinds of solutions the equation (1.1) can
have. We introduce the notation:

(1.4) F(x)=[X f(t)dt, G(x) = {'g(t)dt.
Jo Jo
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It follows immediately from the assumption (1.3) that

(1.5) F(x) > 0, G(x) > 0 for all x # 0, F(0) = G(0) = 0, and

F(x) and G(x) are decreasing for x < 0 and increasing for x > 0.

Using the function F we can replace the equation (1.1) by an equivalent
system

x' = y- F(x)
(1.6)

y = - #w
and the equation (1.2) by

x' = y - F(x)
(1.7)

y = - flf(x) + e(t).

Under a solution of (1.1) or (1.6) we will always understand an ultimately
nontrivial solution.

2. Continuability of the solutions

THEOREM 2.1. Let e{t) be a piecewise continuous function on R. Let (1.3)
be satisfied. Then each solution x(t) of (1.2) which exists and is positive on
[ T - (5, T) is continuable to the right of T.

PROOF. Assume that the conclusion is not true. Then the solution
(x(t), y(t)) of (1.7) must satisfy l im^ T - [|x(f)| + |y(0l] = °°- Assume that
limt_T-x(t) = oo. Denote V(x, y) = y2/2 + G(x). Then

V\t) = y(t)y'(t) + Gx(x(t))xf(t)

= - g(x(t))F(x(t)) + e(t)y(r), t e [ T - (5, T),

and integrating between T—S and £e[T— 5, T), we have

"- d) - f g(x(s))F(x(s))ds + P
Jr-5 jT-d

(2.1) V(t) = V(T- 8) - g(x(s))F(x(s))ds + e(s)y(s)ds.
JT-d JT-d

Since x(s) > 0 for T - 6 ^ 5 < T, we have 0(x(s))F(x(s)) > 0 and

V(t) = ^y2{t) + G(x(t)) g F ( T - 5)

Thus
i);2(0<nr-<5)+ P
2 JT-I
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from which using the inequality \y\ S(y2 + l)/2, we get

\y(t)\ ̂  Uy\t) + 1) < \ + V(T- 3) + f \e(s)\\y(s)\ds.
Z L JT-d

Then the Gronwall lemma implies

so that, \y(t)\ is bounded on [T— 3, T). Then, by integration of the first
equation of (1.7), we get

P P
(2.2) x(t) = x(T- 3) + y(s)ds - F(x{s))ds, T-8^t<T.

JT-d JT-d

The second term on the right-hand side is bounded on [T— 3, T) and

F(x(s))ds ̂  0 on [ T - <5, T). Assume that F(x(s))ds = oo. Then
Jr-<5 jT-d

we see from (2.2) that x(t) < 0 in a left neighborhood of T, which contradicts the

assumption. If F(x(s))ds < oo, then from (2.2) follows the boundedness of
JT-d

x(t) on [T— 3, T), which contradicts the assumption \imt^T-x(t) = oo. Thus,
the assumption that x(i) > 0 on [T— 3, T) excludes the possibility \imt^T-x(t)
= oo.

Now, assume that x(t) > 0 is bounded on [T— 3, T) and that y(t) is
unbounded on [T- 3, T). Then it follows from (2.1) that

f
J

e{s)y(s)ds9 T-3^t<T.
T-d

Since G(x(t)) > 0 for T— 3 ̂ t < T, from the preceding inequality we obtain

1
^y\t) ^ V(t) ̂  V(T- 3) + | \e(s)\\y(s)\ds,

which implies that

[
JT-S

\y(t)\^(y2(t)+l)^l-+V(T-d)-

The Gronwall lemma then yields

\y(t)\^(^+V(T-8)\xp^

which contradicts the assumption that y(t) is unbounded on [T— 8, T).



14 Daniela HRICISAKOVA

REMARK 2.2. It is evident that the Theorem 2.1 holds also for the
equation (1.1).

REMARK 2.3. The equation (1.1) under the assumption (1.3) may have a
negative solution which is not continuable to the right as the following example
shows. Consider the equation

x" + 3xx' + x3 = 0.

Evidently the assumption (1.3) is satisfied. The function x(t) = (t — a)"1 , t < a,
is a solution of this equation and lim t^a-x(t) = — oo and l i m ^ . ^ x ^ ) = 0. On
the other hand, x(£), = (t — a)"1 , t > a, is also a solution of this equation for
which we have x(t) > 0 for t > a, limf_*a+x(t) = oo and l im^^x^ ) = 0.which we have x(t) > 0 for t > a, limf_*a+x(t) o and l im^^x^ ) 0.

THEOREM 2.4. Let the condition (1.3) be satisfied. Then every solution of
(1.1) has only positive local maxima and only negative local minima.

PROOF. This follows immediately from the equation (1.1). Let x(t) be a
solution of (1.1) and let it have a local extremum at the point £. Then x'(^) = 0
and from (1.1) we get x"(£) + g(x(Q) = 0. Thus sgn x"(£) = - sgn g(x(Q) =
- sgn x(i).

COROLLARY 2.5. Let the condition (1.3) be satisfied. Let x(t) be a solution
o/(l.l) existing on [£0, oo). If x(t) is positive on [£0, oo), then it has at most one
local maximum and no local minimum on [t0, oo); if x(t) is negative on [t0, oo),
then it has at most one local minimum and no local maximum on [£0, oo).

THEOREM 2.6. Let the condition (1.3) be satisfied and suppose that F(— oo)
< oo. Then every solution x(t) o/(l . l) which exists and is negative on [t0, T), T
< oo, is continuable to the right of T.

PROOF. Let x(t) be a solution of (1.1) such that x(0 < 0 on [t0, T). Then

(x'(0 + F(x(t))Y = - g(x(t)) > 0 on [t0, T),

so that x'(t) + F(x(t)) is increasing on [t0, T). Taking into consideration the
fact that F(x(t)) ^ K < oo, we get

x'(t0) + F(x(t0)) < x'(t) + F(x(t)) ^ x'(t) + K , to<t<T.

Hence by integration

(x ' ( f 0 ) + F(x(t0)) -K)(t- t0) ^ x(t) - x ( t 0 ) , to^t<T.

The last two inequalities say that x(0 and x'{t) are bounded from below on
[>0, T). Since x'(t) can be zero at most in one point, there exists a left
neighborhood of Tin which x'{t) has a constant sign. Hence lim,_+T-x(r) exists
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and since x(t) is negative and bounded from below on [t0, T) limt^T-x(t) is
finite. Then

lim x'(t) = lim [x'(0 + F(x(f))] - lim F(x(t))
t-*T~ t-+T~ t->T~

exists and is finite because both limits on the right hand side exist and are
finite. Indeed, limf_r-F(x(f)) = F(lim,_»7-x(r)) by continuity of F and

lim [x'(0 + F(x(tm = *'('o) + F(x(t0)) - \ g(x(s))ds.

Thus, we see that limr^r-x(f) and limt^T-x'(t) exist and are finite. Therefore,
x(t) is continuable to the right of T.

THEOREM 2.7. Let the condition (1.3) be satisfied and let F{ - oo)
< oo. Then every solution x(t) of (1.1) is continuable to the right and can be
defined on an infinite interval [t0, oo).

PROOF. This follows from Theorems 2.1 and 2.6.

3. Ultimately positive solutions of the equation (1.1)

THEOREM 3.1. Let the condition (1.3) be satisfied. Let x(t) be a positive
solution of (1.1) on [t0, oo). Then x'(t) + F(t)) > 0 for all te[t09 oo).

PROOF. Let x(t) be a positive solution of (1.1) on [£0, oo). Assume that
there exists tx e[r0 , oo) such that x ' ^ ) + F(x(^)) = 0. Since [x'(0 + F(x(r))]'
= - #(x(0) < 0 on [r0, oo), x'(t) + F(x(t)) is decreasing on [t0, oo). Thus, x'{i)
+ F(x(r)) g x'(t2) + F(x(t2)) < 0 for all t^t2> tv The function F(x(t)) being
positive for r ^ to» ^ follows from the preceding inequality that x'(t) ^ x'(t2)
+ F(x(t2)) < 0. Integration on [t2, t] gives x(t) ^ x(r2) + [x'(r2) + F(x(t2))]
(r — t2). Hence we have x(t) < 0 for t large enough, which contradicts the
assumption.

COROLLARY 3.2. Let the condition (1.3) be satisfied. Then every solution
x(t) 6>/(l.l) with the initial values x(t0) > 0, x'(t0) < 0 such that x'(t0) + F(x(t0))
^ 0 has a zero at some tx> t0.

PROOF. This follows immediately from Theorem 3.1.

THEOREM 3.3. Let the condition (1.3) be satisfied and let lim i n f ^ ^ ^ x )
> 0. Let x(t) be a positive solution of (1.1) on \_t0, oo). Then there exists
£2e[t0, oo) such that x'(t)<0 on (t2, oo). Thus, x(t) is bounded. Moreover,

lim^^x'tO = 0.
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PROOF. We will prove the first part of the statement. If x'(t) < 0 on
[£0, oo), there is nothing to prove. Now assume that there exists tx ^ t0 such
that x'(t) > 0 for all t ^ tv Then x(t) increases on [tu oo) and lim^^x^) = M
>0. Since [x'(r) + F(x(r))]' = - g(x(t)) < 0, x'(t) + F(x{t)) decreases on
[t0, oo) and is positive for t ^ t0 (see Theorem 3.1). Hence

0 < x'(t) + F(x(t)) = x'(rx) + F(x(O) - 0(x(s))ds, t ^ tl9•»-r
and #(x(s))ds < oo. Thus liminfŝ oogf(x(5)) = 0. From the assumption

J
> 0 and from the positivity and continuity of g(x) for x > 0 it

follows that the limit limr^oox(t) = M cannot be 4-oo or a positive
number. Thus lim^^x^) = M = 0. But this implies that x'(t) cannot be
positive for all t > tv Thus there must exist t2 > tl such that x'(t2)
= 0. Following Corollary 2.5 x(t) can have at most one local extremum on
[t0, oo). Hence x'(t) has to have a constant sign on (t2, oo), i.e. we must have
xf(t) < 0 for t > t2.

Now we will prove the second part of the statement. According to the
first part of the statement, x'(t) < 0 on (t2, oo). Thus x(t) decreases on (t2, oo)
and, therefore, lim^oox(r) = a ^ 0. From the relation

0 < x'(t) + F(x(t)) = F(x(t2)) - f g(x(s))ds9 t ^ t29-f
Jt2

r g{x(
Jt2

it follows that g(x(s))ds < oo and hence liminfs^00^(x(s)) = 0. If a > 0,

then from the continuity of g we get liminfs^g^s)) = g(a) > 0, which is a
contradiction. So, the limit a = limr_oox(0 must be zero. Then we have

0 ^ L = l i m ^ O ' W + F(x(0)] = lim^^x'W

because x'(t) + F(x(t)) is positive and monotone on [r0, oo) and limf^00F(x(t))
= F(0) = 0. Since x'(t) < 0 on (t2, oo) it follows that L = lim^^x^O
= 0. This finishes the proof.

The assumption liminf^^^x) > 0 in Theorem 3.3 can be replaced by the
assumption G(oo) = oo.

THEOREM 3.4. Let the condition (1.3) be satisfied and let G(oo) = oo. Then
every ultimately positive solution x(t) 0/(1.1) is bounded. Moreover, limr^oox(0
= lim^^x'^) = 0, and x'(t) < 0 on some interval (t2, oo).

PROOF. Let x(t) > 0, te[tl9 oo), be a solution of (1.1). Multiplying (1.1)
by 2x'(r) we have
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(x'2(t))' + 2f(x(t))x'2(t) + 2g(x(t))x'(t) = 0

and

x'2(t) + 2\ f(x(s))x'2(s)ds + 2G(x(t)) = x'2^) + IGix^)).
Jti

Therefore, 2G(x(t)) < x'2(^) + 2G(x(^)) for all t > tl9 so that x(t) is bounded
on [tl9 oo). Since x{t) > 0 on [tl9 oo) by assumption, x'(t) has a constant sign
on some interval [r2, oo) c [tl9 oo), and so the limit lim^^xit) = a ^ 0

f00
exists. Suppose that a > 0. Then #(x(s))ds = oo and

lim [x'(f) + F(x(r))] = x'(t2) + F(x(r2)) - 0(x(s))<fc = - oo,
J-f

which contradicts the statement of the Theorem 3.1. This shows that
limr_+0Ox(t) = a = Q. Then from the fact that x'{t) + F(x(t)) is positive and
decreasing on [tl9 oo), we see that

limx'(r) = lim[x'(0 + F(x(t))] - limF(x(t))
t-* oo t~* oo t —* oo

The assumption l im^^x '^) > 0 leads to the contradiction with the fact that
lim^oox(0 = 0. Consequently, l im^^x '^ ) = 0 and x'{t) < 0 on the interval
[t29 oo).

REMARK 3.5. The assumption liminfJC_^00^(x) > 0 (resp. G(oo) = oo) is in a
certain sense necessary for the validity of Theorem 3.3 (resp. Theorem 3.4) as
the following example shows. Define

I
x"3 , x e [ l , oo) / x~5, x e [ l , oo)

x, x e [ - l , 1) 99g(x)= x, x e [ - l , 1) .

x"3 , xe ( - o o , - l ) I x" 5 , x e ( - o o , — l )

Then, l i m i n f ^ ^ x ) = 0(G(oo) < oo). The equation (1.1) has in this case the
solution x(t) = t1/3, t > 1. Thus the statements of Theorem 3.3 (Theorem 3.4)
do not hold.

LEMMA 3.6. Let the condition (1.3) be satisfied. Suppose that F(x)/(x)
^ g(x)for all x ^ 0. Let x(t) be a solution o/( l . l ) such that x(t) > 0 and x'(t)
< 0 on an interval [t09 oo). Then x"(t) > 0 on [t0, oo).
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PROOF. Assume that there is t1 e[fo> oo) such that x"(tx) = 0. Then from
the equation (1.1) we get /(x(fi))*'(*i) + d(x(h)) = 0. According to Theorem
3.1 it holds that x'{t) + F(x(t)) > 0 on [t0, oo). Then x'(^) + F(x(^)) > 0 and
F(x(f1)) > — x'(£i) = #(x(£i))//(x(£i)), which contradicts the assumption. Thus
x"(i) has a constant sign on [£0, oo). But the assumption x"{t) < 0 on [£0, oo)
shows that x'{i) is decreasing on [f0, oo), and hence x'(£) < x'(t0) < 0 for
t > t0. Integrating this inequality we have x(t) < x(t0) + x'(to)(t — t0), which
implies that x(t) is negative for all sufficiently large t. This contradicts our
assumption that x(t) > 0 on [f0, oo).

LEMMA 3.7. Let the condition (1.3) be satisfied. Let x(t) be a positive
solution on [t0, oo) of (1.1) such that x"(i) > 0 on an interval [tl9 oo)
c [t0, oo). 77*^ /(x(O)F(x(r)) > g(x(t)) for all te[tu oo).

PROOF. Let all assumptions of Lemma 3.7 be satisfied. Then from (1.1)
we have 0 < x"(t) = -f(x(t))x'(t) - g(x(t)) for all te\tu oo). Hence, x'{t) <
— g(x(t))/f(x(t)) for re[r1? oo). According to Theorem 3.1, we have x'(t)
+ F(x(t)) > 0 for all te[t0, oo), which gives

- F(x(t)) < x'(t) < - g(x(t))/f(x(t)).

THEOREM 3.8. Let the condition (1.3) be satisfied and suppose that F{x)f{x)
S g(x)for all xe( — S, S), x ^ O,for some d > 0. Then the equation (1.1) has no
solution x(t) such that x(t) > 0 and x'(t) < 0 on some interval [t0, oo).

PROOF. Assume that (1.1) has a solution x(t) such that x(t) > 0 and x'(t)
< 0 on some interval [£0, oo). Then lim^^x^) = a ^ 0. Let a > 0. Then
g(a) > 0 and there exists an interval (t2, oo) cz [t0, oo) and a constant k > 0 such
that k < g(x(t)) for all te(t2, oo). Integrating the second equation of (1.6), we
have

x'(t) + F(x(t)) = x\t2) + F(x(r2)) - g(x(s))ds
Jt2

^ x'{t2) + F(x(t2)) - k(t - t2), t > t2.

Hence x'(t) + F(x(t)) becomes negative for all t large enough, which contradicts
Theorem 3.1. Thus a = lim^^x^) = 0. Then there exists an interval [r3, oo)
c [t0, oo) such that 0 < x(t) < 3 for all te [t3, oo). For te [t3, oo) we have the
following situation: x'(t) + F(x(t)) > 0 and x'(t) > - F(x(t)) ^ - g(x{t))/f(x(t))
because x(t) > 0 on [r3, oo)(see Theorem 3.1) and F(x)f(x) S g(x) for
xe(- d, S) by assumption. We then have x"{i) = -f(x(t))x'(t) - g(x(t)) < 0
on [r3, oo), which leads to a contradiction with the positivity of x(t) on [t3, oo).



Generalized Lienard equation 19

4. Ultimately negative solutions of the equation (1.1)

THEOREM 4.1. Let the condition (1.3) be satisfied. Let x(i) be a solution of
(1.1) with the initial values x(t0) < 0 and x'(t0) ^ 0. Then there exists x > t0

such that X(T) = 0.

PROOF. Assume that the solution x(t) with initial values x(t0) < 0 and
x'(t0) ^ 0 is negative on its interval of existence [t0, a). Since x"{t0) =
— f(x(to))x'(to) — g(x(to)) > 0 there eixsts an interval [£0, tx), t1 ^ a, on which
x"(t) > 0. Thus, x'(t) is increasing on this interval and therefore xf(t) > 0 on
(t0, t^). Then x(t) is also increasing on this interval. From the fact that x(t)
cannot have a negative local maximum on [r0, a) (see Theorem 2.4) it follows
that x'(t) ^ 0 on [t0, a). Therefore x(t) is increasing on [t0, a) and so the finite
limit limt^a-x(t) ^ 0 exists since x(t) is negative. Then for the function x'(t)
+ F(x(t)) which is increasing on [t0, a) we get

- T0 < rlim [x'(f) + F(x(tm = x'(t0) + F(x(t0)) - T g(x(s))ds.

Assume that a < oo. The the limit

lim x'(t) = flim [x'(0 + F(x(r))] - lim F(x(t))

= lim [x'(r) + F(x(t))] - F(lim x(t))

exists and is finite and nonnegative. It follows that x(t) is continuable to the
right of a and therefore a must be oo. Now, we have the situation that x(t) < 0
and x'(r) ^ 0 on [*0, oo). Thus, x"(t) = -f(x(t))x'{t) - g(x(t)) > 0 on
[t0, oo). But this leads to a contradiction with the assumption that x(t) < 0 on
[r0, oo).

THEOREM 4.2. Let the condition (1.3) be satisfied. Let [t0, a), a < oo, be
the maximal interval of the existence of the solution x(t) o/(l . l) and suppose that
x(t) < 0 and xf(t)<0 on [t0, a). Then lim,^a-x(O = - oo, and x'{t) is
unbounded from below.

PROOF. Suppose that limf^a-x(r) = L, — o o < L < 0 . Then in view of
the relation

x'(f) + F(x(t)) = x'(t0) + F(x(t0)) - I g(x{s))ds

we see that

t0)) - r
Jto



20 Daniela HRICISAKOVA

Bm x'(r) = - F(L) + x'(t0) + F(x(t0)) - P
J*0

which is finite. Thus the solution is continuable to the right of a, which
contradicts the maximality of the interval [£0, a). Therefore, lim,_a-x(r) = L =
— oo. Then x'(t) must be unbounded from below. In fact, if — k < x'(t) for
some k > 0, then by integration we get — k(oc — t0) ^ x(t) — x(t0), which
contradicts the fact that limt^a-x(t) = — oo.

THEOREM 4.3. Let the condition (1.3) be satisfied. Let x(t) < 0, t ^ £0, Z>e a
solution of (1.1). Then lim^oox(r) = — oo.

PROOF. If x{t) < 0, t ^ r0, is a solution of (1.1), then x'(t) < 0 for
£ ̂  £0. In fact, if there exists £e [r0, oo) such that x'(^) ^ 0, then from Theorem
4.1 it follows that there exists x > £ such that X(T) = 0, which gives a
contradiction. Hence x'(t) < 0 on [f0, oo), and so limr^oox(f) = L, — oo ^ L
< 0, exists. Assume that L > - oo. Then, since x'(t) + F(x(0) is increasing,
and limf^ooF(x(0) = F(L) < oo, the limit limf_«,[>;'(*) + F(x(t))] = C/ ^ oo
exists.

If U < oo, then

1/ = lim [x'(0 + F(x(r))] = x'(f0) + F(x(t0)) ~ f ° g(x(s))ds,

which implies [ — #(x(s))]ds < oo and liminfs_>00[ — ̂ (x(s))] = 0. But this
Jto

is a contradiction, since liminfr^00[ — g(x(t))'] = — g(L) > 0.
If U = oo, then l im^^x '^) = oo, which gives a contradiction with x'(t)

< 0. Thus L cannot be finite, i.e. L= — oo.

REMARK 4.4. Theorem 4.3 says nothing about the boundedness of
x'(t). It can happen that lim^^x'ft) is finite as in the case of the equation x"
+ #(x)x' + g(x) = 0 which has the solution x(t) = — t. But if we assume
F( - oo) < oo then from the fact that x'(t) + F(x(t)) is increasing for x(t) < 0 it
follows that l im^^x '^) is necessarily finite.

THEOREM 4.5. Let the condition (1.3) be satisfied. Suppose that F( — oo)
< oo and limsupx^_00^(x) < 0. Then the equation (1.1) has no ultimately
negative solution.

PROOF. Let x(t) be a solution of (1.1) such that x(t) < 0 on [tl9 oo). Then
xf(t) < 0 on [tl9 oo) as follows from Theorem 4.1. We then have F'(x(t))
= f(x(t))x'(t)>0 and [x'(r) + F(x(t))I = - flf(x(t)) > 0 for all r ^ fl9 so that

and x'(t) + F(x(t)) are increasing on [tl9 oo). In view of the assumption
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/c = F( - oo) < oo, we have x'(0 + F(x(t)) ^ x'(t) + fc, which implies that x'(t)
is bounded from above and

lim [x'(t) -

is finite. Thus ( — g(x(s)))ds < oo and, therefore, liminfr^00( — g(x(t))) = 0

= liminfx^_00( — #(x)). But this contradicts the assumption limsupx^_oo6f(x)

5. Oscillatory solutions of the equation (1.1)

DEFINITION 5.1. A solution x(t) of the equation (1.1) or (1.2) will be called
oscillatory if there exists an increasing sequence {tn}™=1 such that l im^^t, , = oo
and x(tn) = 0 for n = 1,2,...

THEOREM 5.1. Let the condition (1.3) be satisfied and suppose that
liminfx_,00^(x) > 0. Then every bounded solution x{t) <?/(l.l) is either oscillatory
or it is ultimately positive and satisfies lim^0Ox(t) = l im^^x^r) = 0.

PROOF. If x(t) is an ultimately positive solution of (1.1) then, according to
Theorem 3.3, it is bounded and limr^oox(r) = l im^^x '^ ) = 0.

If x(i) is not ultimately positive, it assumes negative values but it cannot be
ultimately negative, because in this case it should be unbounded according to
Theorem 4.3. But this contradicts the assumption.

THEOREM 5.2. Let the condition (1.3) be satisfied. Suppose moreover that:
1. liminfx^00^(x) > 0, or G(oo) = oo;
2. F(x) S g(x)/f(x) for all x e ( - d, 5), x / 0, d > 0;
3. F( — oo) < oo, limsupx^_oo6f(x) < 0.

Then all solutions of the equation (1.1) are oscillatory.

PROOF. It follows from Theorem 2.7 that every solution x(t) of (1.1) exists
on some infinite interval (tx, oo). The condition 1 implies that, if x(t) > 0 on
(T, oo), according to the Theorem 3.3 (or Theorem 3.4) there exists an interval
[tl9 oo) cz (T, oo) on which x'(t) < 0. But, according to Theorem 3.8, the
condition 2 excludes the existence of such a solution. Thus, conditions 1 and 2
exclude the existence of ultimately positive solutions of (1.1).

According to the Theorem 4.5, the condition 3 excludes the existence of
ultimately negative solutions of (1.1).
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