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Introduction

Let D be a simply connected bounded domain in R? with smooth
boundary S. In this paper we consider the two-dimensional Navier-Stokes
equations of the following form :

0
5':-+u-Vu=/lAu—Vp (xeD,t>0

(NS) V-u=0 (xeD,t=0)
uvls=0;V xulg=0;ul,-o=a,

and discuss the existence and uniqueness of strong solutions when the initial
vorticity ¥ x a is very singular. Here, 4 > 0 is the kinematic viscosity ; v is the
unit outward normal to the boundary ; u = (u!, u*) and p are, respectively,
unknown velocity and pressure ; a is a given initial velocity ; and V-u =X ,.a,.uf,
u-Vu=23u;0;u,V xu=0u*—du',d;=0/0x;. Our goal is to establish the
existence of a smooth global solution in the case where V' x a is a finite Borel
measure on D. Our result extends those of [4, 10] obtained for the Cauchy
problem to the case of simply connected bounded domains. The boundary
condition for u described above not only appears in a free-boundary problem
for the Navier-Stokes equations, but also is well known as a standard boundary
condition for the magnetic field in the theory of magnetohydrodynamics [18].
As a byproduct we obtain an existence result for the Euler equations

0

a_':+u-Vu+Vp=o (xeD,t>0)

(E) V-u=0 (xeD,t=0)
uvls=0;ul_o=a,

in the case where V x a belongs to L? for some g > 1, by investigating the
behavior of solutions u; to (NS) as A goes to 0. A similar result was obtained
by Bardos [2] in L?>-framework, and our result can be regarded as an LP-version
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of that of [2].

This paper is organized as follows. In Section 1 we introduce necessary
notation and definitions and state our results. Our main results are stated in
Theorems 1.4 and 1.5. Theorem 1.4 asserts that for each a such that the
associated vorticity ¥ x a is a finite Borel measure, there exists a smooth global
solution u to problem (NS). The uniqueness is proved only when the variation
of ¥ x a is small compared with the viscosity 4 > 0. The existence result is
deduced in the standard manner, namely, we first construct approximate
solutions and then show their convergence with the aid of a-priori estimates
which are uniform in apporoximation. The main difficulty consists in finding
these a-priori estimates. Indeed, the standard method of parabolic evolution
equations is not applicable, mainly because in our case the initial vorticities
form a Banach space in which the smooth elements are not dense. We can
overcome this difficulty by appealing to the estimate of Nash [14, 15] for the
fundamental solution of the Dirichelt-Cauchy problem for a second order
parabolic equation with discontinuous coefficients. Theorem 1.5 is concerned
with the existence of global LP-solutions to the Euler equations (E).

Section 2 is devoted to the construction of approximate solutions to (NS)
under the assumtion that the initial vorticity is a finite Borel measure. To this
end, we need to consider (NS) in general L'-spaces. So, we first prove that for
each ael’, r>2, with V xaelq 1/q=1/2+ 1/r, there exists a unique
smooth solution defined for all ¢ = 0, first by constructing a local solution and
then extending it to a global one with the aid of the vorticity transport equation
foro=V xu:

ow

Eﬁ'qu:lAw (xED’t>0)

v)
wls=0; 0=V xa.

The result is then applied to construct approximate solutions for problem (NS)
when V x a is a finite Borel measure.

In Section 3 we deduce a-priori estimates for approximate solutions u of
problem (NS), applying the estimate of Nash for the fundamental solution to
the linear (in w) parabolic problem (V). As will be shown in Section 4, these a-
priori estimates ensure the convergence of (a subsequence of) the approximate
solutions and lead us to the conclusions stated in Theorem 1.4. In Section 5
we prove Theorem 1.5 by the so-called vanishing viscosity method. Namely,
we consider problem (NS), assuming that V¥ x ae L? for some 1 < g < 2, and
prove the convergence of solutions u; of (NS) to a solution of (E) as A
— 0. Our proof of Theorem 1.5 also shows the Holder continuity in x € D of
the solution u in case F x aeL? for some g > 2, and this generalizes the
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classical result of Yudovich [23] which deals with the case g = co. The
uniqueness problem remains open.

1. Preliminaries and results

First we introduce necessary function spaces. By L'(D), 1 <r < o0, we
denote the usual Lebesgue spaces of real-valued functions with norm |- |,, and
W*'(D) denotes the usual L™ Sobolev spaces [1]. Moreover, L™D), 1 <r
< ©, 1 £q =< o0, denotes the Lorentz spaces, with norm ||-||,, which are
obtained by applying the real interpolation method [20] to L"-spaces. As is
well known [19]. L’(D) = L"™"(D) and we have the duality relation :

LDy =L"I(D), 1/r=1—1/r, 1/¢ =1—1/q,

for 1<r<oo and 1 £q<o. We also notice that [11] a function f is in
L»*(D) for some 1 <r < oo if and only if

11 = SUPlEll””'J |fldx < + o0
E

E

Where |E| denotes the Lebesgue measure of a measurable set E = D. Now,
consider the Helmenholtz decomposition [8] :

L'DP=X.®G., (1<r<w),
where
X,={ueL'(D)*; V-u=0,uv|s=0}; G,={Vp;peW' (D)},

and the associated bounded projector P =P, onto X,. The standard
interpolation argument shows that the operator P defines bounded projector on
L"*(D)? the range of which will be denoted by X, .

LEMMA 1.1. Let 1<p<qg<oo,0<6@<1; then
(1.1) X w =X, X)o,w, Sor 1/r=(1-6)/p+6/q,
where the right-hand side denotes the real interpolation space. Moreover,
(1.2) X, ={uel"*D)*;V-u=0, uvlg=0}

Proor. It follows from [19, Sect. 1.2.4] that interpolating between the
operators

P: LP(D)* > X, and P:LY(D) - X,

gives the surjection
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P: (LP(D)?, L*(D)*)p,c0 = (Xp> Xg)o,co-

But, since the left-hand side above equals L"®(D)?> and since P is a bonded
projector in L"®(D)? by [19, Sect. 1.2.4], we obtain the first assertion (1.1).
The second assertion (1.2) immediately follows from the definition of the so-
called J-method for constructing interpolation spaces [19, Sect. 1.6]. This

proves Lemma 1.1.
We next consider the Laplace operator B= B, = — 4 in L'(D)*, 1 <r
< o0, defined on

D(B,) = {ue W*"(D)*; uv|s=0,V x u|g=0}.

As shown in [13], the restriction A4, of B, to the subspace X, is a densely defined
closed operator. Furthermore, since D is simply connected, ||A™ul|, is
equivalent to the W2™"-norm for every integer m = 1 and so A, is boundedly
invertible. Consequently, — A, generates a bounded analytic C,-semigroup
{e7*";t =20} [16] and therefore the fractional powers A%, o =0, are well
defined. The result of Seeley [17] on the domains of fractional powers implies
that, for all 1 <r<o and O <a <1,

D(A%) = D(B*)n X, = H*>*"(D)>’nX,  with continuous injection,
where H*" stands for the space of Bessel potentials [20]. Thus, the standard
Sobolev embedding yields the following L’-L? estimeates :
lle™all, < Ct=r=1q|, ackX,,

(1.3)
|Ve~al, < Ct~120r-10|a],  aeX,

provided either 1 <r<g< o orl<r<gq=oo. Itthen follows from Lemma
1.1 that {e™";t>=0} is also bounded and analytic (but not strongly
continuous) in X, ., and we have the estimates
le~*al,o < Ct=Ur= 1 q], , aeX,,
Ve ally, < Ce™ 12701 g, aeX,

provided that 1 <r<g<o. Now, let 1 <p<g<r<oo. Since L”®n
L»* < L7 with the relation

(L4) Il Cl IR N 1w, 1/g=Q—6)/p+0/r,
we obtain the estimates

lle™*4all, < Ce= =1 al|, , aeX,

1.5
(-3 IVe~*all, < Ce= 12701 a), ,,  aeX,
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provided that 1 <r < g < co. Estimate (1.4) is deduced in the following way :
Let

AMo)=|D(f|>o)] for a>0.
By the standard definition of L™®-spaces,
A@ = (1 f17.0)Pa™?, and Al S (1 fI%e) ™,

where || f|¥, is the standard quasinorm defining the L"®-topology; see [11,
19, 20]. Thus, the definition of the Lebesgue integral gives

J |fl4dx = — Im oddA(a) = qu 0?1 A (e)da
D

0 0

M ©
([ )
Y M
ol sty f a4 (1) [ ot""‘lda]

Cl UG MO + (I £ oo)'M""].

II/\

Since || f ¥, and || fll,. are equivalent [11], taking the minimum in M >0
yields (1.4).

The next two lemmas (Lemmas 1.2 and 1.3) clarify the reason why we need
the Lorentz spaces L"®(D) in our study of planar Navier-Stokes flows.

LemMA 1.2. Let K(x, y) be a measurable function defined on D x D such
that

IK(x, y)| = Clx —y|™"

Given a finite Borel measure u on D, the function

(Kw(x) = I K(x, y)u(dy)
D

belongs to L*®(D) and satisfies the estimate
IKpllz,0 = Clinly
with C independent of u, where |||, denotes the total variation of the measure p.

Proor. Without loss of generality we may assume that the measure u is
nonnegative. Let ji be the finite Borel measure on R? defined by

R(E) = w(EnD).



406 Tetsuro MiYAKAWA and Mitsuhiro YAMADA
Since

|Kul(x) = CJ

R

|x — |7 fu(dy),
2
we get, for any Borel set E — D,

f | Kpldx écﬂ 1g()lx — y| ™" f(dy),
E R2xR?

= fﬁ(dy)flE(x + y)lx| " tax,
where 1; is the indicator function for E = R% Since
jlp(x)lxl‘ldx < ColFI'2,
with Cy > 0 independent of Borel sets F = R%, we see that
leuldx S CColI I 1E — y|'2 = CCol pll1 | EIM2.

This proves Lemma 1.2.

Suppose now we are given a solenoidal vector field a such that V' x a is a
finite Borel measure on D and a-v vanishes on S. Since D is simply connected
by assumption, we may assume that

a=(al, a2)=l7l://s<—% %>

0x,’ 0x,

for some distribution  on D. Direct calculation then shows that Ay =F x a
in D and that we may assume § =0 on S. Hence

Y(x) = f G(x, )V x a)(dy)

in terms of the Green function G(x, y) of the Dirichlet problem for the
Laplacian in D. We thus have

a(x) = f K(x, y)V x a)(dy)
where

G oG
(16) K(x’ y) = VJJEG(X’ y) = <_ E(x’ _V), E;;(x’ _V)>
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and therefore
|K(x, y)| < Clx — y|™!

for some constant C > 0 (see [12]). Lemma 1.2 then implies that ae L?*(D)
and hence ae X, , by Lemma 1.1. On the other hand, the simple-connectivity
of D implies that if

V.a=0,V xa=0, and a-v|g=0,
then a=0 in D; see [3]. We thus obtain the following

Lemma 13. (i) If ae X, , and V x a is a finite Borel measure on D, then

a(x) = LK(x, ¥ x a)dy)

in terms of the function K introduced in (1.6) ; moreover, the estimate
(L.7) lallz,o = CIV xal
holds with C independent of a.

(ii) For any finite Borel measure p on D, the vector function

a(x) = f K(x, y)u(dy)
D
belongs to X, ., satisfies estimate (1.7) and solves the equation

Vxa=upu in D
in the sense of ditributions.

Now let ae X, ,, and let ¥ x a be a finite Borel measure on D. In view
of Lemma 1.3 we have to find a function u(t) of t = 0 with values in X, ,, which
solves the integral equation

t
1.8) u(t) = e Mg — f e X=94P(y-V)u(s)ds

0
in an appropriate sense. To solve (1.8) we mainly follow the arguments
developed in [4, 10] which deal with the case of the Cauchy problem. Namely,
we first solve (1.8) in Section 2 in the spaces X,, 2 < r < oo, and then apply the
obtained result to construct approximate solutions. The convergence of the
approximate solutions to a desired solution is then discussed in Sections 3 and
4 with the aid of the estimate of Nash [14, 15] for the fundamental solution to
the Dirichlet-Cauchy problem for a second-order parabolic equation with
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discontinuous coefficients. Our results are stated as follows.

THEOREM 1.4. Given a€ X, ,, such that V x a is afinite Borel measure on
D, there exists a function u(t) defined for all t = 0 with the following properties.

(1) wu is bounded and continuous from [0, o) to X, ,, in the weak* topology
of L>*(D), and satisfies u(0) = a.

(ii) V x u is bounded and continuous from [0, o) to the space M of finite
Borel measure on D in the vague topology of M, and (V x w)(0)=V x a.

(iii) There exist positive constants C;, j =1, 2, 3, depending only on r and
D, so that

17 x @, < C,(A) |7 x all, for 15r< oo,

lu@l, < C,(A "1V x all;  for 2<r< oo,
IVu@)l, < C3()~ 1|V x all; for 1<r<oco.
(iv) u satisfies the integral equation (1.8) in the weak* topology of L** (D).
(v) wu is unique in case |V x a|,/A is sufficiently small.

THEOREM 1.5. Letae X,,2<r<oo,andV x ae L with1/q=1/r+1/2.
Then there exists a function u with the following properties :

(i) wu is bounded and continuous from [0, o©) to X, in the weak topology
of X,, and satisfies u(0) = a. Furthermore, u is continuous from [0, ) to X,.

(ii) V x u is bounded and continuous from [0, o) to L? the weak topology
of LYD), and (V x w)(0)=V x a.

(i) The function u solves the Euler equations (E) in the sense that the
identity

:—t(u,¢)—(u®u,7¢)=0, in t>0

holds for all ¢ € C*(D)* with V-¢ =0, and ¢ v|s = 0, where (u ® u);; = wu;, i, j
= 1,2, and (-,") denotes the standard L*-inner product.

(iv) If in addition V x ae L® for some 2 < s £ o0, then for any fixed t > 0,
u(-, t) is Holder-continuous with exponent o = 1 — 2/s when s < oo, and with an
arbitrary exponent 0 < a <1 when s = oo.

Part (iv) of Theorem 1.5 is originally due to Yudovich [23], in which is
discussed the case s = co. As shown in Section 2, the function u given in
Theorem 1.4 is smooth on D x (0, c0) and solves (NS) in the classical sense for
t > 0. Theorem 1.4 is proved in Section 4 after preparing necessary material in
Sections 2 and 3. Theorem 1.5 will be proved in Section 5 by letting A — 0 for
the solution u; of problem (NS) given in Theorem 1.4.
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2. Smooth solutions X,, r > 2

The standard iteration technique as developed in [7, 9] does not apply to
equation (1.8) unless a€ X, , is small. This is because of the fact that smooth
functions are not dense in X, . So, we employ the following approach, due to
[10]: First we consider the regularized initial data a, = e **4a, which are
smooth over D and so belong to X, for all 1 < r < o0, and try to find a solution
u, of equation (1.8) with u,(0) =a,. We then discuss convergence of u,, as ¢
—0, to get a desired solution u of (1.8). To carry out this procedure, we
discuss in this section the solvability of (1.8) with aeX, for some r > 2,
employing the standard iteration scheme:

t
s 1 () = to(t) — J e HTIAP(y P (s)ds, k=0,1,2,...,
@.1) °

uy(t) = e *4a,

THEOREM 2.1. Given a€X,, 2 <r< oo, there exist a number T> 0 and a
unique solution ue C([0, T); X,) of (1.8) with the following properties:

(1) lu@ll, < Cllal,; (Y2 Vu@)l, < Clal,.

(i) The number T > 0 is bounded below as

Tz CA '/ |al,  o=1/2—1/r.

Theorem 2.1 can be proved in the same way as in [10, Sect. 1] if we apply
the following Lemma 2.2 to estimate the bilinear operator

t

S;[v, wl(t) = — j e~ M= P(y - V)w(s)ds

0

t .
= — J Al2g= =94 412 pp . (y @ w)(s)ds.

0
LEMMA 22. Let 0 < T< oo and
lul, = sup [u@)l,.
te[0,T)
Then we have the estimates
ISA[U’ W] |r,T é M(AT)alvlr,leh',T/l,
and

(227 S [v, Wil r < MATY [0C) 2l (A) 2P w( ), 2/ 4,
where r >2, 6 =1/2 —1/r; and M > 0 depends only on r and D.
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Lemma 2.2 is easily obtained with the aid of estimates (1.3) and the fact
that the linear operator A, '/2PF- is continuous in L’-topology, 1 <r
< 0. The latter follows from the interpolation result :

D(A}?*) = D(B!?)n X, = W' (D)*n X, with equivalent norms
and the Poincaré¢ inequality

lvll, £C|Fv|, for ve W' (D)’nX,

which is valid since we assume that D is simply connected. By the standard
argument as developed in [9] the solution u given in Theorem 2.1 is smooth on
D x (0, T). When ae D(A4,), u is regular up to the initial time t = 0. More
precisely, we have

THEOREM 2.3. Let ae D(A,), r > 2; then the solution u given in Theorem 2.1
lies in C*(D x [0, T))nC®(D x (0, T)) for some 0 <o < 1.

This regularity result is important in Section 3 in discussing the passage to the
limit ¢ > 0 for approximate solution u,. A proof of Theorem 2.3 is found in
[7.9]. The Holder continuity of u up to ¢ = 0 in Theorem 2.3 is proved in [7]
only for r = 2; but, the proof given there applies also to the case of general r.

We now extend the local solution u of Theorem 2.1 to a global one. To
do so, it suffices in view of Theorem 2.1 (iii) to show the boundedness of the
norm |u(t)||, as ¢t approaches T. To this purpose we consider the vorticity
transport equation for o =V x u:

ow

E+u'l7w=/ldw (xeD,t>0)

V) .
wls=0; 0o =V xa
Since V-u =0, a standard argument shows
lo@l, < lo@)l, for 1<g<2 and 0<s<t.

Since
u(x, t) = LK (x, y)o(y, t)dy

in terms of the function K introduced in (1.6), the Hardy-Littlewood-Sobolev
inequality [16] yields

lu@ll, = Clo®l, = Clo@)l,

provided 1 <g<2 and 1/r =1/qg— 1/2. These arguments, together with
Theorem 2.1, imply the following
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THEOREM 2.4 The local solution u of (1.8) given in Theorem 2.1 extends
uniquely to a global solution.

3. A-priori estimates for approximate solutions

Let ae X, ,. Then, estimate (1.5) shows that the function a, = e *a, ¢
> 0, belongs to X, for all » > 2. Thus, by the results in Section 2 there exists a
global smooth solution u, to the integral equation (1.8) with u,(0) =a,. We
shall prove Theorem 1.4 by showing that, as ¢—0, a subsequence of u,
converges to the desired solution with initial data a. To this end, we establish
in this section a-priori estimates for approximate solutions u, which are uniform
in ¢ > 0. These estimates will then be applied in Section 4 in discussing the
passage to the limit ¢ — 0.

Consider the vorticity transport equation (V). Since a,e D(A4,) for all r
> 2, u, is in C*(D x [0, o0)) by Theorems 2.3 and 2.4. So there exists [5] the
fundamental solution

Tu(xt;y,8), 0Ss<t
to the Dirichlet-Cauchy problem for the linear parabolic operator

0
L81=E‘AA+“5'V-

By the maximum principle for parabolic equations we see that I',; > 0 for x,
yeD and 0 <s<t, and

(3.1) '[Fs;(x,t;y, sds < 1; J-Fsl(x,t;y, s)dx < 1.
D D

Notice that the latter estimate of (3.1) is valid since the function

v(y, s) = f I,(x, t;y, s)dx, s<t,
D

solves the backward problem

ili+ AMov+V-(ur)=0 (s<t)
0s
v|s=0;v[-, =1

and since V - (u,v) = u, Vv because V -u, = 0. Moreover, we have the following
result of Nash [14]; see also [15].

THEOREM 3.1. There is a constant C > 0 independent of ¢ > 0 and A > 0 so
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that
0<TI;(xt;98)<CLAt—9)]"
for all x,yeD and 0 <s<t.

Proor. We give a complete for the reader’s convenience. It suffices to
show that, for all s<t and x, yeD,

f T(x, t5y, 8)%dy < Ci[Alt —9)]7;
(3.2) b
j T(x, t5 9, 8)%dx < Co[A(t — 9)]7 1,
D

with C, and C, independent of s, t, x, y and ¢ > 0. Indeed, the result follows
by applying the Schwarz inequality to the Chapman-Kolmogorov relation:

I,(x,t;y,8)= J I,(x,t;z, 1),z 15y, s)dz
D

for s<t<t. To show (3.2) we follow Nash [14]. We can assume (y, s) =
(0, 0) and consider

E@®) = f I,;(x,t; 0, 0)%dx.
D

Then, since V-u, =0 in D and u,-v=0 on S, we get

E = 2lf Al dx = — 2/1'[ VIl dx.
D D
Using the inequality

I£1lz = CLAIIP £1132

which follows by combining
Ifl2 = IAIPIA1Z? and | flle S CISI2IP £1E2,
we see from (3.1) that
— E =20V, 220 Ll IV 013
= AC|I,;||% = ACE2,
Integrating this yields
E(t) < C(A)~*



Planar Navier-Stokes flows in a bounded domain with measures as initial vorticities 413

and this shows the first inequality of (3.2). The second one is similarly
obtained if we note that the function I,(-,"; y, s) is the fundamental solution to
the backward Dirichelet-Cauchy problem for the operator

0
2+,M +V-(u)=+A4 +u,V.
Js Js

This proves Theorem 3.1.

Applying (3.1) and Theorem 3.1 to the relation

Wy(X, 1) = LF (% 153, 0V x a,)(y)dy,

we easily obtain

lo @l £ CAn~ 11V x a, |l

3.3
¢ < (A~ x al,y

for 1 £ q £ oo, with C, > 0 inedependent of ¢ > 0. Notice that here we have
used the fact that
Vxa=Vxe *ag=e"Fy x a),
where 4 is the Laplace operator with zero boundary condition, and therefore
IV x a.ll, =lle*¥ xa)ll, < |V x al.
Furthermore, since
|K(x, y)| < Clx = y|71,

applying (1.7), (3.3) and the Hardy-Littlewood-Sobolev inequality [16] to

u(x, t) = LK (x, y)w,(y, )dy

gives
(3.4) [u:®)l2,0 = CIV x ally,
(3.5) lu.® 1, < C,A)" 12|V x all; for 2<r< oo,

with C, independent of ¢ > 0. Furthermore, we have
(3.6) 17u,®)ll, S Cy(a)~ 447 x all, for 1<gq< o,

with C, independent of &> 0, which follows from the fact that function
V. .K(x, y) is decomposed into the sum of a Calderon-Zygmund kernel [12] and
a smooth function on D x D and hence defines a bounded linear operator in
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L'(D), 1 <r<oo. Since D is simply connected, ||Fv|, is equivalent to the
norm of D(B}/?). So, (3.5), (3.6) and the Gagliardo-Nirenberg inequality [6]:

Iflle < CIFIZZ IV fIIE?
implies that (3.5) is valid also for r = co.

LEMMA 3.2. The functions w,(t), ¢>0, are uniformly bounded and
equicontinuous in & > 0 on each bounded interval [0, T] in the vague topology of

measures.
Proor. It suffices to show the existence of 0 < a <1 such that
’(wa(t)a ¢) - (ws(s), ¢)| é Clt - sla

uniformly & > 0, for each fixed ¢ € C*(D) with ¢|g = 0. Indeed, the set of such
functions ¢ is dense in a predual {y € C(D); y|s =0} of M. We write

(* [ Ow,
(37 @0 $) = (@(5) $)] = < -, ¢)dr =L +1,
where
t t
Il = }' J (Awsa d))d‘[ = }' J‘ (wsa A¢)dT 5
t t
I, = J (u,"Vo,, p)dz| = J (u, ® w,, Vo)dr|.
An integration by parts gives, for t = s,
t
(3.8) 11§llld¢llwf |l dr < Cylt — s),
while (3.5) and (3.6) together imply that, for t = s,
t t
(3.9 I, = f w3 llulls IV ¢ llde < CHV¢H3J T 23710 e,

Combining (3.7)—(3.9) yields the desired result.

4. Proof of Theorem 1.4

By (3.3)-(3.6) and Lemma 3.2 we may asuume that, as ¢ —» 0, u, converges
weakly in an appropriate sense to a function u satisfying

(4.1) lu@ 2,0 = CIV x ally; lu@)l, < C,(2)" 2|V x al|,
for all 2<r =< 0;
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42 I x WOl S CA) 7 x all, for all 1= oo
4.3) Pu@)l, < C,(A)"**r |V x a|, forall 1<r< c0;
and

(4.4) V x u: [0, c0) > M is vaguely continuous.

In this section we complete the proof of Theorem 1.4 by showing that the
function u is the desired solution of (1.8). We begin by establishing the
following

LeEmMMA 4.1. The function u is continuous from [0, ©) to L?>*(D) in the
weak* topology.

PRrOOF. Since the predual L?*(D) of L?*(D) is a separable Banach space,
the unit ball of L*®(D) is sequentially compact in the weak* topology
[22]. So, we need only show that

4.5) u(t,) > u(t) weakly* in L>®(D)?

whenever t,, »t as m — . Since the sequence u(t,) is bounded in L*®(D),
there is a subsequence, denoted again u(t,), which converges weakly* to some
function v. Since the weak* convergence implies the convergence in the
distribution topology, we see that (V x u)(t,) =V x v in the distribution
topology. Hence, the vague continuity of ¥/ x u ensured by (4.4) shows V' x v
= (¥ x u)(t). On the other hand, the boundedness of u(t,) in L**(D) implies
its boundednesss in L4(D), 1 < g < 2. Since the smooth functions are dense in
both the preduals of L*®(D) and L%(D), it follows from the Banach-Steinhaus
theorem that u(t,) — v weakly in LI(D), 1 <q<2. Hence veX,, 1<qg<2,
and therefore v-v|g=0. By Lemma 1.1, veX, ., and so we get v = u(t) by
Lemma 1.3. This proves (4.5).

We now show that the limit function u obtained above solves our original
problem. First observe that estimates (4.1)—(4.3) for the approximation u,
together imply

” P(ue 'V)ue ”q é Cq ” uc ”2q “Vue ”2q é Cq "V X a”%(lt)l/q—?’/z

for all 1 < g < oo with C, independent of t >0 and ¢ > 0. Thus, if we write

t
ug(f) = e~ 47"y () — f e TP (U, Vu(s)ds
n
for any fixed 0 <n < T/2 and notice that u/(y)e X, with norms bounded
uniformly in ¢ > 0, then we can apply the standard arguments as given in [7, 9]
to conclude that the functions P(u, - V)u, are Holder continuous from [2#, T] to
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X,, g>2, and the Holder seminorms are bounded above uniformly in &
> 0. Hence, by [7, Lemma 2.14] we conclude that, for any 2 < q < o0,

du,
dt
This, together with (4.3) and the compact embedding X,nW!4(D)* < X,,
implies the existence of a subsequence, again denoted u,, which converges as ¢
— 0 to u in the topology of C([2n, T]; X,). Since

is bounded on [2#, T] uniformly in ¢ > 0.
q

t
(4.6) uy(t) = e~ 17204y, (2n) — J e TP (u, V)u,(s)ds,

2n
multiplying both sides of (4.6) by an arbitrary test function ve X, n W% (D)*
with 1/¢'=1— 1/q and then passing to the limit ¢ —» 0 yields

t
@7 ut) =e 2 04y(2p) —J e M=IAPy-Vyu(s)ds in X,, 2<gq< oo,

21
for all t = 2n. Using the expression
e MTIMP(y-Pyy = A2 2= 12PY - (4 @ u)

and the boundedness of the operator 4"'?PF-in L% we can estimate the
integral of (4.7) in X, as

t t
= C}.J t =972 uls)lids = C;J (t =) 1257 2%ds = C,.
0 0

Hence,

t t
I e X794 Py Vu(s)ds —»J e MM Ppy-Pu(s)ds as n—>0
2n 0
in the weak topology of X,. Since e™*~274y(2y) » e~ #4g as n —> 0 weakly*
in L?*(D)?, we conclude that function u is a desired solution.

We finally show the uniqueness of our solutions, assuming that |V x a||,/4
is small. Let u and v be two solutions with the same initial data a, and w = u
—v. Since

w(t) = _j Al2e= M= 412 PF - (w @ u + v @ W)(s)ds,

0

we obtain, for 2 <r < oo,

Iwl.(0) = CJ [AG — 1727 (lull, + oll, Iwl(s)ds.
0
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This, together with estimate (4.1) for u and v, implies
|wl,,r = OSUPT(lt)”Z’”'IIWII,(t) = GV x ally|wl.r/4
<t<

for all T>0. Hence
wl,r =0 provided C,|V xal,/A<1.

This completes the proof of Theorem 1.4.

5. Proof of Theorem 1.5

This section establishes Theorem 1.5 by applying the vanishing viscosity
argument: 1 — 0 to the solutions of the Navier-Stokes equations (NS). Our
arguments go back to Bardos [2] and our result extends [10. Corollary 2.7],
which deal with the problem in the entire plane R? to the case of simply
connected bounded domains. Let u; denote the global solution to (NS) given
in section 2, and let w, =V x u;. A standard argument using (3.1) and
Lemma 1.3 together imply that if 2 <r < oo and 1/g=1/r + 1/2, then

(.1) @)l = IV x all;

(5.2) lw@l, = C IV x allg;

and

(5.3) Vu,@ls = GV x all;, 1<s< o0,

provided V x aeL*. Let V7 denote the Banach space
Vv, = X,n WD)

equipped with the usual W'4-topology, any let ¥} be its dual space. Since A4,
gives rise to a linear isomorphism between ¥V, and V¥, 1/¢'=1—1/q, and
since

[ @ uz, VO = Nl lusll2 1V @l
S CluliZIv el

we see that P(u,-V)u,; are bounded in L*(0, T; V). It thus follows that the
time-derivatives ) are bounded in L*(0, T; V}). Since

Vo X, < V3

with continuous injections and since the first inclusion is compact, we can apply
the compactness theorem in [21, Chap.III] to extract a subsequence, denoted
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again u,, such that
u,—»u in L0, T; X))

for any fixed 1 <s < o0, and
(5.4) u,»u ae on D x (0, o).
By (5.1)—(5.3) we may assume also that the limit function u satisfies

ue L®(0, o0; X,)NL*(0, 00; V,), u' € L®(0, c0; V).
Now fix ¢eC!(D)> with V-¢=0 and ¢'v|g=0. For any T>0 and
Y e CY([0, T]; R) with ¥(T) =0 the functions u, satisify

T T T
(63 - L (uz, PW'dt + 4 L (Vus, Voppdt — fo (u; @ uy, V op)odt = (a, p)Y(0),

where Y’ = dy/dt. Obviously, (5.2) and (5.3) imply

(5.6) AJT(Vul, Vo)dt—0

and

(5.7 j (us, PW'dt —>f (u, p)Y'dt
0 0

as A — 0. It therefore remains to treat the nonlinear term of (5.5). By (5.4)
and Egoroff’s theorem there exists for each n >0 a measurable set E < D
x [0, T] so that

|E°| < n and u,; — u uniformly on E.

Hence we have

(5.8) j f (U, ® u,)- (V dpypdxdt — J f (u ® u)- (7 p)pdxdt.

On the other hand, since [|u; ® u,|,/, are bounded in L®(0, T) and since the
number n > 0 can be chosen arbitraly small, we get

H lu, @ uz|- [V p | |dxdt < M[f‘[ (7ol Ilﬁl)"""z’dxdt:ll—z/r
E* Ee

and the right-hand side can be made arbitrarily small by the absolute
countinuity of the Lebesgue integral. This, together with (5.8), implies
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(5.9 J‘T(u,l ® u,, Voydxdt - JT(u ® u, V dpWdxdt
0 0

as A— 0. It thus follows from (5.5)—(5.7) and (5.9) that

T T
f (u, p)ydr + J‘ U@ u. Vo)t + (a, pY(0) =0
0 0

and part (iii) is proved. This shows in particular that
W=—PuVueL*0,T; V).

Since ue L*(0, T; V,)n L*(0, T; X,) by (5.1) and (5.3) with s = g, and since X,
c X, < V¢ with continuous injections, it follows that u is continuous from
[0, T] to X, in the weak topology, and in view of the compactness of the
embedding ¥V, < X,, that u is continuous from [0, T] to X, in the strong
topology. This shows part (i). Now, part (i) implies (V7 x u)(t,) = (¥ x u)(t) in
W~ 14-topology, whenever t,, > t. Since ||(F¥ x u)(t)|, is bounded by (5.1), part
(ii) is proved in a way similar to the proof of Lemma 4.1. Part (iv) is obtained
from (5.3) and the Sobolev embedding

WS(D) = C*~25(D), 2<s< 0.

The proof is complete.
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