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Introduction

Let D be a simply connected bounded domain in IR2 with smooth

boundary S. In this paper we consider the two-dimensional Navier-Stokes

equations of the following form :

du
+ u γu = λΛu -Vp (x e D, t > 0

ot

(NS) F - u = 0 (x e D, t ^ 0)

w v|s = 0; F x M|s = 0 ; M | ί = 0 = α,

and discuss the existence and uniqueness of strong solutions when the initial

vorticity V x α is very singular. Here, λ > 0 is the kinematic viscosity v is the

unit outward normal to the boundary u = (u1, u2) and p are, respectively,

unknown velocity and pressure a is a given initial velocity and V -u = ΣjdjUj,

u-Vu = ΣjUjdjU, V x u = d^u2 — d2u
l

9 dj = d/dxj. Our goal is to establish the

existence of a smooth global solution in the case where P7 x α is a finite Borel

measure on D. Our result extends those of [4, 10] obtained for the Cauchy

problem to the case of simply connected bounded domains. The boundary

condition for u described above not only appears in a free-boundary problem

for the Navier-Stokes equations, but also is well known as a standard boundary

condition for the magnetic field in the theory of magnetohydrodynamics [18].

As a byproduct we obtain an existence result for the Euler equations

du
— + u - Vu + Vp = 0 (x e D, t > 0)
ot

(E) P ιι = 0 (xeD, f ^ 0)

in the case where V x a belongs to Lq for some q > 1, by investigating the

behavior of solutions uλ to (NS) as λ goes to 0. A similar result was obtained

by Bardos [2] in L2 -framework, and our result can be regarded as an //-version
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of that of [2],
This paper is organized as follows. In Section 1 we introduce necessary

notation and definitions and state our results. Our main results are stated in
Theorems 1.4 and 1.5. Theorem 1.4 asserts that for each a such that the
associated vorticity V x a is a finite Borel measure, there exists a smooth global
solution u to problem (NS). The uniqueness is proved only when the variation
of V x a is small compared with the viscosity λ > 0. The existence result is
deduced in the standard manner, namely, we first construct approximate
solutions and then show their convergence with the aid of a-priori estimates
which are uniform in apporoximation. The main difficulty consists in finding
these a-priori estimates. Indeed, the standard method of parabolic evolution
equations is not applicable, mainly because in our case the initial vorticities
form a Banach space in which the smooth elements are not dense. We can
overcome this difficulty by appealing to the estimate of Nash [14, 15] for the
fundamental solution of the Dirichelt-Cauchy problem for a second order
parabolic equation with discontinuous coefficients. Theorem 1.5 is concerned
with the existence of global //-solutions to the Euler equations (E).

Section 2 is devoted to the construction of approximate solutions to (NS)
under the assumtion that the initial vorticity is a finite Borel measure. To this
end, we need to consider (NS) in general Lr-spaces. So, we first prove that for
each αeLΓ, r > 2, with F x α e Z Λ \/q = 1/2 + 1/r, there exists a unique
smooth solution defined for all ί ̂  0, first by constructing a local solution and
then extending it to a global one with the aid of the vorticity transport equation
for ω = V x u :

-^- + u - Vω = λAω (x e D, t > 0)
ot

(V)
ω|s = 0;ω| ί = 0 = V x a.

The result is then applied to construct approximate solutions for problem (NS)
when V x a is a finite Borel measure.

In Section 3 we deduce α-priori estimates for approximate solutions u of
problem (NS), applying the estimate of Nash for the fundamental solution to
the linear (in ω) parabolic problem (V). As will be shown in Section 4, these a-
priori estimates ensure the convergence of (a subsequence of) the approximate
solutions and lead us to the conclusions stated in Theorem 1.4. In Section 5
we prove Theorem 1.5 by the so-called vanishing viscosity method. Namely,
we consider problem (NS), assuming that V x a e Lq for some 1 < q < 2, and
prove the convergence of solutions uλ of (NS) to a solution of (E) as λ
-> 0. Our proof of Theorem 1.5 also shows the Holder continuity in x e D of
the solution u in case V x a E Lq for some q > 2, and this generalizes the
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classical result of Yudovich [23] which deals with the case q = oo. The
uniqueness problem remains open.

1. Preliminaries and results

First we introduce necessary function spaces. By U(D\ 1 ̂  r ^ oo, we
denote the usual Lebesgue spaces of real-valued functions with norm || ||r, and
Ws'r(D) denotes the usual U Sobolev spaces [1]. Moreover, U-q(D\ 1 < r
^oo, 1 ̂  q ̂  oo, denotes the Lorentz spaces, with norm || \\ftq which are
obtained by applying the real interpolation method [20] to ZΛspaces. As is
well known [19]. U(D) = Lr'Γ(D) and we have the duality relation :

for 1 < r < oo and 1 ̂  q < oo. We also notice that [11] a function / is in
Lr'°°(D) for some 1 < r < oo if and only if

Where |E| denotes the Lebesgue measure of a measurable set E c D. Now,
consider the Helmenholtz decomposition [8] :

where

Xr = {ueU(D)2 F II = 0, u-v\s = 0} Gr = {Vp pε W^r

and the associated bounded projector P = Pr onto Xr. The standard
interpolation argument shows that the operator P defines bounded projector on
LΓ'°°(D)2, the mnge of which wjiι be denoted by Xr^.

LEMMA 1.1. Let l<p<q<co,Q<θ<l; then

(1.1) Xr^=(Xp,Xq\^ for l/r = (l-θ)/p + θ/q,

where the right-hand side denotes the real interpolation space. Moreover,

(1.2) Xrtao = {ueL' »(D)2 F u = 0, u-v\s = 0}.

PROOF. It follows from [19, Sect. 1.2.4] that interpolating between the
operators

P:LP(D)2-+XP and P: Lq(D)2 -+ Xq

gives the surjection
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But, since the left-hand side above equals LΓf00(D)2 and since P is a bonded
projector in Lr'°°(D)2 by [19, Sect. 1.2.4], we obtain the first assertion (1.1).

The second assertion (1.2) immediately follows from the definition of the so-
called J-method for constructing interpolation spaces [19, Sect. 1.6]. This

proves Lemma 1.1.
We next consider the Laplace operator B = Br = — A in LΓ(D)2, 1 < r

< oo, defined on

D(Br) = {ue W2*(D)2 u v\s = 0, V x u\s = 0}.

As shown in [13], the restriction Ar of Br to the subspace Xr is a densely defined
closed operator. Furthermore, since D is simply connected, ||^mw||r is
equivalent to the W2m'r-noτm for every integer m ̂  1 and so Ar is boundedly

invertible. Consequently, — Ar generates a bounded analytic Co-semigroup
{e~M r;ί^O} [16] and therefore the fractional powers 4",α^0, are well
defined. The result of Seeley [17] on the domains of fractional powers implies
that, for all 1 < r < oo and 0 < α < 1,

D(AΛ

r) = D(Ba

r) Γ) Xr c H2α'r(D)2n Xr with continuous injection,

where H s'r stands for the space of Bessel potentials [20]. Thus, the standard
Sobolev embedding yields the following U-Lq estimeates :

\\Ve~tAa\\q < CΓll2-W-lM\\a\\r

provided either l<r^q<ooorl<r<q^co. It then follows from Lemma
1.1 that {e~*A;t^O} is also bounded and analytic (but not strongly
continuous) in Xrt00> and we have the estimates

provided that 1 < r ̂  q < oo. Now, let l < p < 4 < r < o o . Since Lp'°° n
Lr,αo ^ L

(1.4) II/MC||/IIΓ«,Ί/L%, l/ί = (1 - θ)/p + θ/r,

we obtain the estimates

(1.5)
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provided that 1 < r < q < oo. Estimate (1.4) is deduced in the following way :
Let

= |D(|/| > α)| for α > 0.

By the standard definition of LΓ'°°-spaces,

)pα p

> and

where II/H*^ is the standard quasinorm defining the Lr'°° -topology; see [11,
19, 20]. Thus, the definition of the Lebesgue integral gives

|/ |«dx=- Mλ((ή = q\ a*' l λ(<*)daι
JD Jo JO

QM f o o \

+ * -U(α)dα
3 JM /

* +

Since ||/||? fQO and | |/| |Γ f D O are equivalent [11], taking the minimum in M > 0
yields (1.4).'

The next two lemmas (Lemmas 1.2 and 1.3) clarify the reason why we need
the Lorentz spaces Lr'°°(D) in our study of planar Navier-Stokes flows.

LEMMA 1.2. Let K(x9 y) be a measurable function defined on D x D such
that

Given a finite Borel measure μ on D, the function

(Kμ)(x) = ί K(x9 y)μ(dy)
JD

belongs to L2'°°(D) and satisfies the estimate

2t00

with C independent of μ, where \\μ\\ι denotes the total variation of the measure μ.

PROOF. Without loss of generality we may assume that the measure μ is
nonnegative. Let μ be the finite Borel measure on IR2 defined by
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Since

\Kμ\(x)^cl \x-y\-*μ(dy)9

JR2

we get, for any Borel set E a D,

\E(x)\x-y\
R2xR2JE μ

-HI
where 1£ is the indicator function for E c R2. Since

with C0 > 0 independent of Borel sets F c R2, we see that

This proves Lemma 1.2.
Suppose now we are given a solenoidal vector field α such that P x α is a

finite Borel measure on D and α v vanishes on 5. Since D is simply connected
by assumption, we may assume that

2 1

for some distribution ψ on D. Direct calculation then shows that Aψ = V x a

in D and that we may assume ψ = 0 on S. Hence

φ(x) = G(x, y)(V x a)(dy)
JD

in terms of the Green function G(x, j;) of the Dirichlet problem for the
Laplacian in D. We thus have

ί
JD

a(j) - I K(x,

where

(1.6) K(x, y) = VL

X
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and therefore

for some constant C > 0 (see [12]). Lemma 1.2 then implies that αeL2'°°(D)

and hence aeX2t00 by Lemma 1.1. On the other hand, the simple-connectivity
of D implies that if

P α = 0, F χ β = 0, and α v|s = 0,

then α = 0 in D; see [3]. We thus obtain the following

LEMMA 1.3. (i) If aeX2)00 and V x a is a finite Borel measure on D, then

= ί K(x9
JD

a(x) = K(x9 y}(V x a)(dy)

in terms of the function K introduced in (1.6) moreover, the estimate

(1.7) l l f l l k o o ^ C l i r x β l l i

holds with C independent of a.

(ii) For any finite Borel measure μ on D, the vector function

a(x) = ί K(x, y)μ(dy)
JD

belongs to X2,00, satisfies estimate (1.7) and solves the equation

V x a = μ in D

in the sense of ditributions.

Now let a εX2 f 0 0,
 and let P x α be a finite Borel measure on D. In view

of Lemma 1.3 we have to find a function u(t) of t ^ 0 with values in X2j00 which

solves the integral equation

(1.8) u(t) = e~λtAa - e~λ(t~s)AP(u'V)u(s)ds

in an appropriate sense. To solve (1.8) we mainly follow the arguments

developed in [4, 10] which deal with the case of the Cauchy problem. Namely,

we first solve (1.8) in Section 2 in the spaces Xr9 2 < r < oo, and then apply the

obtained result to construct approximate solutions. The convergence of the

approximate solutions to a desired solution is then discussed in Sections 3 and

4 with the aid of the estimate of Nash [14, 15] for the fundamental solution to

the Dirichlet-Cauchy problem for a second-order parabolic equation with
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discontinuous coefficients. Our results are stated as follows.

THEOREM 1.4. Given aεX2>ao

 such that V x a is afinite Borel measure on
D, there exists a function u(t) defined for all ί ̂  0 with the following properties.

( i ) u is bounded and continuous from [0, oo) to X2>00 in the weak* topology
of L2'°°(£>), and satisfies u(0) = α.

(ii) V x u is bounded and continuous from [0, oo) to the space M of finite

Borel measure on D in the vague topology of M, and (V x w)(0) = V x a.
(iii) There exist positive constants CJ9 j = 1, 2, 3, depending only on r and

D, so thai

|| (F x ιι)(ί)||r £ CMt)-l + llr\\r x fllli for 1 ̂  r ̂  oo,

\\u(t)\\r£C2(λt)U'-l/2\\rxa\\l for 2 < r g oo,

r x a l U /" l < r < o o .

(iv) M satisfies the integral equation (1.8) in the weak* topology of L2'°°(D).

(v) u is unique in case ||F x a\\±/λ is sufficiently small.

THEOREM 1.5. Let a e Xr9 2 < r < oo, and V x a e Lq with 1/q = 1/r + 1/2.

Then there exists a function u with the following properties :
( i ) u is bounded and continuous from [0, oo) to Xr in the weak topology

of Xr, and satisfies w(0) = a. Furthermore, u is continuous from [0, oo) to Xq.

(ii) V x u is bounded and continuous from [0, oo) to Lq the weak topology

of Lq(D\ and (V x tι)(0) = V x a.
(iii) The function u solves the Euler equations (E) in the sense that the

identity

— (M, φ)-(u® w, Vφ) = 0, in t > 0
at

holds for all φ e C^Z))2 with V φ = 0, and φ v|s = 0, where (u ® M)O = u^, i, j
= 1, 2, tf«6? ( , •) denotes the standard L2-inner product.

(iv) If in addition V x aeLs for some 2 < s ^ oo, then for any fixed t > 0,

M( , ί) w Holder-continuous with exponent a = 1 — 2/5 vvΛew 5 < oo, <m/ w/7λ aw
arbitrary exponent 0 < a < 1 w/ze« s = oo.

Part (iv) of Theorem 1.5 is originally due to Yudovich [23], in which is
discussed the case 5 = oo. As shown in Section 2, the function u given in
Theorem 1.4 is smooth on D x (0, oo) and solves (NS) in the classical sense for
ί > 0. Theorem 1.4 is proved in Section 4 after preparing necessary material in
Sections 2 and 3. Theorem 1.5 will be proved in Section 5 by letting λ -> 0 for
the solution uλ of problem (NS) given in Theorem 1.4.
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2. Smooth solutions Xr, r > 2

The standard iteration technique as developed in [7, 9] does not apply to

equation (1.8) unless aeX2t00 is small. This is because of the fact that smooth

functions are not dense in X2,ao- So, we employ the following approach, due to

[10] : First we consider the regularized initial data aε = e~ελAa, which are

smooth over D and so belong to Xr for all 1 < r < oo , and try to find a solution

uε of equation (1.8) with wε(0) = aε. We then discuss convergence of wε, as ε

-»0, to get a desired solution u of (1.8). To carry out this procedure, we

discuss in this section the solvability of (1.8) with aeXr for some r > 2,

employing the standard iteration scheme:

= 0, 1,2,...,

(2.1)
u0t = e a .

THEOREM 2.1. Given aeXr, 2 < r< oo, there exist a number T> 0 and a

unique solution weC([0, T);X r) of (1.8) with the following properties:

(i) \\u(t)\\r^C \\a\\rι (λtγ>2\\Vu(t)\\r^C\\a\\r.

(ii) The number T> 0 is bounded below as

T^ CryΓ1 + 1 / VI|α | l r 1 / σ » σ = 1/2 - 1/r.

Theorem 2.1 can be proved in the same way as in [10, Sect. 1] if we apply

the following Lemma 2.2 to estimate the bilinear operator

= - Γ
Jo

= - f All2e-λ(t-s)AA-ί/2Pr'(v®w)(s)ds.
Jo

LEMMA 2.2. Let 0 < T < oo and

MΓ i Γ= sup |
ίe[0,T)

Λαt e the estimates

and

\(λ Y'2VSλ\v, w]|P,Γ g

r > 2, σ = 1/2 - 1/r; and M > 0 depends only on r and D.
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Lemma 2.2 is easily obtained with the aid of estimates (1.3) and the fact
that the linear operator A~1/2PF' is continuous in U- topology, l < r

< oo. The latter follows from the interpolation result :

) = D(Bϊ/2){]Xr = Wl r(D)2ϊ\Xr with equivalent norms

and the Poincare inequality

\ \ v \ \ r ^ C \ \ V v \ \ r for Ό€W^(D

which is valid since we assume that D is simply connected. By the standard
argument as developed in [9] the solution u given in Theorem 2.1 is smooth on
D x (0, T). When aeD(Ar\ u is regular up to the initial time t = 0. More
precisely, we have

THEOREM 2.3. Let aeD(Ar\ r > 2; then the solution u given in Theorem 2.1
lies in C*(D x [0, T))nC°°(5 x (0, T)) for some 0 < α < 1.

This regularity result is important in Section 3 in discussing the passage to the
limit ε->0 for approximate solution uε. A proof of Theorem 2.3 is found in
[7. 9]. The Holder continuity of u up to t = 0 in Theorem 2.3 is proved in [7]
only for r = 2 but, the proof given there applies also to the case of general r.

We now extend the local solution u of Theorem 2.1 to a global one. To
do so, it suffices in view of Theorem 2.1 (iii) to show the boundedness of the
norm | |w(ί) l l r as t approaches T. To this purpose we consider the vorticity
transport equation for ω = V x u :

do}
— + u-Vω = λAω (xeD, t > 0)
ot

(V)
ω|s = 0; ω|ί=0 = V x a.

Since V - u = 0, a standard argument shows

|| ω(t) ||β ^ || ω(s) \\q for 1 ̂  q ̂  2 and 0 ̂  s ̂  t.

Since

u(x,t)= K(x,
JD

y)ω(y, t)dy

in terms of the function K introduced in (1.6), the Hardy-Littlewood-Sobolev

inequality [16] yields

provided 1 < q < 2 and 1/r = ί / q — 1/2. These arguments, together with
Theorem 2.1, imply the following
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THEOREM 2.4 The local solution u of (1.8) given in Theorem 2.1 extends

uniquely to a global solution.

3. A-priori estimates for approximate solutions

Let a εX2,«,• Then, estimate (1.5) shows that the function αε = e~εAa, ε

> 0, belongs to Xr for all r > 2. Thus, by the results in Section 2 there exists a

global smooth solution uε to the integral equation (1.8) with uε(0) = aε. We

shall prove Theorem 1.4 by showing that, as ε->0, a subsequence of uε

converges to the desired solution with initial data a. To this end, we establish

in this section a-priori estimates for approximate solutions uε which are uniform

in ε > 0. These estimates will then be applied in Section 4 in discussing the

passage to the limit ε -» 0.

Consider the vorticity transport equation (V). Since aεeD(Ar) for all r

> 2, uε is in C*(D x [0, oo)) by Theorems 2.3 and 2.4. So there exists [5] the

fundamental solution

Γελ(x, t;y9s), 0 ̂  s < f

to the Dirichlet-Cauchy problem for the linear parabolic operator

d
Lελ = ~dt~λA +tvP

By the maximum principle for parabolic equations we see that Γελ > 0 for x,

y e D and 0 < s < ί, and

(3.1) ί Γελ(x, t y, s)ds ^ 1 ί ΓεA(x, t y, s)dx ^ 1.
JD JD

Notice that the latter estimate of (3.1) is valid since the function

x, ί y, s)dx, s < ί,v(y, s)=
JD

solves the backward problem

dv
V'(u,v) = 0 (s < t)

OS

and since Γ (wει;) = u£-Vv because Γ uε = 0. Moreover, we have the following

result of Nash [14]; see also [15].

THEOREM 3.1. There is a constant C > 0 independent of ε > 0 and λ > 0 so
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that

for all x, y e D and 0 ̂  s < t.

PROOF. We give a complete for the reader's convenience. It suffices to
show that, for all s < ί and x, y e D,

(3.2)

ί ΓβA(x,ί;y,
JD

I Γελ(x,ί;);,
J/>

with G! and C2 independent of 5, t, x, j; and ε > 0. Indeed, the result follows
by applying the Schwarz inequality to the Chapman-Kolmogorov relation:

, ί; y, s) = ΓεΛ(x, ί; z, τ)Γελ(z, τ; y,
JD

s)dz

for 5 < τ < ί. To show (3.2) we follow Nash [14]. We can assume (y, s) ='
(0, 0) and consider

E(t)= ί Γελ(x,ί;0,0)2dx.
JD

Then, since V - uε = 0 in D and wε v = 0 on S, we get

Et = 2λ\ ΓελAΓEλdx =-2λ(
JD JD

Using the inequality

which follows by combining

I l / l l 2 ^ l l / l l ι 1 / 3 l l / l l t / 3 and

we see from (3.1) that

Integrating this yields



Planar Navier-Stokes flows in a bounded domain with measures as initial vorticities 413

and this shows the first inequality of (3.2). The second one is similarly
obtained if we note that the function Γeλ( , y, s) is the fundamental solution to
the backward Dirichelet-Cauchy problem for the operator

8 _ d

ds ds ε

This proves Theorem 3.1.

Applying (3.1) and Theorem 3.1 to the relation

ωω(x, ί) = ΓεΛ(x, ί; y, 0)(F x aε)(y)dy,
JD

we easily obtain

ε q q

^Cq(λt

for 1 ̂  q ̂  oo, with Cq > 0 inedependent of ε > 0. Notice that here we have

used the fact that

V x aε = V x e~λεAa = eλεΔ(V x α),

where A is the Laplace operator with zero boundary condition, and therefore

| | F x d β | | 1 = | | ^ ( F x α ) | | 1 ^ | | F x f l | | 1 .

Furthermore, since

applying (1.7), (3.3) and the Hardy-Littlewood-Sobolev inequality [16] to

wε(x, ί) = K(x, y)ωε(y, t)dy
JD

gives

(3.4) I I " β W I I 2 , 0 0 ^C| |F x α | | l 9

(3.5) l l W ε W l l r ^ Cr(;iί)1/r~1/2||F x α l U for 2 < r < oo,

with Cr independent of ε > 0. Furthermore, we have

(3.6) \\Vuε(t)\\q^ Cβ(λί)~1 + 1/β | |F x α| | i for 1 < q < oo,

with Cq independent of ε > 0, which follows from the fact that function

FxX(x, y) is decomposed into the sum of a Calderόn-Zygmund kernel [12] and

a smooth function on D x D and hence defines a bounded linear operator in
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Lr(D\ 1 < r < oo. Since D is simply connected, ||Fι?||q is equivalent to the
norm of D(B\12). So, (3.5), (3.6) and the Gagliardo-Nirenberg inequality [6]:

I I / I I o o ύCII/Hi'2||F/||i/2

implies that (3.5) is valid also for r = oo.

LEMMA 3.2. The functions ωε(t), ε > 0, are uniformly bounded and
equicontinuous in ε > 0 on each bounded interval [0, T] in the vague topology of
measures.

PROOF. It suffices to show the existence of 0 < α ̂  1 such that

\(ωt(t),φ)-(ωt(s\φ)\ZC\t-s\

uniformly ε > 0, for each fixed φ e C2(D) with φ\s = 0. Indeed, the set of such
functions φ is dense in a predual {ψeC(D); ψ\s = 0} of M. We write

(3.7)

where

I(ωε(t), φ) - (ωε(s), φ)\ =
f fδω.

J.U φ\dτ

P P(zlωε, φ)dτ = λ
Js Js

ί(" Fω£, φ)dτ ί< oe, Vφ)dτ

An integration by parts gives, for t ^ 5,

(3.8) /! ^ λ | | Λ 0 | | o o | |ωεMτ^ Cφ(t - s),
Js

while (3.5) and (3.6) together imply that, for t ^ s,

(3.9) 12 :

Combining (3.7)-(3.9) yields the desired result.

4. Proof of Theorem 1.4

By (3.3)-(3.6) and Lemma 3.2 we may asuume that, as ε -* 0, uε converges
weakly in an appropriate sense to a function u satisfying

(4.1) x α| ι

for all 2 < r ̂  oo
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(4.2) || (F x u)(t) \\q ^ C^λtΓ1 + llq I I F x a \\ , for all 1 g q g oo

(4.3) || Fιι(ί) I ̂  Cr(Ai)~ * + 1/Γ|| V x α || , for all 1 < r < oo

and

(4.4) V x M : [0, oo)->M is vaguely continuous.

In this section we complete the proof of Theorem 1.4 by showing that the
function u is the desired solution of (1.8). We begin by establishing the
following

LEMMA 4.1. The function u is continuous from [0, oo) to L2'°°(D) in the
weak* topology.

PROOF. Since the predual L2>1(D) of L2'°°(D) is a separable Banach space,
the unit ball of L2'°°(D) is sequentially compact in the weak* topology
[22]. So, we need only show that

(4.5) n(tj-m(ί) weakly* in L2'°°(D)2

whenever £m->ί as w-»oo. Since the sequence u(tm) is bounded in L2'°°(D),
there is a subsequence, denoted again u(tm), which converges weakly* to some
function v. Since the weak* convergence implies the convergence in the
distribution topology, we see that (F x u)(tm) -> V x v in the distribution
topology. Hence, the vague continuity of F x u ensured by (4.4) shows F x v
= (F x u)(i). On the other hand, the boundedness of u(tm) in L2>00(D) implies
its boundednesss in Lq(D\ 1 < q < 2. Since the smooth functions are dense in
both the preduals of L2'°°(D) and Lq(D\ it follows from the Banach-Steinhaus
theorem that u(tm) -> v weakly in Lq(D\ 1 < q < 2. Hence υ G Xq, 1 < q < 2,
and therefore υ-v\s = 0. By Lemma 1.1, i e X2,π, and so we get v = u(t) by
Lemma 1.3. This proves (4.5).

We now show that the limit function u obtained above solves our original
problem. First observe that estimates (4.1)-(4.3) for the approximation uε

together imply

l|P(«β P rKII^Cβ | |uβ | | 2 β | |Fιιβ | | 2 βgCβ | |F x αll2^)1/*'3/2

for all 1 < q < oo with Cq independent of ί > 0 and ε > 0. Thus, if we write

uε(t) = e-
λ(t-η)Au&(ή)

for any fixed 0 < η < T/2 and notice that uε(η) e Xq with norms bounded
uniformly in ε > 0, then we can apply the standard arguments as given in [7, 9]
to conclude that the functions P(uε-Ϋ)uε are Holder continuous from [2//, T] to
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Xq, q>2, and the Holder seminorms are bounded above uniformly in ε
> 0. Hence, by [7, Lemma 2.14] we conclude that, for any 2 < q < oo,

-~ is bounded on [2w, T] uniformly in ε > 0.
at q

This, together with (4.3) and the compact embedding Λ^n Wl q(D)2 c Xq9

implies the existence of a subsequence, again denoted uε9 which converges as ε
-> 0 to u in the topology of C([2η9 Γ] Xq), Since

Γuε(2η) — ί
J2η

(4.6) uε(t) = e~λ(t~

multiplying both sides of (4.6) by an arbitrary test function vEXq>Γ\W1'q'(D)2

with l/q' = 1 — 1/q and then passing to the limit ε->0 yields

p
(4.7) u(t) = e~λ(t~2η)Au(2η) - e~λ(t~s)AP(u-F)u(s)ds in Xq9 2<q< oo,

J2η

for all t ^ 2η. Using the expression

and the boundedness of the operator A~1/2PF m L2, we can estimate the
integral of (4.7) in X2 as

g Cλ \\t - sΓ1/2||ιι(s)|βέfa ^ Cλ \ ( t -
Jo Jo

Hence,

Γ e-λ(t-s)AP(u V)u(s)ds^ \
J2η Jo

as

in the weak topology of X2. Since e~λ(t~2η)Au(2η)-^e~λtAa as η-+Q weakly*
in L2'°°(D)2, we conclude that function u is a desired solution.

We finally show the uniqueness of our solutions, assuming that ||Γ x α\\^/λ
is small. Let u and t; be two solutions with the same initial data α, and w = u
— v. Since

= - Γ
Jo

w(ί)

we obtain, for 2 < r < oo,

|| w ||Γ(0 ̂  C Γ [A(ί - 5)] - x / 2 - ^'(U u I + II u ||r || w \\r(s)ds.|Γ(ί) ̂  C Γ [A(ί - 5)]-*/2-^^(ll u||r
Jo
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This, together with estimate (4.1) for u and υ, implies

|w|rtΓ= sup μ^'^'ΊwlUO^CJFxfllUwl,.^
0 < f < Γ

for all T>0. Hence

|w|r>Γ = 0 provided C r | |F x a\\Jλ < 1.

This completes the proof of Theorem 1.4.

5. Proof of Theorem 1.5

This section establishes Theorem 1.5 by applying the vanishing viscosity
argument : λ -> 0 to the solutions of the Navier-Stokes equations (NS). Our
arguments go back to Bardos [2] and our result extends [10. Corollary 2.7],
which deal with the problem in the entire plane IR2, to the case of simply
connected bounded domains. Let uλ denote the global solution to (NS) given
in section 2, and let ωλ = V x uλ. A standard argument using (3.1) and
Lemma 1.3 together imply that if 2 < r < oo and l/q= 1/r + 1/2, then

(5.1) l l ω . W U ^ I I F x α l l , ;

(5.2) l | κ A ( ί ) l l r ^ C Γ | | F x α | | β ;

and

(5.3) I I F i i Λ O L ^ C J F x α L , l < s < o o ,

provided V x αeZΛ Let Vq denote the Banach space

equipped with the usual W1 ̂ -topology, any let F* be its dual space. Since Aq

gives rise to a linear isomorphism between Vq and F*,, l/q' = 1 — 1/g, and
since

we see that P(uλ-V)uλ are bounded in L°°(0, Γ; Vf). It thus follows that the
time-derivatives u'λ are bounded in L°°(0, Γ; FJ). Since

with continuous injections and since the first inclusion is compact, we can apply
the compactness theorem in [21, Chap.IΠ] to extract a subsequence, denoted
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again uλ, such that

uλ-*u in Ls(0, T ; X q )

for any fixed 1 < s < oo, and

(5.4) uλ-+u a.e. on D x (0, oo).

By (5.1)-(5.3) we may assume also that the limit function u satisfies

u e L°°(0, oo Xr) n L°°(0, oo Vq\ u e L°°(0, oo V}).

Now fix φeC^D)2 with V φ = § and φ v\s = 0. For any Γ>0 and
ψεC1^ Γ]; R) with ψ(T) = 0 the functions uλ satisify

(5.5) - Γ(ιιA, φWdt + λ (T(Vuλ, Vφ)ψdt - [(u, ® uλ, rφ)ψdt = (a,
Jo Jo Jo

where ψf = dψ/dt. Obviously, (5.2) and (5.3) imply

(5.6) λ

and

(5.7)

\ (ruλ,
Jo

(T(uλ,φWdt^ (T(u,φW
Jo Jo

as λ -> 0. It therefore remains to treat the nonlinear term of (5.5). By (5.4)
and Egoroff 's theorem there exists for each η > 0 a measurable set E c D
x [0, T] so that

\EC\ < η and M A - > M uniformly on E.

Hence we have

(5.8) I I (uλ (x) uλ) - (rφ)ψdxdt -> I I (u ® 11) (?φ)ψdxdt.

On the other hand, since | | M A ® W λ L / 2 are bounded in L°°(0, T) and since the
number η > 0 can be chosen arbitraly small, we get

jϊ |

and the right-hand side can be made arbitrarily small by the absolute
countinuity of the Lebesgue integral. This, together with (5.8), implies
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(5.9) (uλ®uλ,rφ)ψdxdt-+\ (u®u,rφ)ψdxdt
Jo Jo

as λ -> 0. It thus follows from (5.5)-(5.7) and (5.9) that

I (u, φ)ψ'dt + I (u (8) ii. rφ)ψdt + (fl, 0)^(0) = 0
Jo Jo

and part (iii) is proved. This shows in particular that

ιι' = -P(wF)weL°°(0, T;

Since weL°°(0, Γ; Fβ)n L°°(0, Γ; A,) by (5.1) and (5.3) with s = q, and since Xr

a Xqa V* with continuous injections, it follows that u is continuous from
[0, T] to Xr in the weak topology, and in view of the compactness of the
embedding Vq c Xq, that u is continuous from [0, T] to Xq in the strong
topology. This shows part (i). Now, part (i) implies (V x u)(tj -» (V x w)(ί) in

PF~1)β-topology, whenever tm -> ί. Since ||(Γ x w)(ί)ll g is bounded by (5.1), part
(ii) is proved in a way similar to the proof of Lemma 4.1. Part (iv) is obtained
from (5.3) and the Sobolev embedding

WltS(D) c Cl~2ls(D\ 2 < s < oo.

The proof is complete.
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