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1. Introduction

In the previous papers [3, 4], the author has given a method to determine
the potential force g(x) so that the period of the periodic solution of the equa-
tion

(i.i) ί?- + g(χ^°

may be an arbitrary given continuous function of the amplitude of the ve-
locity or an arbitrary given continuously differentiable function of the ampli-
tude.

Let R be the maximum velocity (i.e. the amplitude of the velocity) and
let a and b be respectively the positive maximum and negative minimum dis-
placement of x. Let τi/2 and τ2/2 be respectively the times required to reach
the state of the positive maximum displacement a and the state of the nega-
tive minimum displacement b from the equilibrium point x=0.

In his paper [1], Z. Opial called the quantities n and τ2 respectively the
positive half-period and the negative half-period, and discussed the various
relations between these half-periods and the potential force g(x).

The half periods τ, (& = 1, 2) are the functions of R. Further the positive
half-period n and the negative half-period τ2 are also respectively the functions
of the positive maximum displacement a and the negative minimum displace-
ment b.

Opial has proved under very mild conditions that g(x) is uniquely fixed if
τi=fi(α) and T2=t2(b) are given. But he has not given a method to determine
g(x) for which any solution of (1.1) has the given arbitrary fχ(α) and f2(6).

In the present paper, by means of the techniques used in his previous
papers [2, 3, 4], the author will give a method to determine g(x) so that either

1° τi and τ2 may be respectively arbitrary given continuous functions
fi(Λ) and f2(Λ), or

2° n and τ2 may be respectively arbitrary given continuously differenti-
able functions fi(α) and f2(δ) whose derivatives fulfill the Lipschitz condition.

The problem of "tautochronism" [1] is to determine g(x) so that r ι(R) and
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τ2(R) may be constants. The answer to this problem is readily derived from
our general results.

As is seen in the previous papers [2, 3, 4], the potential force g(χ) is
characterized by the odd function S(X) and the even function T(X)ι). In the
previous papers [3, 4], it has been shown that the continuous behavior of the
period determines the even function T(X) but it does not give any affection
to the odd function S(Z)υ. In the present paper, it will be shown that the
odd function S(X) is characterized by the difference of two half-periods. Evi-
dently the period is a sum of both half-periods. Thus we can say that the
even function T(X) and the odd function S(X) by two of which the potential
force g(x) is determined are respectively characterized by the sum and the
difference of two half-periods.

2. Preliminary theorems

The works of the present paper are based on the theorems in the paper
[3] and the lemma in the paper [4]. So, for the convenience of the readers,
they are restated in the present paragraph.

THEOREM A. Given the integral equation

(2.D

If f(R) is continuous, the continuous solution T(X) of (2.1), if it exists, is
uniquely determined by f(R) and given by

(2.2)

Conversely, if the function T(X) defined by (2.2) is continuous, then this func-
tion is actually a solution of (2.1) for a continuous /(/?).

If f(R) e CR for R^O, then the function T(X) given by

(2.3)

which is derived from (2.2) by integration by parts, is the unique solution of
(2.1).

THEOREM B. In case g(x) is continuous in the neighborhood of x=?0 and
differentiate at x=?0, if any solution of the equation (1.1) near x=x=Ό (•==
d/dt) oscillates around x=x—0 with a bounded period, then

1° the period ω(I>0) is expressed as

(2.4) ω

1) For instance, see Theorem B of the present paper.
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where R is the maximum velocity (namely the amplitude of the velocity)

and

(2.6) Ω(R)eCR, J3(0)-ω0>0;

2° the function g(x) satisfies the functional equation

c l + S ( B ) + τ

where S(X) is a continuous odd function and T(X) is a continuous even func-
tion such that T(0) — 0 and

Conversely, given any function Ω(R) for which (2.6) holds, if the even func-
tion T(X) defined by (2.8) is continuous, then the function g(x) which is deter-
mined by the functional equation (2.7) for an arbitrary continuous odd func-
tion S(X) and for the continuous even function T(X) defined by (2.8), is continu-
ous in the neighborhood of x = 0 and is differentiable at x=0. Furthermore,
for this g(χ), any solution of the equation (1.1) near x=x="0 oscillates around
x= χ = 0 with the given period ω = Ω(R).

In case Ω(R) e CR for R^>0, the relation (2.8) can be replaced by

(2.9)

whose right member is continuous. Consequently, for any given Ω (R) e CR with
J2(0)=ω0>0, there always exists a continuous potential force g(x) which is dif-
ferentiable at x—0 and for which any solution of (1.1) near x—x—0 oscillates
around x^x^O with the given period ω — Ω(R).

THEOREM C. Given an integral equation

(2.10)

where F(a) is a given function defined on /[O, /] (Z>0) satisfying the Lipschitz
condition:

(2.11) \F(ar)-F(aff)\<^L\a' -aff\ for va',a
f/€l (L > 0).

Let

(2.12) M=max|F(α)|.
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Then the integral equation (2.10) has, on /[0, α] , one and only one continuous
solution T(X) such that

(2.13) \T(X)\<K for ^Xe/,

where

Arc
(2.14) a = max min -

2Lωo(l+κ)

k being a positive constant less than unity and K is any value of non-negative
/e<l for which the minimum of the right member of (2.14) equals a.

Theorem A and Theorem B are respectively Theorem 1 and Theorem 2
of [3] and Theorem C is the Lemma of [4] in the case where S(X)=0.

3. The relations between g(x) and ?,(«) (ί = 1, 2)

Corresponding to Theorem B, we have

THEOREM 1. In case g(x) is continuous in the neighborhood of x = 0 and
differentiable at x—0, if any solution of the equation (1.1) near x—x=0 oscil-
lates around x—x—Q with a bounded period, then

1° the half-periods n and τ2 are expressed as

(3.1) T, = ?,(*) (£ = 1, 2),

where R is the maximum velocity

r dx Ί j
L dt J x=o'

and

(3.2) f f (R) e CR, ti (0) - TO = - | - > 0 (i = 1, 2)

2° ίfee positive maximum displacement a and the negative minimum dis-
placement b of x are connected with R as

(3.3)
To

π Jo

Jo

and the function g(x) satisfies the functional equations
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To p-j , -TT / \~~\J ί , 7Γ A

(3.4)
X

' TO 1 + V2(X)

where Vι(X) and V2(X) are the continuous functions such that Fi(0)=F 2(0) = 0
and

(3.5) kUΛi^W
(£ = 1,2);

3° ifϊi{R) e Cj? ( i = l , 2), (3.5) ccm δe written as

(3.6) W ^ ' ΐ w ^ ^or Z > 0

Conversely, given ΐi(R) e CR (ί — 1, 2) such that ?t (0) = τ 0 φ 0 (ΐ = l, 2)
either Vi(X) (̂  = 1, 2) determined by (3.5) are continuous or Ti(R) e C^ (ί = l, 2),
ίfcere exists a unique continuous potential force g(x) which is differ entiable at
x~0 and for which any solution of (1.1) wear # = ^ = 0 oscillates around # = £ = 0
with the given half-periods f, (R) ( i ^ l , 2). iw ίfcis case, the function g(x) is
determined by the functional equations (3.4) for Vi(X) (£ — 1, 2) determined by
(3.5) or (3.6).

PROOF. If we write the equation (1.1) in a simultaneous form as

/ dx __

then the periodic solutions of (1.1) are represented by the closed orbits

(3.8) -γ-y2 + G (x) - const.

in the phase plane, where

(3.9)

Hence we have

(3.10) \rR2 = G(a) = GQ>) (b<0<a,R>0)
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and

(3.11)

If we put

(3.12)

then

Minoru URABE

d x

o <]R2-2G(x)

X — "
2τr

from which, by (2.7), follows

Consequently, by (3.9) and (3.12), it holds that

(3.13) GW-yl2.

Comparing this with (3.10), from (3.12), we have

(3.14)
2τr Jo

2τr Jo

because GXx)=?g(x)φO for xφO as is seen from (2.7).
By the substitution (3.12) and (3.14), the formulas (3.11) can be rewritten

as follows:

(3.15)

Let us put

(3.16)

±
o \IR2—X2

x 1-SQQ + ΊXX)
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then (3.15) can be written as

(3.17) τι = h m =

This can be rewritten also in the forms

n - ΐi(Λ) = -J- j * ' * ίl + Vi(R cos Ψy\dφ (i = 1, 2).

From this readily follows (3.2).
By the substitution (3.16), the equalities (3.3) and (3.4) follow respective-

ly from (3.14) and (2.7).
Since S(X), T(X) e Cx and S(0) = Γ(0) = 0, it is evident that

By (3.2), the equalities (3.17) can be written as

(3.18)

These are of the form (2.1). Therefore, applying the formulas (2.2) and (2.3)
to (3.18), we have (3.5) and (3.6).

The converse parts of the theorem are proved as follows.
For the continuous functions Vi(X) (£ = 1, 2) determined by (3.5) or (3.6),

let us determine the function g(x) by (3.4) as follows:

for x ;> 0,

(3.19)

for *

(3.20) g(

Then, for either of (3.19) and (3.20), it holds that

dx

from which follows (3.13). Then, by means of the latter equalities of (3.19)
and (3.20), we have (3.3) similarly as (3.14).

For any solution of (1.1) with g(x) determined by (3.19) and (3.20), the
half-periods T | (i = 1, 2) are given by (3.11). Then, substituting (3.13), (3.3) and
the latter equalities of (3.19) and (3.20) into (3.11), we have
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This is (3.17) themselves. Thus, for continuous Vi(X) (i = l, 2) determined by
(3.5) or (3.6),

The uniqueness of g(x) follows readily from the uniqueness of Vi(X) (i —
1,2).

Thus the theorem has been proved completely.

THEOREM 2. Assume that the function g(x) satisfies the conditions as fol-
lows:

(i) g(x) e Cx for x^>0 in the neighborhood of x=?0;
(ii) g(x) > 0 for x > 0 and g (O) = 0

(iii) g(x) is right differentiate at x=0 and its right derivative at x—0 does
not vanish.

Then the positive half-period n is defined for any solution of (1.1) near x=x—
0 and 1°, 2° and 3° of Theorem 1 are all valid so far as n and Vι(X) are con-
cerned.

Conversely, for any given Xι(R) € CR such that xι(0)=τ0φ0 and either Vι(X)
determined by (3.5) is continuous or Xι(R) e CR, there exists a unique g(x) for
x~^>0 which satisfies the conditions (i)-(iii) and for which the positive half-period
of any solution of (1.1) is xι(R).

If we replace the conditions (i)-(iii) by those as follows:
(i') g(x) e Cx for x<L0 in the neighborhood of x=0;

(ii') g(χ) < 0 for x< 0 and g(0) = 0
(iii') g(χ) is left differentiate at x=0 and its left derivative at x=0 does

not vanish,
then the similar results stated above hold all for the negative half-period τ2 and
V2(X) instead of the positive half-period n and VΊ(X).

PROOF. When g(x) satisfies (i)-(iii), we construct a function h(x) so that

-g(-χ) for ^

Then h(x) is continuous in the neighborhood of x = 0 and is differentiate at
x=0, and furthermore

xh(x)>0 for * φ θ and h'(O)ψO.

Then, by the Lemma1} of [3], any solution of the equation

(3.23) - | 5 - + A(Λ.) = o

1) The Lemma of Q3] reads:
If g(x) is continuous in the neighborhood of x = 0 and differentiable at x — 0, a necessary and suf-

ficient condition in order that any solution of the equation (1.1) lying near x = x = 0 may oscillate
around x = x~0 with a bounded period, is that xg(x)>0 for x^O, g(0)=0 and
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near x=?x=0 oscillates around x=x=0 with a bounded period. Moreover, by
(3.22), for Λ ^ O , any solution of (1.1) is also a solution of (3.23) and vice versa.
Thus, by Theorem 1 applied to (3.23), we see that the positive half-period n
is defined for any solution of (1.1) near x=x=0 and 1°, 2° and 3° of Theorem
1 are all valid so far as n and VX(X) are concerned.

Conversely, let us suppose there is given ?i (R) e CR such that ?i (0) = τ0 φ
0 and either Vi(X) determined by (3.5) is continuous or ?i(R) e CR. Let us take
t2(R) = Tι(R). Then, by Theorem 1 and the Lemma of [3], there exists g(x)
which satisfies the conditions:

g(x) e Cx in the neighborhood of x = 0;
g(x) is differentiate at x =* 0;
xg(x) > 0 for xφO and g '(O)φO,

and for which both half-periods of any solution of (1.1) are fi(Λ). Evidently
this g(x) satisfies (i)-(iϋ) for %>0.

Now, for any g(x) which satisfies (i)-(iii) and for which the positive half-
period of any solution of (1.1) is given ?i(j?)5 (3.5) or (3.6) holds for ί = l by the
fact proved in the beginning. Consequently Vχ(X) is uniquely determined by
fI(JR) only. Then, by the first of (3.4), g(x) is uniquely determined for x^>0 by
?i(R) only. Thus we see the uniqueness of g(x) which satisfies (i)-(iii) and for
which the positive half-period of any solution of (1.1) is given f i(Λ).

The second half of the theorem can be proved likewise.

THEOREM 3. // the positive half-period of any solution of (1.1) with g(x)
satisfying (i)-(iii) of Theorem 2 is constant, then, in the neighborhood of x = 0,

(3.24) g(x)=>(-f-)x for *^0,

where c is a constant to which the positive half-period is equal.
The similar equality holds also for χ<LQ when the negative half-period of

any solution of (1.1) with g(x) satisfying (i'Xiii') of Theorem 2 is constant.
If the half-periods of any solution of (1.1) with g(x) satisfying the condi-

tions :

g(x) € Cx in the neighborhood of x = 0;
g (x) is differentiate at x = 0
χg(χ)>0forxφ0,

are both constant, then both half-periods are equal to each other and

in the neighborhood of x = 0, where c is a constant to which both half-periods
are equal.

This theorem readily follows from (3.2), (3.4) and (3.5).
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The last part of Theorem 3 is our answer to the problem of utautochron-
ism" stated in §1.

4. The relations between g(x) and (f i(α), f 2(J>))

Making use of Theorem C, we obtain

THEOREM 4. In case g(x) is continuous in the neighborhood of x — 0 and
differentiate at x=?0, if any solution of the equation (1.1) near x=?x=>0 oscil-
lates around x=x—0 with a bounded period, then

1° the half-periods τλ and τ2 are expressed as

(4.1) τi = fi(α) and τ2==r2(b),

where a and b are respectively the positive maximum and negative minimum
displacements of x and

(4.2) rx{a), τ2(b) e C, f,.(0) = T o = - ^ > 0 (£ = 1,2);

2° a and b are connected with the maximum velocity R as (3.3) and the
function g(x) satisfies the functional equations (3.4), where V\(X) and V2(X) are
the continuous functions such that Fi(0) = F2(0) = 0 and

(4.3)

for X>0,

for X>0;

(4.4)

TO aΛ

3° if ΐι(a) and ΐ2(ό) are continuously differentiable, (4.3) can be written as

for X>0,

IR for X>0.

Conversely, given tι(a) e Cl such that Vι(0) = τ0φ0 and f/(a) fulfills the
Lipschitz condition, there exists a unique g(x) for x^>0 which satisfies the con-
ditions (i)-(iii) of Theorem 2 and for which the positive half-period is the given
f i (a). In this case, g(x) is determined for x ̂ > 0 by the first functional equation
of (3.4) for Vχ(X) determined by the unique solution of the first of (4.4).

Given f2(6) e Cl such that ΐ2(0)=τ0φ0 and ΐ2(b) fulfills the Lipschitz condi-
tion, there exists a unique g(x) for x<L0 which satisfies the conditions (i'XmO
of Theorem 2 and for which the negative-half period is the given t2(b). In this
case, g(x) is determined for x<L0 by the second functional equation of (3.4) for
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V2(X) determined by the unique solution of the second of (4.4).

Given both fx(α) € Cl and τ2(Jb) 6 Cl such that f1(0)=f2(0) = τ0=^=0 and both of
tι(a) and ΐ2(b) fulfill the Lipschitz condition, there exists a unique continuous
potential force g (x) which is differentiable at x = 0 and for which any solution
o/(l.l) near x=x = 0 oscillates around x=?x=?0 with the given half-periods fχ(α)
and r2(b). In this case, the function g(x) is determined by two functional equa-
tions of (3.4) for Vι(X) and V2(X) determined by the unique solutions of (4.4).

PROOF. The conclusions l°—3° follow readily from 1°~~3° of Theorem 1
by the substitution (3.3).

The equations (4.4) are evidently of the form of (2.10). Therefore, by
Theorem C, each equation of (4.4) has one and only one solution in the neigh-
borhood of X=0 provided f/(α) or τ2(b) satisfies the Lipschitz condition respec-
tively.

Then the converse parts of the theorem readily follows from Theorems 1
and 2.

This theorem gives not only the uniqueness of g{x) but also a method to
determine g(x) in the case where f i(α) and f 2(δ) are both given.

5. Characterization of the odd function S(X) in (2.7)

As is seen in the proof of Theorem 1, two equations of (3.15) are valid
for two half-periods, where S(X) and T(X) are the functions connected with
g(x) by (2.7).

By (3.2), (3.15) can be written as

Jo V^ 2 -X 2

(5.1) j

I 2τo Γ* 1-S(X)+7PD
[τ2 = r2 (Λ) = — } - ^- 2—- χ 2 dX.2 χ 2

From these readily follow

(5.2)

(5.3)

since fi(Λ) + τ2(R) = ω = Ω(R). The equations (5.2) and (5.3) are of the form
(2.1). Therefore, by Theorem A, we have

( 5 . 4 )



122 Minoru URABE

The equation (5.5) is (2.8) itself in Theorem B.

In case f, (Λ) e CR (£ = 1, 2), by Theorem A, (5.4) can be written as follows:

(5.6)

From (5.4), it readily follows that fi(Λ) = f2(Λ) implies S(X) = 0. As is
stated in [3], S(X) = 0 implies that g(x) determined by (2.7) is odd.

Thus we have

THEOREM 5. If g(x) is continuous in the neighborhood of x=0 and differ-
entiable at x=0 and further any solution of (1.1) near x=x=0 oscillates around
x=x—0 with a bounded period, then g(x) satisfies the functional equation

where S(X) is a continuous odd function such that (5.4) or (5.6) holds and T(X)
is a continuous even function such that JΓ(O) = O and (2.8) or (2.9) holds.

THEOREM 6. Under the same assumptions as Theorem 5, if both half-
periods of any solution of (1.1) are always equal to each other, then g(x) is odd
and vice versa.

The converse is evident from the symmetry of the closed orbits (3.8).
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