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A non-cooperative n-person game is originated by J. F. Nash (7. It is
a game in which each player acts independently without collaboration or
communication with any of the others, thus it admits no coalitions [8] formed
by the players of the game. He has introduced the notion of equilibrium
points in an n-person game [6] which yields a generalization of the concept
of the solution of a two-person zero-sum game, and has proved that any
finite non-cooperative game has an equilibrium point. The purpose of this
paper is to show the existence of an equilibrium point of a stochastic game,
defined below, in which each component game is an infinite non-cooperative
n-person game. The proof will be carried out by making use of a fixed point
theorem due to K. Fan 2] and I. L. Glicksberg [4] which is a generaliza-
tion of a theorem of Kakutani [5] to a locally convex space. This proof
given here is closely related to that of A. M. Fink [3].

We shall concern ourselves with a stochastic non-cooperative n-person
game. First we begin with its definition. Let I={1, 2, .-, s} be a finite set
of states. There is assumed to be associated with each state ;i and Player 7 a
compact space > called a strategic space. Let us denote by Wt] the set of
regular probability measures in >3} which is referred to as the space of
mixed strategies of Player 7 at the state i. We put on >3 the vague topology
so that it is a compact space [1]. Let us denote by g;(¢")(=gi(0i,---, 0})) the
gain of Player 2 when each player k chooses a pure strategy ¢i( € >3i) at the
state i. Here we assume that the function g is continuous in >3{ x ... x >3},
so that there exists a positive number NV independent of i, 2 such that |g;|<
N. Theset I'"'=C3, -, >3, gl -5 gh, P, -, M) will be referred to as an
i-th component game of the stochastic non-cooperative n-person game which
will be defined below. At the state i, each player chooses a pure strategy
oi € >\ independently of the others, where Player 4 is assumed to use a mixed
strategy #;( € M}). Once the choice has been made, the game proceeds to a
next state j with transition probability p”(¢") assumed to be continuous in

/g >3i, or stops with probability p°(6?) assumed to satisfy the condition
h=1

inf p"*(6") =p° > 0.
i,gt
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7 . . ; 3 4 . >4 .
Let us denote by /' an n-dimensional vector (#i, ..., #i) € II Wi, by (&'; 0}) an
h=1
n-dimensional vector (#i, -, #j_y, 0}, #j.1, -+, #3), and by /i; an s-dimensional
vector (4}, ---, 13) € jrg M. A stochastic non-cooperative n-person game I” is
i=1

defined as a collection of all 7', p”/, and p® for i, j=1, ..., s, where the payments
accumulate throughout the course of the play (ef. [9],[10]). There we note
that each player uses the stationary strategies.

Now we consider the infinite game I'* which starts at the state ;. Then
the expected value Gj(iy, -, i,) of the gains of Player % is given by

@ Gi(dy, -y ) =gh () + .le” (@)gi (&) +
=

333307 @A) + oo
as
i=1,---,8; h=1, ..., n.
The right hand series of (1) is clearly absolutely convergent.

Derinition 1. We say that (4, -, Z,) is an equilibrium point of the
infinite game I’ when

(2) G/’;(/&b Tty /Ih—la 5]1) :Z‘h-f—l’ ity ﬂn)ég;:(/zly “rvy /1”)

for any 0, ¢ ﬁim;; and for every 4.
i=1

It is our main purpose to prove that the infinite games I'' (i=1, ..., s)
have equilibrium points. Now it is obvious that {G;(i, ---, &,)} is a unique
solution of the simultaneous system of linear equations with unknowns v}:

€) vp =g (4" + Xipij(ﬁi)v{;, i=1,.,8h=1, ., n
=

For 9= {vi}, i=1, ..., s; h=1, ..., n, we use the notations #,= (v}, ---, v]) and

o= (i, -, v}).

Dermvition 2. We say that (i, ..., Z,) is an equilibrium point of the
stochastic game I" when

G;l (/}19 Tty /'-Zh—la 5/!3 :ZZIH—I’ Tty ﬁn)éG}’z (/219 ] ﬁn)

for any 0, ¢ big M; and for every 4 and ;.
i=1
We shall show the following
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Turorem. Any stochastic game I has an equilibrium point.

Proof. Let I be an interval [ — A4, 4] such that N/p°< 4. Let us denote
by 7, w ns-dimensional vectors €Ix...x I, and by £, 9, ns-dimensional vectors

S——

EMx ... xWPW. Put K=Ix.. . xIxPMix...xP. It is a compact convex set
of a locally convex space. Consider a point to set mapping

0: (3, 4) (€ K)—(w, 6@, i),
where % and ¢(3, #) are defined as follows:

@ wj = sup [gi(&'; 0}) + >3p"”(&'; 0})v} ]
J

P hEJJL‘h

and b€ ¢(3, ) if and only if

5 ] PP i SN A N
® wi=gi(ﬂ;v;,)+,zlp’(/z;vh)v2-
7=

According to our choice of 4, it is clear that % € Ix ... % l and that ¢(3, 2) is
a compact convex subset of Mix...xP. If we can show that the mapping
® is upper semi-continuous, or the graph of the mapping is closed, then we
can apply a theorem of Ky Fan [27] to conclude that there exists a (3, %) such
that (3, i) € 0@, f), that is, by (4),

(6) vi= sup [gi(i'; Oh)+2]p”( AL

pip€ Wity

and by (5), we have

7 o ; v iigyi Y]
i=

Now we proceed to the proof of the upper semi-continuity of our mapping
@. In terms of nets, it will be sufficient to show that

3 if %9, ws—w, 45—, and Ps(€ ¢ (s, fs) > D,

then (i, V) € 0@, #). In fact we have
wiy =g i (as; 0) + Z lj(ﬂé; O}V,

and
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why = g} (ks vi) + 3307 (B vis)vhe
Passing to the limit, we have
wi =gl (' 0) + 33p" (& 0,
and
wh = gh (25 9 + 33p7 (s 9o,
which prove that (i, ) € @(3, &).
Let us consider a (3, i) € 0(%, i), whose existence has been proved above.

We shall show that (i, ---, £,) is the equilibrium point of the stochastic game
I'. By (6) we have

vi Z g o)+ 217G oo,
Put
©) ui = gi (2 0D + 33p7 (&5 0o,
Then ui<v} for i=1, ..., s. We have
(10) ghCA's 0)) + S3p7 (A 0)ui <]
By (9) and (10) we have
WD) vfzgi(d; o)+ 2P 0 Lgh (&5 0 + PG
Zgi (5 o)+ 23p7 (A 0Dgl (W5 o)) + ST 0P A 0D gh(EY; 0B+ -

j=1lk=1

= G;; ([51, Ty [‘h—l, 51:, [lh+1, ) [‘n)

On the other hand, {vi} is a solution of (8), whence v} =Gi(i, -, i,) as
already remarked. Then the inequalities yield

Giiz(l&la Tty :&h—ls 5'17 /&h—"l, Tty ﬁ,,)g_G;,(/}l, Tty l&n)
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for any 0, € i Mi. Thus our theorem is proved.
i=1

£
2]

03]
[4]
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