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Introduction. It has been clarified that the ideal boundary of a Riemann
surface introduced by Kuramochi Q6] enjoys many properties possessed by
the usual relative boundary of a bounded plane domain. A purpose of this
note is to show that the Kuramochi boundary also has the property that
almost every Green line tends to one boundary point.

On the other hand, an analogous definition of the Kuramochi boundary
can be given for a Green space introduced by Brelot-Choquet [ΊΓ]. In this
note, we shall lay down a definition following the method of Constantinescu-
Cornea Q3] and we shall obtain the property mentioned above and some other
related properties for the Kuramochi boundary of a Green space.

§ 1. Green lines and a compactification

Let Ω be a Green space and G(a, b) be the Green function for Ω. For the
definitions and properties of these and following notions, we refer to Brelot-
Choquet Q2]. We consider the Green lines in Ω determined by G0(a)=G(a, α0)
for a fixed point α0 e Ω. The set L of all Green lines admits the Green
measure r. A Green line / for which inf G0(a) = 0 is called a regular Green

aCl

line. Any regular Green line tends to the ideal boundary of Ω as G0-^0. The
set of all regular Green lines will be denoted by Lr. It is known that
r(L-L r) = 0.

Given a real function / on Ω and / 6 Lr, let lim f (resp. lira /) denote the
~~

_ _
upper limit lim /(a) (resp. the lower limit lim /(a)). If lim / = lim/; then we

~ ~ ~

~ a V Λ

Gota)-+0 Gota)-+0

say that / has limit along /. Let CGoCί2) be the set of all bounded continuous
functions on Ω having limit along almost every I € Lr (with respect to r).

For a compactification Ω* of Ω, let

C(ώ*) = {/U; / is continuous on Ω*} .

A family Q of real functions on Ω is said to separate points of A — Ω* — Ω, if

for any δi, ό2 e J (7>ι Φ 62), there is feQ such that lim/(α)>ϊim/(α).
a^bi a-^bz
αCΩ a€ Ω
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THEOREM 1. Let Ω* be a compactification of Ω. If one of the following
conditions is satisfied, then almost every Green line tends to one point of A:

i) There exists a countable family Q of functions on Ω such that any /e Q
has limit along almost every I e Lr and Q separates points of A.

ii) Ω* is metrizable and C(ώ*) <Ξ CGo (fi).

PROOF. First we assume condition i). For /6Q let A/= {I eL r; lim/Φ

lim f}. Then, by assumption, r(Λ/) = 0. Since Q is countable, we have r(\jAf)
I f€Q

= 0. On the other hand, if l$\jΛf, then lim/=ϊϊm/ for all /e Q. Let bί9 b2
f*Q i i

be limit points of Z on J. It follows then that lim/(α) and lim/(α) exist and
~ -

_

are equal to lim / = lim/. Hence

a~*bι
aC I a€ I

<lim/(α) = lim/(o)<ίίϊn/(α)
- ~

for all fe Q. Since Q separates points of J, we cannot have £ιφδ2. Therefore,
there is only one limit point of Z on A for I $ \J Af.

If condition ii) is satisfied, then C(J2*) is separable in the uniform con-
vergence topology, so that there exists a countable family Q which is dense
in C($*). Then it is obvious that ^satisfies condition i).

REMARK: Conversely, if almost every Green line tends to one point
of J = J2*-β, then C(Ω*^CGo(Ω) and condition i) without the countability of
Q is valid.

§ 2. Application of Godefroid's result.

We follow Brelot Ql] for the definition of BLD functions on a Green
space Ω. The following result is due to Godef roid

LEMMA 1. Any BLD function on Ω has limit along almost every Green
line.

Let CD(Ω*) = {/ e CCfl*) / is a BLD function on Ω} . Then Lemma 1 implies
that CD(Ω*)^CGQ(Ω\ Thus, the following theorem is an immediate consequ-
ence of this lemma and Theorem 1 :

THEOREM 2. Let Ω* be a compactification of Ω. If one of the following
conditions is satisfied, then almost every Green line tends to one point of A~
Ω*-Ω:

i) There exists a countable family of BLD functions separating points
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of A.

ii) Ω* is metrίzable and CD(Ω*} separates points of A.

COROLLARY. Let Ω be a hyperbolic Riemann surface. Then almost every
Green line tends to one point of the Kuramochi boundary1^ of Ω.

PROOF. By [ΊΓ], §16, we see that the Kuramochi boundary is determined
by a family of BLD functions2) on Ω. Since the Kuramochi compactification
is metrizable, the corollary follows from the theorem.

REMARK: If Ω* is not metrizable, then the fact that CD(Ω*) separates
points of A does not necessarily imply that almost every Green line tends to
one point of A. For example, if J2J is the Royden compactification (pΓ], §9),
then no point of AD = Ω^ — Ω is accessible, so that no point of AD can be the
end point of a Green line. By definition, CD(&D) separates points of AD in this
case.

§ 3. Kuramochi boundary of a Green space.

In this section, we shall give a definition of the Kuramochi boundary of
a Green space following the method of [ΊΓ]. We start with recalling some
known results on BLD functions most of which are found in [TJ. (There is
also a summary on properties of BLD functions in the introduction of Doob

MO
Let Ω be a Green space of dimension > 3 . For a set ffζ^Ω, let ff = ff —

{points of infinity}. The set of all BLD functions on Ω will be denoted by
D = D(Ω\ Obviously, D is a linear space. For any /I, fazΌ and for any

measurable set σ in Ω, </Ί, /2 > σ = \ (grad /i, grad fydυ (dυ is the volume

element in Ω) is defined. We write \\f\\σ = «f,f>^1 for /eZλ We often
write </ι,/2> and |j/lj instead of < / ι , / 2 > ^ and \\f\\Ω respectively.

We say that /i e D and /2 € D are equivalent if ||/ι - / 2 [[ = 0. For /i, /2 e D,
they are equivalent if and only if fi = / 2 + const, q.p. ("Q P " is the abbreviation
of "quasi-partout" meaning "except on a polar set". See [2] and [1].) The
space D^D(Ω) of the equivalence classes becomes a Hubert space with respect
to the inner product induced by < / ι , / 2 > . We denote the equivalence class
of / by / . The linear space D is the direct sum of two subspaces HD and Z)0,
where HD is the space of harmonic BLD functions on Ω and Z)0 is the space
of BLD functions of "radiale nulle" (See [T]. They are called BLD functions

1) For the definition of the Kuramochi boundary of a Riemann surface, see [IΓj and Q3J, §16.
2) It is not difficult to see that the family of BLD functions on a Riemann surface coincides

with the family of Dirichlet's functions in the sense of £3].
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of potential type in [4].) Then D = HΪ)^)DQ, where the direct sum is topolo-
gical, i.e., HD, D0 are mutually orthogonal closed subspaces of D. Let CJ =
CD(U) be the space of all functions on Ω each of which is infinitely differenti-
able on Ω, has finite Dirichlet integral and has compact support. Then Cζ^Do

and CV = DQ.

LEMMA 2. If fn, f£ D, /»->/ and /»->/ on a non-polar set, then there
exists a subsequence {fnk} such that fnk-+f q P on Ω.

PROOF. This is immediate from [ΊL], n° 16, a).

THEOREMS. Let δ be a non-polar closed set in Ω and let D8={feD;
f= 0 q.p. on δ} . Then D8 is a closed subspace of D.

PROOF. Obviously, D8 is a linear space. Let {fn} ^Z)δ, / „ - > / for an
f€D. Then, by the above lemma, there exists a subsequence {fnk} such that
fnϊ+f q.P. Then / = 0 q.p. on ff, i.e., / e D8.

THEOREM 4. Let fcD and let δ be a non-polar closed set in Ω. Let (/)δ

be the projection of f onto D8. Then there exists a uniquely determined f8 £ D
such that a) / — /δ = (/)δ5 ty f=fs on δ and c)/δ is harmonic on Ω — δ.

PROOF. Let/! e (/)δ and / 0 = / - / l β Since /i e Z)δ, /<>=/ q.p. on δ. Let ω
be any component of Ω — δ. For any φ e C£ (ω), we extend ^ by 0 outside α>.
Then ^ e CD(Ω) and ̂  e D8. Since (/)δ is the projection of / onto D8, / — (/)*
is orthogonal to ^. Hence <f—fl,φ>=Q or </0, ^ > = 0 or </0, ^ > ω = 0.
This implies that /0 1 « is orthogonal to D0(ώ), so that / 0 1 ω e HD(ω\ Therefore
there is a harmonic function &ω on ω such that/ 0 = Mω q.p. on ω. Now let

Γ/ on δ

β = \
[uω on each component ω of J2 — δ .

Then, by the above argument, we see that /δ =/ 0 Q P on J?. Hence /δ e D and
/ - f8 = / - /o = /i = (/)*. Therefore /δ satisfies a), b) and c).

Next, suppose g satisfies the properties of /δ given in a), b) and c). Then
a) implies g=/8. Therefore, by b), we have g=f8 q.p. on Ω, everywhere on
δ. Now it follows from c) that g=f* also on Ω — δ and the uniqueness of /δ

follows.

DEFINITION. Let

N= {/£ -D; /=/« for some non-polar compact set δ in Ω}.

The compactification Ω^ of Ω determined by TV, i.e., the compactification such
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that every function of N can be continuously extended over Ω% and TV sepa-
rates points of ΔN = Ω% — Ω, is3) called the Kuramochi compactification of Ω
and AN is called the Kuramochi boundary of Ω.

The following properties of f8 can be proved in the same way as Satz
15.1 in [3]:

(1) ll/*II<li/II, </ δ ,#>=Oforall#eZ) δ .
(2) (<xf+βg)§ = afs-\-βgs, where α, /? are real numbers.
(3) If / = const., then fs =f.
(4) ϊ f / > 0 , then/ δ >0.
(5) If <J, δ' are non-polar closed sets such that δ^δ', then/δ = (/δ)δ/ = (/δ,)δ.
(6) If o) is a component of Ω — d, then /8=/aω on a). (9α) is the boundary of to
in £.)

§ 4. Metrizability.

We may proceed to define the kernel of Kuramochi's type4) on Ω and see
that the Kuramochi compactification is metrizable. But, for our purpose
here, we can directly show that there exists a countable family of BLD
functions in N separating points of ΔN.

LEMMA 3. Let fn, fe D and d be a non-polar closed set in Ω.
(i) ///„=>/ (uniformly convergent) on dδ, then (/w)δ=£/δ on Ω — d.
(ii) // δ is compact, fn~+f and /«->/ q.p. on <J, then there exists a subsequ-

ence {fnk} such that (fnk)s=3fs on Ω — ώ for any relatively compact open set ω
containing δ.

PROOF, (i) By (4) and (6) in the previous section, we see that / > 0 on
dδ implies / δ>0 on Ω — δ. If /»=$/ on dδ, then for any ε>0 there exists n0

such that n>n0 implies \fn—f\<β ondδ. Hence | (/M)8 — /δ | <εδ = ε on Ω — δ.
Therefore, (fn)s=ϊfs on Ω-δ.

(ii) By (2) and (1) in the previous section, we have

Hence, /„->>/ implies that (/»)a->/8. Now, (fn)s=fn-+f=fs q.p. on δ. Hence,
by Lemma 2, there exists a subsequence {fnk} such that (/WA,)S~>/S q.p. Since
(/»Λ)δ, /s are harmonic on Ω — δ, the convergence is uniform on dω. Hence, by

3) The existence and the uniqueness (up to a homeomorphism) of such a compactification are
assured by a general theory. Cf. Q3J, §9.

4) The kernel is denoted by N(z, p) in ([6], by g in [ΊΓ} for Riemann surfaces. To construct a
potential theory on the Kuramochi compactification, it should be preferable to consider the kernel
first.
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(i), we have ((/«Λ)8)ω =* (/i)* on Ω-ω. Then it follows from (5) that (/**)«=*/«
on Ω — co.

THEOREM 5. There exists a countable subfamily of N which separates
points of AN.

PROOF. Let {ωn}n=ι,2,... be an exhaustion of Ω, i.e., let each ωn be a
relatively compact domain, ώnCωn+ι and \Jωn=Ω. We assume that dωn does

n

not contain points of infinity for each n. Let

Cw = {fc C#; the support of/ i s contained in <#w+ι},

7i = l, 2, .... Then Cn can be regarded as a subspace of C(α)wfl). Since C(a>»+ι)
is separable with respect to the uniform convergence topology, Cn is also
separable. Hence there exists a countable family Qn which is dense in Cn.

Let Q= 0 {#«>„; # 6 Q»} Obviously, Q^N and Q is a countable family. We
n = l

shall show that, for any f e N and for any ε>0, there exist n and g e Qn such
that |g ώw—/I <ε on Ω — ωn+ι. Then it follows that Q separates points of ΔN.

Let ftN and ε>0 be given. There is a non-polar compact set d such
that /=/8. Choose n such that α>Λ ̂  ί. Since 9ωn does not contain points of
infinity, we can construct a function φ which is infinitely differentiate on Ω,
is equal to 1 on ώn and whose support is contained in the set o)n+ι— {points of
infinity in ωn+ι — ωn). Then it is easy to see that <PfcDQ and <Pf=f on ωn.
Since φf€ DQ(ωn+ι) and Cn(ωn+ι) is dense in D0(ωn+ι\ there exists a sequence

{fm}^Cn such that / w ->^/. Since /w, ^/ are zero outside ωn+ι, we can apply

Lemma 2. Therefore, taking a subsequence, we may assume that fm-*Φf Q P

on J2. By the above lemma, we can choose a subsequence {fmk} such that

(/Ό*«=*(φfK=f*n=f o n 5-ΰ>»+ι Hence, there is gL 6 Cw such that | (gι^n-

f\ < - | - on ώ — α>Λ+ι. Since Qw is dense in CΛ, there exists g e Qw such that |g —
Zί

gι < - | - . Then |gώn-(g ι)ώnl < - | - 5 so that |g s n - / | <ε on Ω-ώn+l.

COROLLARY. Ω% is metrizable.

THEOREM 6. For a Green space of dimension > 3 , almost every Green
line tends to one point of the Kuramochi boundary.

PROOF. This is an immediate consequence of the above theorem and
Theorem 2, since V̂ consists of BLD functions.

§ 5. Harmonic measure and Green measure.

For a compactification Ω* of a Green space £, we can discuss the Dirichlet
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problem (cf. [3], §8, also [2], VI). Namely, given a real function φ on Δ =
Ω* — Ω, we set ^φ= {s; superharmonic and bounded below on Ω, lim s(a)>φ(b)

a-^b

for each 6 e J}U{oo}? d φ = { — s; s 6<d-9}5

fip = inf 3,, and fi^ = sup 3φ.

If ΐίφ — Hφ and is harmonic, then ^ is called resolutive and if any φeC(A)
(the space of continuous functions on A) is resolutive, then we say that Ω* is
a resolutive compactification (cf. [3], §8).

We know that, if Ω is a hyperbolic Riemann surface, then the Kuramochi
compactification is resolutive ([ΊΓ], §16). We shall show that this is true also
for a Green space of dimension > 3 .

LEMMA 4. // / e Z)0, then there exists a Green potential p on Ω such that

The proof of this lemma goes exactly in the same way as that of Hilfs-
satz 7.7 in [ΊΓ], using Theorem 5.1 in [_4Γ\.

THEOREM 7. The Kuramochi compactification of a Green space of
dimension > 3 is resolutive.

PROOF. For any / e N, let f=u+g with u e HD and g e D0. Then, by the
above lemma, there exists a Green potential p such that \g\ <p. Since u —
p<f<u+p, we have u— p e dφ and w + p e dφ, where <P=f\ΔN Hence u—p<Hφ

<Hφ <u 4- p, so that F^ and 5^ are harmonic and u = Hφ = Hφ. Therefore,
φ=f\ΔN is resolutive for a n y / e N.

Now consider the smallest subspace Q of C(ΔN) with the property that it
contains {f\*N\ f £ N}, it is closed under max. and min. operations and under
uniform convergence. Since Q separates points of AN and contains constants,
<2=C(Jτv) by the Stone- Weierstrass theorem. On the other hand, the space R
of all resolutive functions on ΔN is a linear space satisfying the above pro-
perty. Hence Q^R, i.e., every function in C(AN} is resolutive.

When a compactification Ω* is resolutive, there is the harmonic measure
β = βa(atΩ) on J = $*— Ω defined by &o(e) = Hφe(a); Ψe is the characteristic
function of a Borel set e on A.

Observing that Theoreme 30 and its corollary in Q2J are also valid for a
resolutive metrizable compactification, we obtain the following theorem con-
cerning the relation between the Green measure and the harmonic measure
on the Kuramochi boundary :

THEOREM 8. Let Ω be a hyperbolic Riemann surface or a Green space
of dimension > 3 , β be the harmonic measure on the Kuramochi boundary AN

of Ω, let
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AN = {/ e Lr\ I tends to one point b(ΐ) on AN}

and let

Then
(i) AL is β-measurable and β(AN — ΔL) — 0,
(ii) for any ^-measurable set 6^AL, the set Aσ= {Z e AN\ b(ΐ) ζ σ} is ϊ-

measurable and Aαo(<r) = r(Λσ).

(Remark that Theorem 6 states r(L— ΛN) = 0.)
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