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Introduction

In this paper we shall compute explicitly the extremal length of families
of parallel segments and give some evaluations. For simplicity we limit
ourselves to the (x, y)-plane R? although it is possible to generalize the
results to the higher dimensional case.

Hersch [2] considered a simply- y
connected domain G whose boundary
contains two vertical segments « and
B with respective coordinates x=a and
x=>b. Let 0, a<x<b, be a vertical
crosscut of G separating « and 3 as
in the figure, and let d(x) be the length
of 9,. He remarked (p. 326, footnote

95)) that M{0,; a< x<b} — dex/ﬂ(x)

and p=1/0(») is extremal.

We shall be interested in computing more generally the extremal length
of a family of collections of vertical segments which do not necessarily form
a domain. We shall discuss the case where the segments form a 2-dimensional
Lebesgue measurable set in §1, and the non-measurable case in §2. In §3 we
shall seek relations between the extremal length of a family of collections of
vertical segments and that of a family of collections of curves, each collection
of the latter family intersecting all members of the former. A part of the
results in this paper is found in [37].

In a similar fashion we can treat families of collections of radial seg-
ments and families of collections of concentric circular ares. It is quite easy
to do so and we shall not state the results explicitly.

Now we shall define extremal length and state some properties. By a
curve we mean a continuous image of an open interval or a circle. Further-
more we assume in this paper that each curve contains more than one point
and that it is locally rectifiable. Namely, every closed subarc is rectifiable.
We can represent it in terms of arc-length s. We shall use the notation ¢ to
denote a collection of curves. An integral along ¢ is defined as the sum of
the integrals along the components of ¢. Let /"= {c} be a family of collections
of curves. We shall call a Lebesgue measurable function p(z)>0 in R? admis-
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sible (in association with I") if p(z(s)) is measurable with respect to s and
g pds>1 for each ce€I'. Since no curve reduces to a point, p=co is always

admissible. We define the module of I" by
M(I')= inf S S PAdxdy,

where p is admissible, and call 1/M(I")=)(/") the extremal length of I'. While
defining the integral we set 0.co=c0.0=0. We call an admissible function
extremal if it attains the minimum. On account of Carathéodory-Vitali’s
theorem ([ 47, p. 75) we obtain the same value M(I") if we restrict p to be
lower semicontinuous. Naturally we may restrict p to be Borel.

The following properties are well known:

Q) MIH<MJI™) if I'CI.
@) M(uT)<> M(I',) for a countable family {/",}. If M(I")=0, M([")=

M.
) If {E,; is a sequence of mutually disjoint Lebesgue measurable sets and
E, contains all members of I", for each n, then M(\UI",)=>M(I",).

It is easy to prove them perhaps except for the inequality in (2). Let p, be
lower semicontinuous and admissible in association with I”,. We set p(z)=
sup P.(z). This is admissible in association with U/, and it follows that

o rp=|| prdady <32 piandy

It is easy to conclude the inequality in (2) from this relation.

§ 1. Measurable case

In this section we consider I'={c} such that each c consists of mutually
disjoint open segments of finite or infinite length contained in one line
parallel to the y-axis. We assume further that ¢cn¢'= ¢ if ¢ and ¢’ are
different. We denote by I”, the family of ¢ supported by the vertical line
with coordinate x, by I(c) the length of ¢ and by X, the characteristic function
of ¢ in R%.

We prove first

Tueorem 1. If S31(c)X, is Lebesque measurable in R* and 1(c)<oo for
each ce I, then
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@ My = >3 an

AcELy

where A= {x; .5~ & }.

Proor. We consider the function

‘(71 at (v, y)ecel’,
) Po(w, ) = Ll ox, =1
l 0 on R*—E,

where E is the union of ¢ as point sets. By our assumption >Y(c)X, is Lebesgue
measurable in R%. It follows that E and hence po=Xz(3(c)X.) ! is measurable.

Since

1
ScPOds = ’*lf(c‘j* Scds =1

for each ce I, p, is admissible. It follows that

o= frasy = (33 e 3 o

ceEly Acely

To prove the inverse inequality we take any admissible p. The inequality

S pdy=1 yields

1< S dyS pidy = Z(C)S p*dy
and

S ) l() dx<SSP2dydx.

AL‘EI‘x

Consequently

S 3t ()dx<M(F)

AcEly
Thus we obtain the equality.

CoroLLARY. M(I') is invariant under any vertical tramslation of each
segment so far as the measurability of >l1(c)X. is preserved.
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We shall see in the next section that this is no longer true if the
measurability condition is dropped.

Remark 1. po(x, y) is an extremal function.

ReMark 2. In case [, contains at most one c¢=c, for each x, the condi-
tion that S1I(c)X. is measurable is equivalent to the measurability of E. In

cel

fact, by Fubini’s theorem

SSXdedy - S(SXEdy>dx - Sl(cx)dx

and /(c,) is a measurable function of x, where we set I(c,)=0 if I',= . The
function f(x, y), which is defined to be i(c,) if (, y) is on the vertical line with
coordinate =, is measurable in R%.. Hence >V(c)X.= f-Xr is measurable in R®.

ExamprLe. As an illustration we consider a very simple case in which
I(x)=x" a>0. For each x>0, let ¢, be the segment in the figure. By our
theorem

M{c,,;0<x<l}=g 2

0 X

= oo if a>1

and

cge [me0 i 0<a<l,
Mies 1<a< ooy = |75
1

< oo if a>1.

Let us turn to the case where /(c) may be infinite for some c€[". If the
condition [(c)=co, assumed for all c€ ", implies M(I")=0, we obtain (4) easily
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under the same condition as in Theorem-1. However, we do not know
whether or not this is true and we can prove only

TureoreM 2. Suppose that I’ can be expressed as a mutually disjoint
countable union I, such that (I",). contains at most one c=c® €I, for every

n and x and each E,=\U ¢ as a point set is measurable in R%. Then (4) is true.

celly

Proor. First we consider the case where [(c)=co for each cel’, and
prove M(I",)=0. We may assume that the set {x; (/",).#=4} is bounded. We
shall write {—k<y<k} for the strip domain {(x, y); —co<x<oo, —k<y<k}.
The set

EP=E,N{—k<y<k}

is measurable. By means of Fubini’s theorem we observe that (¢ N {—k<
y<k}) is a measurable function of x, where [ is defined to be zero if (/',).,= &
or ¢c”N{—k<y<k}=g. Hence

X® = {x; 1P N {—k<y<k}>>1}

is a measurable set on the x-axis. We set I'{¥= Umr"‘ By considering
xEXn

Xe@y-jey<iy

=&® 1PN =<y <D

Pj

we have

1
mer(ferady= o 1 =y 2y 2

By letting j—>co we derive M(I"#)=0. Since I',=\I'¥, M ,)=0.
k
If I(c)<<oo for each c€[l,, we have

M=, iy i

in virtue of Theorem 1, where A4,= {x; (I",).5 % }; see Remark 2 to Theorem
1. In the general case we denote by /', the family of members {c} of /", such
that I(c)<<oo. Then both U ¢ and U c as point sets are measurable. By (2),

cel'f cel'p—T'}

M(I',)=M(I")) and it holds that

P (R TR S T
=\, gy |, ey s
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where A,={x; I')).#+7}. Thus (4)is valid for I',.
Now the equality

My =3mry =3 qimya=| 345

Acely

is concluded by (3).

§ 2. Nom-measurable case

For a general I' as defined in the beginning of §1 with no measurability
condition, we give

THEOREM 3.

®) S > l() dx<M(1")<gS 33y dady,

AceEDly

the right inequality being valid provided [(c)<oce for each cel.

Proor. If I(c)< oo for each cel’, we consider p, defined in (5), and
take any Borel p=>p,. It is admissible and M~ )gsgpzdxdy, whence

MINH< —S—S 062,; 722&)* dxdy.

To obtain an evaluation from below we take any admissible Borel p. From

S pdy=1 it follows that

1§(Scp2dy) 1(0).

Even if I(c)=c for some ¢ we have

N 2
SA%‘x o dx<ggp dydx,
and derive the left inequality of (6).

We raise

QuesTiOoN. Is the right inequality in (6) true generally?
This question remains open. However, we can see easily that the answer is
affirmative if M(I")=0 for any I such that the length of each c< [ is infinite.
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F-Y. Maeda remarked orally that M(/")=0 if there are sequences {z,} and {b,}

increasing to oo such that l(cN\{—a,<y<a,})>b, and «,/b2>0 as n—co. In

fact, it is sufficient to prove M(\I",)=0 for an interval I of finite length d.
xe]

Observing that p=b, "X (xe;, - ancy<any 18 admissible, we have

2a,
M(Urx)éggpzdxdyg—%giﬁo as n—> oo,
ze] n

We note that no measurability condition is required.
Next we establish the equality of M(/") to the left hand side of (6) in a
special case. We begin with

Lemva 1. If A={x; I . &} 1is of linear measure zero, then M(I")=0.

Proor. Set p(x, y)=oco if x€4 and =0 if x¢ 4. This is admissible and
MINH< SS prdxdy = 0.

Tueorem 4. Let f(x) < oo be a measurable function of x, and A be any
subset of the x-axis. If each I'., x€ A, consists of the segment of the form
{(x, y); x€ 4, f(x)<y<g(x)} with any function g(x) on A satisfying g(x)>f(x),
then

dx
™ mn=|, g — )

Proor. If x& A4, we may set g(x)=oco because both sides of (7) do not
change for the new enlarged family; the invariance of M is inferred by the
aid of (2) and the above Maeda’s remark. Therefore we assume that A4

coincides with the whole x-axis. By (6), M{I" )=Y (g(x)— f(x)) 'dx if Y (g(x)—

f(x)) 'dx=co. So we assume that S (gx)— f(x)) 'dx< co. Given >0, let A(x)

be a measurable function such that 0<"#(x)<Xg(x)—f(x) and de/h(x)g S (g ()

—[(%)) 'dx+e. Then i(x)>0 for almost all x. Let B= {x; a(x)>0} and let [,
be the family of segments {f(x)<y<f(x)+h(x); x€B}. Since both f(x) and
h(x) are measurable, the union of c€/", as point sets is measurable in R%
Hence we apply Lemma 1 and Theorem 2, and obtain

dx T dx
=g o=y =\ = e e

whence M(I” )ggdx/(g(x) — {(x)). The inverse inequality being known, we
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obtain the equality.
By an example we shall show that it can happen that

_S >3 e <M < || 3357 iy ded.

AcEly

We consider the segment S={0<x<1} and a non-measurable subset X; such
that the outer measure mX; =1 and the inner measure mX, =0; for the
existence of such a set, see p. 70 of [1]. The complement X,=S— X; has
mX,=1 and mX,=0. If x€X;, we set ¢, = {(x, v); 0<y<1}. If x€X,, we set

cx={(x, y); —1/2<y<1/2}. Evidently /(c,)=1 and hence S dx/l(c;)=1. We
S
set Ei=ENn{y>1/2}, E,=EN{0<y<1/2} and E;=EN{y<0}. We have

HE-% = (HE + S_SE + E&)dxdy: ﬂ dudy + =5 Sg ddy.

Let p, 0<p<1, be a lower semicontinuous function which is equal to 1 on E,.

We observe that Sl p(x, y)dy is lower semicontinuous on the x-axis. Hence
1/2
T= {xeS; Sl pdy = 1/2} is a Borel set on the x-axis. Since 7'D> X, and mX;=
1/2 —
1, mT=1 and S S dedygg (Spdy)dxg 1/2. Evidently SS dxdy<1/2 and
I T — E:

“ dxdy =1/2 is concluded. Similarly SS dxdy=1/2 and consequently “
E: E; E

dxdy/1?(c.) = 8/2.

We shall prove that M{c,} is equal to the module of the following family
I'". We denote by 7"’ the segment {(x, y); 0<y<1} and by 7 the segment
{(x, y); —1/2<y<1/2}, and define I’ as the union of two families /";= {7{";
x€S} and I',={v¥; x€S}. We note that ", and I"; overlap. By (1) M)
M. In order to establish the inverse inequality, we take any lower semi-
continuous admissible function p in association with 7”. As a function of =,

1
S p(x, y)dy is lower semicontinuous. Therefore
0
1
T, = {xES; S P (%, y)dyzl}
0

is a Borel set on the x-axis. Since mX;=1 and 7,>X;, mT:=1. Similarly
1/2

T,= {x €S; S / p(x, y)zl} is a Borel set and mT,=1. Now p is admissible
—-1/2

in association with {v{¥; x€e INT} U {v?;x€ T'NTy}. We define p* by oo
at points with x-coordinate in S—T7:N\T, and by p elsewhere. This p*
admissible in association with /7 and it holds that
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MIM< SS P* dxdy = SS p?dxdy,

whence MU' MI"). Thus M) =MU).
Next let us prove M(I’)=4/3. We consider

2 . 1

Po (x) y) = _4__ 3 i_
s xé[O,l],yE[O, 2],
0 elsewhere.

This is admissible in association with /7 and

M(F’)gggpgdxdy ~:

Let p be any function admissible in association with /7. To prove M(7")=4/3
1

it is sufficient to show S P*(x, y)dy=4/3 for every x€S. Under the condi-
-1/2

tion that gilzpdy is constant, Si/zp"’dy is minimum if p is constant on 1/2<
y<1. The same is true for Sllzpzdy and SO p*dy. Suppose that p=a on 0<
y<1/2. We may assume that0p=2—a bot_}i/f)n —1/2<y<0 and 1/2<y<1.
We can observe easily that Sl pPdy=d’/2 + (2—a)* is minimum when o=
4/3 and the minimum value _ilsl24,/3. Thus M(I")=4/3. As a remark we
observe that p, is an extremal function for 7.

§ 3. Family of collections of curves intersecting I

In the rest of the paper we shall consider a problem of a somewhat
different nature. Let I'={c} be a family of mutually disjoint collections of
vertical segments and 7= {¢'} be a family of collections of locally rectifiable
curves such that each ¢ €77 intersects all members of . We are interested
in relations between \(I") and N(I").

First we prove

Lemma 2. Let ¢’ be a locally rectifiable curve and f(z) be a non-negative
Borel measurable function on /. Then it holds that

[reoaz=] > e,

pc?) sSES)
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where p(c') is the projection of ¢’ into the x-axis and S(x) is the set of values s
such that x(s)=x.

Proor. We observe that
s(B)= S ldx(s)| = S ng(x)dx
B p(B)

for any Borel subset B of ¢/, where p(B) is the projection of B into the x-axis
and np(x) is the number of the points of intersection of B with the vertical
line with coordinate x. The last equality can be justified first for any open
subare of ¢/, for any countable union of open subarcs of ¢, then for any
compact subset of ¢ and finally for any Borel set BCc¢. We decompose ¢
into mutually disjoint Borel sets e, e, --- and have

>3(sup £2))se) =33 (sup @) | ey

z2€e:

=]
i ple) s€Sx )
2(s)Ee

S fe(s)dn= S S FG(s))dx.

(c”) sES(x)

Because of the arbitrariness of the decomposition of ¢’ we obtain the desired
inequality.
We shall establish

Tureorem 5.  Under the same condition as in Theorem 2,
®) M) SN).

Proor. By Remark 2 of Theorem 1 3Y(c)X. is measurable in R%. First
cel

we assume 0<\({")<oo, and consider po=1{I")DV'(c)X.. As we observed in
cel

the proof of Theorem 1, it is measurable in R2. Any Borel p>>p, is admis-
sible in association with 7 because

[ pas=] s o= 35 5 a=rama) =1

pCc”) s€Sx) A celyg
by Lemma 2 and Theorem 2, where A= {x; I',.#+g}. It follows that

M(F’)gggpgdxdy =\ () “ Sy G dwdy

=\ (r)g ) 7(%@ — N YMT) =\ ().

A cely
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If M({")=oo then (8) holds trivially.
Next consider the case A(/)=0. For each m we set

r;'">={ce \J <rn>x;z<m{—m<y<m}>>*§7}~

—m<x<m

We can see easily that >3 )z(c)xc is measurable in R%. We set
cerim
n

A = {w; ), % 2}

As m—> o

n=1

m 1 L1
MG =8 ey 7, 2 1ty o= M) ==

Since

MO TN < 3 S"’ mds = 2 < o,
n=1 n=1

-m

we can apply (8) to \m/ '™ and obtain
n=1

MUIYSN( U TPYN0.
n=1

Thus M({")=0 and (8) is true in all cases.
CoroLLARY. M{I)=0 implies N(I)=oco.

The last question is as to whether the converse of this corollary is true
or not. In Theorem 5, IV is a family. However, in Theorem 6 we shall
consider the family I'” of all collections {¢'} of locally rectifiable curves such
that each ¢’ intersects all ce I

We do not know the answer in the general case and can prove only

Turorem 6. Suppose that each c<€ 1 consists of a finite number of seg-
ments. If NI)=oo, NI")=0.

Proor. Take any lower semicontinuous p >0 with Sgpzdxdy < oo, For

any given ¢ >0, we shall find ¢’ €7 such that g ) pds<e. We may assume that

A=A{x; '+ 7} is contained in an interval — oo <a<x<b<loo. Set I'y={ce[;
l(c)<=} and 4,={x; (")~ Z}. By Theorem 3 the linear measure of A4, is
zero.
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First we shall find a collection ¢] of curves, having S Pds< ¢/2 and in-

c

tersecting all elements c of I'—1";. We set

b
me= inf Sp(x, »)de,

k=y<k+lda
where k=0, &1, 2, ... and have
mgg(sb,o(x,y)dx)Zg(b—a)S"pde if k<y<k+l
It follows that
kt1 (b
m<6-o| | rady

and

> miZOh-— a)g przdxdy.

oo
—welp <o —oo

This shows that there are sequences y;<y,<...—>oo and Y1y p> .. —>—00
such that

Izi;‘i {SZP(% yr)dx + S:P(x, y_k)dx} <e.

The collection of horizontal segments {y=1y;, a <x<b} and {y=y_ a<
x<b}, k=1, 2, ..., intersects eventually all ¢ and hence can be taken for c;.

Next we want to show the existence of a collection ¢} of curves, having
S pds<e/2 and intersecting all elements of /";. Take any y, and y{ (y,<y).
We have

Syo’(gbp(x, 'y)dx>2d,y§(b_a)gyn’ngZ(x, y)dxdy< oo,
y a vy Ja

0

Therefore the values y < (y,, y;) for which prdx < oo are dense in (y,, y¢).

. b
We choose y, y,, --- such that they are dense on the y-axis and S P(x, yp)dx is
finite for each p. We find a linear open set ¢, on each horizontal line y=y,
such that S P (%, yp)dx < e/2°*' and c, intersects all vertical lines passing
cp

through 4,. Since {y,} are dense on the y-axis, each c€ I'; intersects at
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least one of {c,}. It holds that S pdy <e/2 and hence \Uc, can be taken
Ucp 4

b
for ¢;. Now c¢]\Uc, intersects all members of /" and

S pds < e.
ciUcs
This shows that M) = .
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