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Introduction

In \Ί5~] we computed the extremal length of a family of collections of
parallel segments in the (x, y)-plane. The vertical lines can be regarded as
the orthogonal trajectories of the harmonic function y. From this point of
view we shall generalize a part of the results in [ΊΓ|.

The space will be an ^-dimensional space & in the sense of Brelot-
Choquet \Ύ]. We shall use terminologies of the case 7ti>3 although the
results are valid in the case n=2 too. In this case we need some modifica-
tions. When we say that a set is measurable in this paper, we mean that it
is Lebesgue measurable.

In §1 we introduce orthogonal trajectories and regular tubes for a given
harmonic function. Their existence can be proved just as for Green lines
and regular tubes consisting of Green arcs, and so the proof is omitted. Then
we define harmonic flows and subflows as in the two-dimensional case which
was treated in [βj and [ΊΓ|. The notion of extremal length (with weight) is
introduced in §2 and the extremal length of harmonic subflows is computed
in §3. In §4 an extremal length in a more general sense is considered and
Theorems 1 and 2 in [βj are generalized. The extremal length of the family
of all orthogonal trajectories is calculated in §5 with the aid of a theorem on
the decomposition of the domain of definition into disjoint harmonic subflows.
Finally the extremal length of level surfaces is computed in §6.

§ 1. Harmonic flows

Let G be an open set in £ and H(P) be a harmonic function in G which
is not constant in any component of G. A non-empty set of the form
{P; H(P) = const.} will be called a level surface or an equipotential surface of
H. It consists of a countable number of (n—l)-dimensional analytic surfaces,
of isolated points at infinity and of an (n—2)-dimensional relatively closed
subset of G where grad H=0; see Lemme 12 of QJ. A point with g rad#=
0 will be called critical. Excluding the set of all points at infinity and
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critical points from a level surface, we call the rest the regular part of the
level surface.

Through every non-critical point of G which is not a point at infinity,
passes an analytic curve on which gradίΓ^O and whose tangent at every
point is parallel to the vector grad H (cf. [JL], p. 232). A maximal curve in
G with this property is called an orthogonal trajectory. Since H increases or
decreases strictly along every orthogonal trajectory, no orthogonal trajectory
is a closed curve. No two orthogonal trajectories intersect each other. Each
orthogonal trajectory clusters to a subset of the union of the boundary of G
and the set of critical points, unless it terminates at a point at infinity.

Let o be an (n — l)-dimensional domain with piecewise smooth boundary
on the regular part of a level surface such that its closure σ-α is contained in
the regular part. Let d\ < d2 and let c be an orthogonal trajectory which
passes through a point Pc of σa. Suppose that there is a subarc c(du d2) of c
on which H assumes all the values of \jdι, d2~]. When this is true for every
c intersecting σα, \jc(du d2) as a point set is called a regular compact tube (cf.

c

p. 233 of \ΎJ). Its interior is a domain and called a regular tube. We shall
call the part of the boundary on which H(P)=dι (d2 resp.) the lower (upper
resp.) base of the tube. One sees easily that, for any two points P and Q of
any orthogonal trajectory, there is a regular tube containing P and Q.

Now let r be any (jι—l>dimensional domain on the regular part of a level
surface. We shall call the bundle of orthogonal trajectories which pass
through r a harmonic flow (for H(P) through r). It is easy to observe that
a harmonic flow F is a domain as a point set. We shall call it the domain of
F and denote it by [F]. We denote by cP the orthogonal trajectory passing
through Pe [ ί 1 ]. Let X be any subset of [/]. We shall call the set {Q e r
cQr\Xφ 0 } the projection of X on r, and denote it by p(X).

A subbundle Γ of a harmonic flow which meets r at a set measurable in
the (n—l)-dimensional sense will be called a harmonic subflow. As a point
set it will be denoted by [T], If the (n — l)-dimensional measure of [_Γ~]r\t
is positive (null resp.)? it is called a positive {null resp.) subflow. We shall
say that a flow or a subflow is finite if the variation of H along each trajec-
tory is finite. Let £ be a measurable subset of the regular part of a level

surface. We shall call the surface integral 1 dΉ/dvd& of the normal deriva-
J E

tive 9£Γ/9v= |grad H\ the flux on E and denote it by φ(E). For any tube the
flux on one base is equal to the flux on the other.

Let F be a harmonic flow passing through r. We shall show, for any
subflow Γ of F and any non-negative (Lebesgue) measurable function/ in ^,

that \ //| grad H\ds is a measurable function defined for a.e. Q on r, and

that
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(1) f fdυ=\ f j ^ΓΊTT~

|gradiJ |

is valid, where dv is the volume element in S. It is sufficient to prove

where H is taken as a variable on each orthogonal trajectory and denoted by

L For, applying (2) to /X[r] we obtain (1), where Xίn is the characteristic

function of

We denote by dσ the (n — l)-dimensional surface element on a level sur-

face, and set dφ= |grad H\d<r. We have dv = dsd<r= |grad H\~2dtdφ where

fdv= \ \f\ grad/ί | ~2dtdφ.

Since the flux is invariant on any section of tube, dφ at P is equal to dφ at

p(P) on r. For this reason we can identify QF] with a domain in the product

space rx { — oo <z< 00} with the product measure of φ and the linear measure

on the z-axis, and apply Fubini's theorem. We infer that \ /|grad H\ "2dt is
JCQ

Γ Γa measurable function defined for a.e. Q on r and that \\/|grad H\~2dtdφ =

t ft /Igrad if I ~2dt)dφ(Q). Thus (2) is derived.
JΛJCQ J

§ 2. Extremal length with weight

By a measure in £ we shall mean a countably additive non-negative set-

function, defined on a cr-field of sets containing the Borel class in g and

admitting 00. Let J ' be a class of measures none of which is identically

zero. A non-negative (Lebesgue) measurable function p in <f will be called

admissible (in association with Jί) if \pdμ is well-definedυ and ^ 1 for each

μζiJί. For a non-negative measurable function π defined in <?, the module

Mp{Jί\ π) of Jί with weight π is defined by inf \πppdv (0 <p < oo)? where p is

admissible. The extremal length λp{Jί\iί) of Jί with weight π is defined

by \/Mp(Jί\ π). An admissible p is called.extremal if \πppdυ — Mp(^f; π)

1) This means that, if @μ is the σ-field on which μ is defined, there is a set Eμξ.(£μ such that

— Eμ) = 0 and the restriction of p to Eμ is an ©^-measurable function.
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The present definition of extremal length is a generalization of the extremal
length with weight π in [4] and a special case of the one considered by
Fuglede [2Γ]. In case π=l, we write simply Mp(^f) and λp(^).

On account of Vitali-Caratheodory's theorem ([7], p. 75) we find a Borel
measurable function pr which is equal to p a.e. and ~^>p everywhere in <f.
Hence we obtain the same value of Mp(Jί\ π) if we restrict admissible p to be
Borel measurable.2)

We shall use the following properties of Mp{Jt\ π); see

(3) Mp{Jί\π)<LMp{Jίr\π) if JίC^'

(4) Mp(\JJίn\ π)<J*£MP (Jtn\ π) for any countable family
n n

(5) Mp(^;π) = Mp(^-^;π) if Mp(Λ';π) = 0.

(6) MP(\J Jίn\ π) = *ΣMp(Λ?n; π) if there are mutually disjoint measurable
n n

sets {An} such that, for every measure μ of each Jίn^ there is a set Aμ € (Hμ

contained in An and satisfying μ(<?—Aμ) = 0, where (£μ is the o--field on which
μ is defined.

With a given family {7} of locally rectifiable curves in £ we associate
Jί as follows: Take 7 e {7} and let {PΎ(s); s e / γ = an interval} be a representa-
tion of 7 in terms of arc-length. Let E be a set in g such that the set {s € IΎ

PΎ(s)£E} is linearly measurable. We shall denote by Gfγ the class of such
sets E. We define the value μΎ(E) by the linear measure of {s€/ γ; PΎ(s)eE}.
In such a way we obtain a measure μΎ defined on the class G?γ. When {μΎ;
7 e {7}} is taken for uf, Λf^uT; TΓ) will be denoted by MP({Ύ} 7τ) and called the
module of {7} with weight π. The extremal length λp({y} π) of {7} with
weight π is defined by 1/MP({Ύ}; π). The extremal length of a family of
surfaces with weight will be defined in §6.

§ 3. Extremal length of harmonic subflows

In §1 we observed that \ (|grad H\/π)ιι{p~ι)ds is a measurable function
JCQ

defined for a.e. Q on r. Hereafter we shall write simply g for \ grad H\/π.

2) We can show furthermore that we may restrict p to be lower semicontinuous. Actually,

^iven an admissible p, we take a Borel measurable function π/ which is equal to π a.e. and apply

Theorem 6.10 at p. 71 of [T] and Vitali-Caratheodory's theorem to find a decreasing sequence {pn}

of lower semicontinuous functions which are ^ p and satisfy

lim I τtpndv~ lim Tt'pndv— π' pdv — itpdv.
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First we prove

LEMMA. The extremal length λp(Γ; π) of any null subflow Γ is infinite.

P R O O F . We note t h a t \^Γ~] is of m e a s u r e zero because of t h e re lat ion

as obtained in (1). Consider t h e function p = oo on \ΊΓ\ and = 0 elsewhere.

I t is admissible in association w i t h Γ and \πppdv = 0. Hence Mp(Γ; π) = 0.

On account of (5) we obtain

COROLLARY. If Γ is a harmonic subflow and Γ' is a null subflow, then

The following theorem is the main result.

THEOREM 1. Let Γ be a harmonic subflow passing through r. //
then

CO Mp(Γ;π)=\ (\ g ^ ds)*'* dφ(Q).

If 0< \ gll(p~1)ds<.oo for a.e. Q^HΓJr\t,3) an extremal function is given by

for

o for

v0 for

where

= (J Or oo .Γ=\cQeΓ; \ g*-ids = 0

PROOF. Let p be an admissible function and assume 0<l gll(p~1)ds<

3) Namely, the (n— l)-dimensional measure of the set of points Q with g1'^p~1)ds = 0 or oo is
J cn
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for every ceΓ. We apply Holder's inequality to 1 ^ pds and derive
J CQ

lgradffl \hΊy-\

or

jp~ιdsj ^J^ |grad#|

Using (1) we obtain

ds.

\ (\ /? ^ s ) ^ ( Q ) ^ \ \ "Γrv^rΓ^TΊ dsdφ= \ πppdv.
)ίrΛ[\τ\)cQ I jίΠnrjcQ |graαii | JLΓΊ

I oft»«a
CQ

Hence

On the other hand, we note that p0 is measurable and check that

^l for every Q G [ Γ J A Γ . We infer by (1)

Thus (7) is concluded and p0 is extremal. We obtain the same conclusion if

0<\ gll(p~λ)ds<oo for a.e. Q€[_Γ^\r\τ, because \ΊΓ'^\ is of measure zero as
J CQCQ

noted in the proof the Lemma.

If \ ^-1>d5 = 0 for a set E of points Qe[_Γ~]r\r of positive (τι-1)-

dimensional measure, 7r = oo a.e. ( = except for a set of 7z-dimensional measure
zero) on the set A=\^{cQ; QζE}J. Since p is positive on a subset of A of
positive measure, both sides of (7) are equal to oo.

Next we consider the case where \ gll(p~1)ds — oo for each Qe[_ΓJr\r.

We exclude from G the set of points at infinity and critical points and denote
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the remaining open set by G. First we assume that r is relatively compact
in G\ and approximate G by an increasing sequence {Gn} of open sets such
that rCGi and Gn\JdGnCGn+ι We denote by c(

Q

w) the orthogonal trajectory
in Gn which starts from Q£r. Evidently c^./eQ as 7z->°o, We set πn=-max

(τr5 1/rί) in <f. First assume \ , Πgrsiά Hl/^f'^-^ds^l for each Qe [Γ]Ar.

Since \ (|grad H\/πn)
l!{p~ι)ds is a bounded function of Q

; πn)

on

grad

Γ /f *

If α ) ( |gradJy |/7r 1 ) 1 / ( ^- 1 ) &^l is not true for ρ e [ Γ ] n r 3 there is TZ such

that 1 ( M )(|grad H\/πn)
ll(p~1)ds^l. Consequently, by the aid of (4) we can

conclude MP(Γ; π) — 0. We obtain the same conclusion on account of (4) even
if r is not relatively compact in G.

In the general case, \ gll(p~1)ds is a measurable function defined for a.e.

Q on r as observed in §1. Thus Γr is a harmonic subflow. We have already

established (7) in case \ gll(p~l)ds = Q for a set of points Q e [ Γ ] Λ r of positive
JCQ

(TZ —l)-dimensional measure. Hence we assume that ΓQ— {coζΓ; \ gll(p~1)ds

— 0} is a null subflow. By the Lemma, MP(ΓO; π) = 0. Hence we have
MP(Γ'\ π) = 0 and

MP(Γ; 7r) =

= f (t

COROLLARY. The extremal length λ2 (Γ) of any positive finite subflow is
finite.
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§ 4. Generalizations

Let us consider the following definition of extremal length. Let K be a
non-negative (Lebesgue) measurable function in £. A non-negative measur-
able function p in <f will be called /^-admissible in association with a family

{7} of locally rectifiable curves if I xpds is well-defined in the Lebesgue sense
r

and ;> 1 for each 7. The module Mp({y} π, K) is defined by inf \πppdv. If

there is no /^-admissible P, we set Mp({l} π, Λ)=OO.

If we take a harmonic subflow Γ for {7}, MP(Γ; π, κ)=Mp(Γ; π/κp) for K
which is positive and finite on [ Γ ] . Actually we can prove more, namely,

THEOREM 2. Let Γ be a harmonic subflow, and n and * be non-negative
measurable functions in S. Set E°κ = {Pe<?; κ(P) = 0}9 E7= {P£#; fc(P) = °°},
Eζ= {Pβ(f; π(P)=oo} and E=E°κ\J(E7ί\E~). If the linear measure of c-E
is positive for each c G F, then

where π/κp = oo if κ = 0 or if π=oo.

PROOF, a). MP(Γ; π, κ)^Mp(Γ; π/κp). We suppose MP(Γ\ π/tcp) < oo

and take p admissible in association with Γ such that \(π/κp)ppdv<oo. Since

τι/κp — oo on E, p = 0 a.e. there. Therefore the linear measure of £n{p>0}nc

is zero for a.e. c € Γ, i.e. except for c belonging to a null subflow of Γ. If c is

non-exceptional, we change the values of p on Er\c so that it is zero every-

where on Er\c. By this change the values of i pds and \(π//cp)ppdv are not

altered. If c is exceptional, namely, if the linear measure of Er\{p>0} r\c
is positive, we change the values of p on c so that it is zero on Er\c and is

equal to oo on c—E. By this change, the value of \(π//cp)ppdv is invariant and

the new \ pds = 00. Thus we may assume from the beginning that p = 0 on E.

Now we consider p' which is equal to 0 on E, to p/κ on $—E—E7 and to Pi
on E7—E, where pi is a measurable function in £ which is positive on E7~E

and satisfies \ πρ{dv<e for any given ε>0. Then
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I /cp'ds = \ pds + I

= \ pds+\
)c-E-E~ )(c-

and

MP(Γ; TΓ, K)<[πp'pdv = [ (π/κp)ppdv + [ πp{dv

There follows a).

b). MP(Γ; π/κp)<:Mp(Γ; it, κ\ We suppose MP(Γ; π, /c)<oo and take p'

such that \ fcp'ds^l for each ceΓ and \ πp'pdv<oo. We may assume / = 0

on E°κ. In the same way as in a) we can show that we may assume p' = 0 on

E~r\Eπ. Therefore we suppose p' = 0 on E from the beginning. We set κpr—p

and have \ pds = \ κprds~^>l and
) c ) c

This establishes b).

REMARK. In the general case, the two extremal lengths may not coincide.
For instance, if /e = 0 and π = 1 and if Γ consists of only one orthogonal
trajectory, then MP(Γ; 1, 0) = oo and MP(Γ; oo) = 0.

As a special case we consider a finite-valued measurable function K I> 0
in g'. We shall denote by Γ the family

(8) {c€f; cΓ\{κ>0} is linearly measurable on c and its linear measure is
positive}.

Then, if p > l ,

by Theorems 1 and 2.
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Let fc be again a finite-valued measurable function in #. Suppose that
it is expressed as a finite or infinite sum /c1 + /c2+... of non-negative measur-
able functions in S such that at most one of them is positive at each point of
[F]. We define Γn for *n like Γ in (8), and set Γ=\jΓn. We see by (6) that

inf \nppdv, taken with respect to p satisfying 1 xpds^l for all c£Γn
J Jcf]{κnyoy

(ra = l, 2, ...), is equal to

This result generalizes Theorem 2 in [βj.
Furthermore, we can extend Theorem 1 of [ΈΓ] in the following way.

With every c^F let a family Jfc of non-negative finite-valued linearly
measurable functions k on c be associated such that at most one of them is

positive at each point of c and 0< \ hkds<oo for each /cEJΓc where hk =

(kp\gτ&ά H\/π)l]{p'ι). For some c^F, JΓC may be empty. Consider the func-

tion in £ which is equal to hk(P)/\ hkds at P with hk(P)>0 and which vanishes
J Cp

at P where no hk(P) is positive. If it is (Lebesgue) measurable, then the

following conclusion is drawn: inf \πppdv, taken with respect to p satisfying

;>1 for all ceF and k€Jfc, is equal to

l-P

where Q ranges over the set

Σ (\ hds) )dφ(Q\
CQ

Φ0}.

5. Decomposition of G into subflows

We exclude from G all critical
points and points at infinity and
denote by G the remaining open set.
We ask whether or not it is always
possible to cover G by mutually dis-
joint harmonic flows, possibly except
for a subset of G of measure zero.
This is negatively answered by the
following example: Exclude from the
cube 0 < * < l , 0 < y < l , 0 < z < l , a
totally disconnected compact subset K
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• of positive two-dimensional measure on the intersection of the cube with the
plane 2 = 1/2. Let G be the remaining domain, and take z in G as H(P).

However, we prove

THEOREM 3. We can decompose G' into a countable number of mutually
disjoint harmonic subflows.

PROOF. We cover G' by a countable number of regular tubes Tu T2,
We associate a harmonic flow Fn with Tn for each n. The subflows ί\, F2—Fu

F3—F2—Fi,.- fulfil the condition.

We obtain easily

THEOREM 4. The module Mp of the family of all orthogonal trajectories
is given by

v,

where {Γk} is a decomposition of G' into "mutually disjoint subflows and vk is a
domain on a level surface with which Γk is associated.

§ 6. Extremal length of level surfaces

Let S denote a countable collection of smooth surfaces in <f and Σ = {S}
be a family of such collections. Let π ̂ > 0 be a Borel measurable function in
S'. We shall call a measurable function p^>0 in £ admissible if the surface

integral \ pdo- exists and 2>1 for each S<ΞΣ. The module MP(Σ; π) of Σ

r
with weight π is defined by inf \πppdv and the extremal length λp(Σ;π) of

P J

Σ with weight π is set to be 1/MP(Σ; π). We can regard this as a special
case of Fuglede's definition.

In the same way as in §3 we can establish

THEOREM 5. Let p > l , and T be a one-dimensional measurable subset of
the range of values of H(P). Denote by St the regular part of the level surface
on which H=t. Then we have

Mp({St;teT};π) =
JT\JSt~ /

Γ . . .

an
r

where g= |grad H\/n as before. If 0< \ g1 l(p"1)do-<^ CXD /or a.e. ί<
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extremal function is given by

S i

σP-id<r

if PeSt and teT,

if PeSt and teT-T,

elsewhere,

where T is the set of t values for which 0<\ gll(-p~1)dσ<moo.

REMARK. We can consider MP(Σ; π, K) as in §4.
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