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1. Introduction and summary

In this paper we shall propose a new type of design for two-way elimina-
tion of heterogeneity and deal with its analysis. Many types of designs for
two-way elimination of heterogeneity, such as, Latin square designs, Youden
square designs and some other extended designs, have been proposed and
investigated. The type of row-column incidence matrices, however, of those
traditional designs is a restrictive one in that it is complete. In other
words, every row block consists of all plots, each of which belongs to any
one of the column blocks and vice versa.

The row-column incidence matrix of a design for two-way elimination
of heterogeneity may not necessarily be complete, but any one of the plots
belongs to one and only one of the row blocks and one and only one of the
column blocks simultaneously. In this connection, we shall propose in section
2 a new type of row-column incidence matrix for two-way elimination of
heterogeneity. The matrix is not complete but a direct arrangement of
some complete type matrices. In section 3 we shall introduce a treatment-
plot incidence matrix subject to some conditions, and shall define a relation-
ship algebra of the design. Complete analysis of the relationship algebra of
the design will be presented in section 4 along the line due to S. Yamamoto
and Y. Fujii [8]. Analysis of variance of the design will be presented in
section 5. Two examples of the design proposed in this paper will be
presented in section 6.

It will be seen that, in any one of the complete portions of row-column
incidence, the design is insufficient for the purpose of the analysis, but the
suitable combination of these portions gives us a design for two-way elimina-
tion which is sufficient for the purpose of the analysis.

2. A new type of row-column incidence matrix
Let 7', be the row-plot incidence matrix defined as,

ey ¥y = [[¢1sal]
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where D170 =
0 otherwise,

and let ¥, be the column-plot incidence matrix defined as,

) Vo= ||gass]

where
0 otherwise.

The elements of the row-column incidence matrix,

3 M=¥, = ||mq,]

{1 if f-th plot belongs to a-th row,

{1 if f~th plot belongs to p-th column,
Gapp =

are assumed to be 1 or 0 according as the a-th row and p-th column have a

common plot or not.

If we introduce the notion of connectedness between two treatments
familiar in a block design into the relation between two rows (columns) of
such an incomplete row-column incidence matrix M, we can divide it into, say,
h connected portions. Without loss of generality, after labeling suitably the
number of plots, rows and columns, we can express the matrices M, ¥, and

7, as follows:

@ M=¥¥,=

where M; is an x; Xy; matrix,
} ¢.11

(5) v, = }

where ¥y; is an x;y; X x; matrix, and

WZI

(6) V=
!

where ¥,; is an w;y; Xy; matrix, for any i=1,2, ..., &

M,

WIZ.

WZZ-

Let the number of
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h
rows, columns and plots be b;, b, and n respectively, then we have >x; = by,
i=1

h h
Eyizbz and Exiyi=n.
i =1

i=1
If we denote

(7) yfiwl =D, gfflzqu = Dz

the definitions of ¥, and ¥, show that these are diagonal matrices, all
diagonal elements of which are positive integers.

Define U, and U, as
U,=7%,D;'%], U,=%,D;'7,
then we can express these as

v DU,
U, N

— 1977
Qflthh 1h

VDT,
U, &

| VD57,

Whel‘e DliZQri,-qf” and DziZWQiWZi fOI‘ izl, 2, EEEDY ]l.
We shall prove the following theorem.

TaeoreMm 1.  The matrices U, and U, are commutative, if and only if the
row-colummn incidence matrixz M is expressed as

HG(xlxyl)
®) M=

|
|

G(xz X y2)

where G(x;xy;) denotes an x; X y; matric whose elements are all unity for any
i=1,2, ...,k

Proor. Assume that U,U,=U,U;. The assumption holds if and only if

9 V), D}V, DY, =Y, D}, ¥,; D}
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holds for any one of the connected portions of M, i.e., for any M;=%1,¥,;.
An (f, g) element (f+g) of the matrix ¥,;D;}¥ ¥ ,;D;}¥;; is non-zero if
and only if there exist a row @ containing f-th plot, and a column p containing
g-th plot, and the row « and the column p have a common f'-th plot. Similarly
the (f, g) element of the matrix ¥,,D;}¥;.%,;Di}¥1; is non-zero, if and only
if there exist a column ¢ containing f-th plot, and a row b containing g-th
plot, and the column ¢ and the row b have a common g'-th plot.

Thus, if m,,=1 and my,=1, then either of m,,=1 and my,,=1, or m,,=0
and my,=0 holds in each of the connected portions M;(i=1, 2, ..., ). More-
over, since each of the M; is connected in the row-column incidence, it can be
seen that if m,,=1 and m;,=1 then m,,=1 and m;,=1 hold for any two rows
a and b, and for any two columns p and ¢ in the same portion. Thus all
elements of M; are unity, i.e., M;=G(x;xy;) for all i=1, ..., h.

Conversely, assume that (8) holds. Since Dy;=y;l., Dy=u=:l,, and

| Claxyy), ‘
‘e iD 1@'/

U,U,=%,D;' ..
G(xh Xyl

X1y

’

,_G (w191 X% 3»1}’1) ‘

|
|
[ |
! XY G(xh_'}’h X xhyh)

the matrix U,U, is symmetric. As U, and U, are symmetric, U, and U, are
commutative.

3. A design and its relationship algebra

In this section we shall define a design for two-way elimination, the row-
column incidence matrix of which is given by (8). Assume that each plot
receives any one of the v treatments, and that among those v treatments an
association of m-associate classes is defined:

(a) Any two treatments are either 1st, or 2nd, ..., or m-th associates,
the relation of association being symmetrical.

(b) Each treatment « has n; i-th associates, the number »; being inde-
pendent of «.

(¢) If any two treatments « and @ are i-th associates, then the number
of treatments being j-th associates of « and k-th associates of 3, is pi, and is
independent of the pair of i-th associates « and 3.



On a Design for Two-way Elimination 241

Association matrices which are matrix representation of the scheme are,
AizHa’giHa LZO, 1, 2,...’7)1,

1 if the treatment « is i-th associate of 8,
where al; =
0 otherwise.

A commutative algebra %A generated by those association matrices 4,=
I, A, ..., A, is called an association algebra. It is known that the algebra
is completely reducible and its minimum two-sided ideals are linear. Let

A*g:%Gv, A%, ..., A% be their principal idempotents, then the linear closure

of these idempotents also gives the association algebra, i.e.,
A=[AG, 45, -, 4]
Let @ be the treatment-plot incidence matrix defined as,

(10) 0= %]

1 if f-th plot receives a-th treatment,
where Pra =

0 otherwise.

@ may be expressed in the following form

i
(11) 0= l

where @;’s are (x;y; xv) matrices respectively for i=1, 2, ..., k.

The treatment-row incidence matrix of the design is
(12) O, =N = |01%, - 0;F ]|
The treatment-column incidence matrix of the design is

(13) DU, =N, = |0 F,,..... 0¥,
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Now we assume that the design satisfies the following four assumptions:

10 Ule == U2U1
h
2° mimi:’ilv (Z:]-a 23""]2): Eri:r
i=1
3° N\Di'N{=0,045+ 0,45+ ...+ 0., 4}
40 NZDilNé:pzoAg+021Ai{++02mA,i
where 0y, 011, ---, and 0;,, are latent roots of N,D;'N] and 0,,, 0,;, ---, and 0z,
are latent roots of N,D;!N;.
Denote as,

Té=040  (=1,2, ..., m)
(14) V1:U1—U1U2, VZZUZ_UIUZ, W: UlUZ

(For 4, o430’ =-"-¢, holds)

From the assumptions 1°, 2°, 3° and 4°, the following relations may
easily be verified,
Viv,=0, mWw =0, VoW =0
WT:=0
(15) TiT%=r0;; T}
TV, Ti=0,;0,;T}
TiV,T: = 0,;0,;; T%, Gy j=1,2, ..., m)
An algebra R generated by I, G, T%, T%, ..., T:, V1, V> and W is called the

relationship algebra of the design.

4. Analysis of the relationship algebra of the design

In order to find the ideals of the algebra R, the following Lemmas are
useful.

LemMma 1.

0<o<lr, 0<<0x<lr, 001+ 02<r, for i:=1,2, ..., m.
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Proor. Since N,D;'N; and N,D;'N; are positive semi-definite matrices,
it follows 01,‘20, 0,;>0. Since {Tf (I— V,— Vz)} {Tf(l— Vi— Vz)},T‘f = T(T —
01;—05;) T%, it follows r>0;+ 02;.

Lemma 2.
@) T4V, =V, Tt =0, iof and only if 01;=0.
TV, =V T¢=T% if and only if 0 =r.
TV, <V, T, if and only of 0<<py; <r.
(ii) TV,=V,T =0, if and only if 0, =0.
TV,=V,T =1T% if and only tf 0 =r.
TV, ==V, T, if and only 1f 0 <0y <r.

(iii) TiV + V)= + V) Ti=0,
if and only 1f 01, = 0:;=0.

Tiz?(Vl + Vz) = (V1 + Vz) T? = T‘f,
if and only ©f 01+ 05, =r.

Lemma 2 is essentially the same with that given in [3].

Lemma 3. Nine matrices T%, V. T% TV, V,Ti, TV, VTV, VTV,
V,T%V, and V,T%V, are linearly independent, if and only if

0<o<r, 0<0,<r and 0 <0+ 0y <1,y
or if and only if
V\T{ =T, V,T==TH, and i+ V)TEETE(V, + V).

Proor. Assume that 0<<0,;<<r, 0<02;<r and 0<0y;+ 04;<r, and for some
constants ¢, b, ¢, d, ¢, f, g, h and k, we have

(16) aTt + bV, T% + cTHV, + dV,T¢ + eTtV, + fV, T4V,
+ gV TV, + WV, T3V, + KV, T3V, = 0

Multiplying (16) by V,T% or V,T% from the right and by TV, or T%V, from
the left, we have
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an atb+ct+f=0
(18) a+bt+et+g=0
(19) atctd+h=0
(20) a+d+e+tk=0

Multiplying (16) by T# from the right and V; or ¥, from the left, we have
(21) (@+0)r+(c+ o+ (e+g)0:=0
@+ dr+(c+h0+ (e+k)0;; =0
Multiplying (16) by V; or ¥, from the right and 7% from the left, we have
(22) (@+r+ G+ )01+ (@d+h)o=0
(@+e)r+(b+gou+(@+k)o;=0
Using from (17) to (22), we have
(23) a=f=g=h=k=—b=—c=—d=—e
As (I-V,—V)Ti(I—V1—V3)70, we have =0, and the proof is complete.

LemMa 4. Among nine matrices T, V,Ti, TV, V,T% TV, VTV,
VTV, V,TtV, and V,TV,:

(1) Four matrices T, V,T%, TV, and VTtV are linearly independent and
the rest are zero matrices if and only if

0<ou<r and 0 =0

(i) Four matrices T%, V,T% TV, and V,T%V, are linearly independent
and the rest are zero matrices 1f and only 1f

0<0,<r and 01:;=0

(iii) Four matrices V\T%V,, VTV, V,TiV, and V,TiV, are linearly
independent and the rest are linearly dependent on these if and only if

O1i+0=r and 0<0y; or 0yu<r.

The proof of this lemmas is analogous to that given by S. Yamamoto
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and Y. Fujii [37], and the proof is omitted.
Now we have the following theorem.

Tueorem II.  In a design satisfying the assumptions 1°, 2°, 3° and 4°,
each component of the treatment sum of squares, corresponding respectively to
each of the mutually orthogonal families of treatment contrasts determined by
the association scheme, can be classified into one of the following seven cases
according to the magnitude of the corresponding densities 0,; and 0y in the
spectral resolution of N,D7'N; and N,D;'Nj.

(1) The case being orthogonal to rows and columns: 0,;,=0,,=0. In this
case, [T%] is the one dimensional two-sided ideal of R, and the principal

1

idempotent of the ideal is E¥= —T% The component S.S. (sum of squares)
T

1

of a;(=tr(4?) degrees of freedom corresponding to A% and being defined by
1 T%, 1is orthogonal to the row-block space and the column-block space.
;

(2) The case being confounded with columns: 0,;,=0 and 0y;=r. In this
case, [T%] is the one dimensional two-sided ideal of R, and the principal
idempotent of the ideal is EV'= ey T%.  The component S.S. of «; degrees of
T

freedom corresponding to A* and defined by iT“f, 18 orthogonal to the row-block
r

space but confounded with the column-block space.

(8) The case being confounded with rows: 0,,=0 and 0,;=r. This 1is
stmilar to the case (2).

(4) The case betng orthogonal to rows with partial confounding to
colummns: 0,;=0 and 0<0,;<r. In this case, [T% V,T%, TV,, V,TiV, ] 1is the
Sour dimensional two-sided ideal of R, and the principal idempotent of the
ideal 1s

Ep =, (i Vi = T3V, + o V,T0)

r—0y; i

The component S.S. of 2a; degrees of freedom corresponding to A% and being
defined by E'\?, is orthogonal to row-block space and partially confounded with
colummn-block space. The non-principal idempotent of the ideal being orthogonal
to both row and colummn-block spaces, is

1

r—0y;

FO=E®(I—V,)= I—=V)TEI—V>)

The residual idempotent of the ideal being orthogonal to F'V and confounded
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with the colummn-block space, is

EQ), =PV, = V,T1V,

The degrees of freedom of these compoents defined by FV and EX; are ;.

(®5) The case being orthogonal to columns with partial confounding to
rows: 0<0,;<r and 0,;,=0. This is similar to the case (4).

(6) The case being confounded with both rows and columns: 0<0y;<r,
0<0;<r and 01;40x;=r. In this case, [V TV, V\T%V,, V,TiV,, V,TtV,] is
the four dimensional two-sided ideal of R, and the principal idempotent of the
1deal s

§ 1 1 ‘
E? = “ou V,T%V, + 0w V,TtV,

2

The component S.S. of 2a; degrees of freedom corresponding to A% and defined
by E® is totally confounded with row and column-block spaces. The non-

principal idempotent of the ideal being orthogonal to the column-block space

and confounded with the row-block space is E{); = 01
1i

pal idempotent of the ideal being orthogonal to the row-block space and con-

b—l— V,T%V,. The degrees of
21

V\TiV,. The non-princi-

Sfounded with the colummn-block space is E3}); =
freedom of these components are «;.

(7) The case being partially confounded with both rows and columns:
0<0;<r and 00, <r and 0<01;+02:<r. In this case, [Ti, V T}, V,Ti, TiV,,
VTV, V, TV, TV, V\TiV,, V,TtV, | 1is the nine dimensional two-sided ideal
of R, and the principal tdempotent of the ideal is

E® = ”r*_?l{jb;<T’f — VT =V, Tt =T, — TV, + V,TtV, + VTV,
+ Sy T )

The component S.S. of 3a; degrees of freedom corresponding to At and defined
by E® is partially confounded with the row-block space and column-block space.
The non-principal idempotent of the ideal being orthogonal to both of the row-
block space and colummn-block space is
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FP=EPI—V,—V>)

1 .
:m(l_Vl_VZ)Ti(I—VI_VZ)

The non-principal idempotent of the ideal being confounded with column-block
space 18

1 R
EY) =E¥V,= 04 VTV,

The residual idempotent of the ideal being confounded with row-block space is

1
EY) = EPVi= VT3V,

The degrees of freedom of these components defined by F¥, ESV; and Ef}); are
;.

The proofs of the case (1) to (5) are (formally) the same as S. Yamamoto
and Y. Fujii [3].

Proof of case (6): From Lemma 3 (iii), it follows that

IR =Q)

SOoOoOH
OOoOHO
OHROO
HOOO

CR=R)

SOoOoOO
SOOoO
SOOO
SOOO

) =Q)

|

SOOH
SOoOoOO
OHOO
SOoOoO

SOoOoOO
SOHO
SOOO
HOO O

ZONIR)

1 plt 021 ‘
011 021 |
|

01 Oz |

T4 () = ()03
0 o 057 ||
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|

W =R

SOOoOO
SOoOoO
SOOO
SCOOO

where ()=V TV, V, TV, V.T%V,, V,T%V,). Thus the sub-algebra [V TV,
V,T%V,, V.T%V,, V,T%V,] is a four-dimensional two-sided ideal of R. The
ideal is irreducible because we can find the following irreducible representa-
tion:

10 00 10|
“HM E G*laoow VI”HOOH

00 00| 01; 02 |l
V2—>” 01 W—»H 00| T?—»@U pii pzi H

Thus the principal idempotent of the ideal is E¢', and its trace is 2a;.
Proof of case (7); From Lemma 4, it follows that

SO
HOO

(e} O oo

I3 =R

==
S oo O
oo

SOoO

() O ococo
coco

6@ =3

coo
O ocoo O
coo

coo
O ocoo
coo

(3 =)

coco
O ococo O©
coo
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OO
oo

() Q oo

n@H=RQ

oo
O oo O
coo

oo O ()

oo

OO

=HOO

O O ocoo
Hoo

2@9)=Q

oo
O ococo O
_Hoo

2

>

)
(=)
coo O O
(=)

SO~

() o oo
oo

> ()

o ()

o oo®
OO

T =R*)0y

SO~

i Oy
0
0

SO
oo

[ [
where (§*)=(T%, V\T?, V,T%, TiVy, ViTiVy, VoTiVy, TiVa, ViTiV,, VoTiV3). Thus
the sub-algebra [T‘:, VlT"f, VzT‘?, T‘?Vl, V1T§V1, VzT’: Vi, T’? Vz, Vle Vs, VzT‘: Vz]
is a nine-dimensional two-sided ideal of ®R. The ideal is irreducible because
we can find the following irreducible representation

1100 000 |
I-/ 010/, 6> 000
1001 000
1000 000
W—»}OOO, Vi—-{1110
000 000
000‘I 'r01;02,v
V,— 000”, T¢—0;0 0 0
101 | 00 0|

The principal idempotent of the ideal is E$¥, and its trace is 3a;.
The rest of the proof of Theorem II is easy, and is omitted.
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In order to give the direct decomposition of the relationship algebra R,
we shall rearrange 0;; and 0,; (i=1, 2, ..., m) according to the magnitude of
01; and 0,; (=1, 2, ... m) as follows

01y =02, =0 for u=1,2,..,s
0,=0, 0,,=r for v=s5+1,s+2,..,b
Or=r1, 02,=0 for w=b+1,0+2, ..., ¢

01,=0, 0<0,<r for x=c+1,c+2, ...,d
0<ply<r1 pZ_y":O fOr y:d+1,d+2,,€

0<012<T, 0<022<T, r =01, + 02,
for z=e+1l,e+2 ..., f

O0<ou<r, 0<0u<r, 0O+ 0 <r
for t=f+1,f+2, ..., m

The principal idempotent E’ of the one-dimensional two-sided ideal [ G]
of Ris

In order to obtain the remaining irreducible two-sided ideals of R and
their principal idempotents, we shall consider the difference algebra of R
modulo |[G, T%;i=1, 2, ..., m], ie.,

R—IG 11, 1%, -, T3]

where (G, T, T%, ..., T%]] is the ideal of R generated by G and T% (i= .y M)
and the principal idempotent of the ideal is E{’+ ZE<D+ }_1 EV+ Z E)

v=s+1 w=b+1

+ E EZ + é E» + Z E® + i E®. Generally, this difference

x=c+1 y=d+1 z=e+1 t=F+1
algebra is isomorphic to the algebra [I, V1, V., W] generated by I, V1, V> and
W. The latter can be decomposed into the direct sum of four mutually
orthogonal one-dimensional two-sided ideals [I—V,—V,— W, [V1], [V.] and
[W7], and their principal idempotents are respectively the generators them-
selves. In some cases, however, it may happen that the ideals corresponding
to [ V1], [ V-] and [ W] degenerate to zero as is the case indicated in [37].
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The principal idempotents E,, By, By, and By of the ideals of R cor-
responding respectively to I—V,—V,— W, Vi, V5, and W may be obtained by
dropping the modulo G and T# (=1, 2, ..., m) of the following:

V1=BV1, V2=BV2
mod G, Tt i=1, ..., m
I—Vl_Vz—‘W:Ee, ’V'—_BW
The results may be expressed as
Vi=By, +Fy, Vo=By,+ Fy,

I—Vl—Vz—WZEe-I-Fg, W:Bw+FW

where
1 &, eo 1 " fo01 P
FV B V1T£V1+ 2, “—VlTyl/l—l‘ Z VszVl
! T wipe1 yZa+1 Py 2o+t D1z
m o1
+ > ST
i=f+1 Y1t

1 0 a 1 , o1
FV = Z} VzTﬁVz—F 2 Vsz,Vz'I‘ Z ‘”VzTsz

: T p=s+1 x=c+1 Oz z2e+1 P2z

1=+ 0
1 5‘ # S 1 e‘ 1 m_‘ 1)
Fo=->1Ti4+ >} F'4 > P+ > F,
u=1 x=e+1 y=d+1 t=f+1
FW:E%;I\'

since By, By,, E., Bw, Fy, Fy,, F, and Fy must satisfy the following equations:

oy, ' B + 3B + S + 3B 1|0

E| +SIEE + SUEP + ES + BE =)
r, F,
Fy. Fy.

i o Fo

We may summarize the results obtained so far by the following theorem.
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Tueorem III. The unique decomposition of the unit element of the
relationship algebra R corresponding to its direct decomposition is

I=E{'+ By, + By, + B+ By + SEL + SIEY + SIEP
+ ZE;Z) + EE;Z) + EE(ZZ) + ZE(t3>

Further decomposition in relation to the row-block space and the column-
block space s

) 1
I=E&+ By, + By, + E.+By+>—T{+3FP+>F+3FY
u x y t
1 1 23 SYR (1) (1 N (D) Y 1 &
+ZTT1;+LEV“¢+ZEVM+%JEV”+2.| r TW

+SIE, + DR, + 3B,

5. Anmalysis of variance for two-way design

h
We are considering a design which consists of n= >)x;y; experimental
j=1

units in which the observation vector ¥ = (%1, 7., .-, 7,) satisfies the linear
model

(24) N=Tj,+ 0t + |¥.¥.| + e

8

where 7 is the general mean, z/=(ry, ..., v,) is the treatment parameter
vector, B]= (P11, P12, ---, B1s,) 18 the row-block parameter vector and B; =
(B21, B2z, ---5 B,) is the column-block parameter vector being subjected to the
restrictions

v b1 b2
(25) z‘ifdzoy Ziﬁla:O, EﬁZﬁZO
respectively, and e = (e, e, ---, €,) is the error vector being normally distri-

buted with mean vector zero and covariance matrix ¢%,. The matrices 0, ¥,
and ¥, are the incidence matrices defined in (1), (2) and (10) and j,=(1, 1, ...,
1).

Denote,
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(26) grand total: G=j7, treatment totals: T=¥"7,

row-block totals: U,=¥;», column-block totals: U,=%}7.

The normal equations for the least-square estimation are

@n ng +rt+kif+kiB,=6
(28) rg+ D2+ NB,+NoB=T

’g kil N »‘ f\ AR SRR 4N 29 ; Bl U
(29) gt iaa o H="

‘: z |l “N" I Z3 21 WZWZIJIBZ T

where, £, 4; and B, are the estimates of =, 8; and 8,, and r=0'j, k,=%{j and
Multiplying (29) by

&, @.|| || D' — Di'MD;'M'D;t 0
\
\

0 D;!

[
from the left, we have the following equation
(30) Jjg + @Dy Ny — Y. D;'MD;*M'D;'N; + ¥.D;'Nj)t + VB, + V.8
=¥\D;'U, — ¥\ D;*MD,;*M'D; U, + ¥.D; U,

and multiplying (30) by @ from the left and substracting it from (28), we
have the adjusted normal equation for treatment;

(31) (D, — N\D7N{— N3D; N}, + No.D; M DTINT) 2
=T— NlDIIUl — N2D£1 U, + NzDElM/DII U,

The complete table of the analysis of variance for the design will be given
in Table 1.

6. Illustration of allocation plan to the design for two-way elimina-

tion of heterogeneity

Example 1. An allocation plan for 12 treatments having two-way facto-
rial association scheme.

Table 2 shows the association scheme for the treatments. Each treatment
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is the first associate of the other in the same row, the second associate of the
other in the same column and third associate of the rest. Table 3 shows an
allocation of those treatments as a design for two-way elimination.

Table 2 Table 3
- columns|
a b ¢ d 1 2 3 4 5 6 7 8 9 10 11
rows

e f g b
1 a b ¢ d e f g h

[ 2 Y ) .
2 e f g h i j k I
3 i j k!l a b ¢ d
4 a e i
5 b f
6 c g k
7 d h I

As the mutually orthogonal idempotents of the two-way factorial asso-
ciation scheme are _

and

|
’é*[@@cs 1 | GsR1 [
U= 1 A 1 |
*3*I4®Gs \[ H 4_G4®13 i
1 |
ey
U1U2: 24 1
| Tz“Glz

NDI'NG =845+ Af + 5 A
NuDy N} = 84 + 245 + A

the above design satisfies the assumptions 1°, 2°, 3° and 4°.
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Example 2. An allocation plan for 16 treatments having L, association
scheme.

Table 4 shows the association scheme for the treatments. Each treat-
ment is the first associate of the other in the same row or in the same column
and the second associate of the rest. Table 5 shows an allocation plan of
those treatments as a design for two-way elimination

Table 4
a b ¢ d
e f g h
p g T s
v v o x y
Table 5
column S o -
1 2 3 456 7 8 9101112131415 1617 18 19 20 21 22 23 24
row |
1 a b cde fghpaqr s
2 pgr s uovx yabcd
3 e f &8 h pgr s uwovaxy
4 u v xy abcde f gh
5 a e pudb fquvecegrzx
6 b fq vecgrxdh sy
7 c gr xdh s y ae pou
8 d hs y ae pubd g v

As the mutually orthogonal idempotents of the L, association scheme are

. 1
A =16 Ce

, 1 1
Af = 4 IiRQCs+ G R 1) — 8 G

1 1
A =1 — T(]4®G4 + G R1y) + TgGm

it can be seen that only for the first portion of row-column incidence as well
as for the second portion, the design does not satisfy the assumptions 3° and
4°. The whole design, however, satisfies those assumptions 1°, 2°, 3° and 4°,
as
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|
| —l714®G12 0 —1—G4®112 0 |
_ 112 _\|l 4
U= . 1 U» 1
i 0 —f§14®012 0 TG4®I12

256:®6: 0

UlUg = 1
0 456G

N.DPN, = 645 + 5 A%

N,D; N, = 643 + 34¢
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