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1. Introduction and summary

In this paper we shall propose a new type of design for two-way elimina-
tion of heterogeneity and deal with its analysis. Many types of designs for
two-way elimination of heterogeneity, such as, Latin square designs, Youden
square designs and some other extended designs, have been proposed and
investigated. The type of row-column incidence matrices, however, of those
traditional designs is a restrictive one in that it is complete. In other
words, every row block consists of all plots, each of which belongs to any
one of the column blocks and vice versa.

The row-column incidence matrix of a design for two-way elimination
of heterogeneity may not necessarily be complete, but any one of the plots
belongs to one and only one of the row blocks and one and only one of the
column blocks simultaneously. In this connection, we shall propose in section
2 a new type of row-column incidence matrix for two-way elimination of
heterogeneity. The matrix is not complete but a direct arrangement of
some complete type matrices. In section 3 we shall introduce a treatment-
plot incidence matrix subject to some conditions, and shall define a relation-
ship algebra of the design. Complete analysis of the relationship algebra of
the design will be presented in section 4 along the line due to S. Yamamoto
and Y. Fujii [3]. Analysis of variance of the design will be presented in
section 5. Two examples of the design proposed in this paper will be
presented in section 6.

It will be seen that, in any one of the complete portions of row-column
incidence, the design is insufficient for the purpose of the analysis, but the
suitable combination of these portions gives us a design for two-way elimina-
tion which is sufficient for the purpose of the analysis.

2. A new type of row-column incidence matrix

Let Ψ\ be the row-plot incidence matrix defined as,

(1) Ψl = WΦlfaW
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where Φlfa-
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f 1 if /-th plot belongs to α-th row,

Lθ otherwise,

and let Ψ2 be the column-plot incidence matrix defined as,

(2) Ψ2 = \\φ2fp\{

f 1 if /-th plot belongs to p-th column,
where ΦlfP =

lθ otherwise.

The elements of the row-column incidence matrix,

(3) M=ψ[¥2 = \\maP\\

are assumed to be 1 or 0 according as the α-th row and p-th column have a
common plot or not.

If we introduce the notion of connectedness between two treatments
familiar in a block design into the relation between two rows (columns) of
such an incomplete row-column incidence matrix M, we can divide it into, say,
h connected portions. Without loss of generality, after labeling suitably the
number of plots, rows and columns, we can express the matrices M, Ψλ and
Ψ2 as follows:

(4)

where Ms is an x{ xy{ matrix,

(5)

where Ψu is an xφ x x{ matrix, and

M1

M2

Mh

Ψ ϊh

(6)

Ψ21

Ψ 22

where ¥2i is an x,γiXp matrix, for any i=l, 2, ••-, h. Let the number of
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rows, columns and plots be bu b2 and n respectively, then we have Σ a f = δi,
ί = l

h h

j 7i = b2 and Σ^-yί = ^

If we denote

(7)

the definitions of ΨΊ and Ψ2 show that these are diagonal matrices, all

diagonal elements of which are positive integers.

Define Ui and U2 as

then we can express these as

ψ

]¥9

Ψ
1Λ

where DU = Ψ'UΨU and D2i = ¥'2i¥2i for i = l, 2, •• ,Λ.
We shall prove the following theorem.

THEOREM I. The matrices U\ and U2 are commutative, if and only if the
row-column incidence matrix M is expressed as

(8) M =

where G(xi xyd denotes an x{ xyi matrix whose elements are all unity for any

PROOF. Assume that UιU2= U2Ui. The assumption holds if and only if

(9)
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holds for any one of the connected portions of M, i.e., for any Mi = Ψ'uΨ2i.
An (f,g) element (fφg) of the matrix Ψ uVlWiF iPiWii is non-zero if
and only if there exist a row a containing /-th plot, and a column p containing
g -th plot, and the row a and the column p have a common / - t h plot. Similarly
the (/, g) element of the matrix Ψ 2^2}^ 2^ u^u^u i s non-zero, if and only
if there exist a column q containing /-th plot, and a row b containing g -th
plot, and the column q and the row b have a common g '-th plot.

Thus, if maq = l and mbp = l9 then either of map = l and mbq = l, or maP = 0
and mbq = 0 holds in each of the connected portions Mt (£ = l, 2, .., h). More-
over, since each of the M, is connected in the row-column incidence, it can be
seen that if maq = l and mbp = l then maP = l and mbq = l hold for any two rows
a and 6, and for any two columns p and r̂ in the same portion. Thus all
elements of M{ are unity, i.e., Mi = G(χiXyi) for all ί = l, ..., A.

Conversely, assume that (8) holds. Since Du=yilxp D2i = XiIyp and

-G(xhyh x Λ

the matrix UιU2 is symmetric. As Z7i and C/2 ^re symmetric, J7i and ί72 are
commutative.

3. A design and its relationship algebra

In this section we shall define a design for two-way elimination, the row-
column incidence matrix of which is given by (8). Assume that each plot
receives any one of the v treatments, and that among those v treatments an
association of /^-associate classes is defined:

(a) Any two treatments are either 1st, or 2nd, •-, or 772-th associates,
the relation of association being symmetrical.

(b) Each treatment a has m i-th associates, the number m being inde-
pendent of a.

(c) If any two treatments a and β are ί-th associates, then the number
of treatments being /-th associates of a and fc-th associates of /?, is p)k and is
independent of the pair of ί-th associates a and β.
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Association matrices which are matrix representation of the scheme are,

-4,- = , 1 , 2 , . . . , 7 τ *

where
Γl if the treatment a is ΐ-th associate of β,

iθ otherwise.

A commutative algebra St generated by those association matrices Ao =

/„, Au •-, Am is called an association algebra. It is known that the algebra

is completely reducible and its minimum two-sided ideals are linear. Let

A\ — —Gv, A\, .., Ajh be their principal idempotents, then the linear closure
v

of these idempotents also gives the association algebra, i.e.,

Let Φ be the treatment-plot incidence matrix defined as,

(10)

where
Γ1 if /-th plot receives α:-th treatment,

Id otherwise.

Φ may be expressed in the following form

(11)

where (5,'s are (xiytxv) matrices respectively for i—1,2, •••, h.

The treatment-row incidence matrix of the design is

(12) 'ψί = Nι = \\Φ[Ψlι Φ'hΨ 1 Λ I I

The treatment-column incidence matrix of the design is

(13)
'Ψ2 = N2 = \\Φ[Ψ21 Φ'hΨ 2Ai.
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Now we assume that the design satisfies the following four assumptions:

1° UιU2=U2U1

2° Φ'iΦi=riIv (i = l ,2, ...,A), Σ r , = r
/ = 1

3° N.D^Nί = P10Λ* + QιιA\ + ... + P 1 1 B4*

4° iV2£2 ^ = P 2o^ί + ̂ 21-4? + • •• + 9lmAi

where plθ9 P1U • •-, and Pίm are latent roots of N^^NΊ and P 2 0 5 p 2 1 , •••, and P 2 w

are latent roots of N2D21N/

2.

Denote as,

ί = 1,2, ..-,!»)

(14) V1 = U1-U1U2, F 2=[/ 2-t/it/ 2, W=U1U2

)' = - Z - G κ holds)
7Z /

From the assumptions 1°, 2°, 3° and 4°, the following relations may
easily be verified,

(15)

T\ V2 T) = P2i δh Tl α / - 1, 2, , m)

An algebra 91 generated by /, G, Tf, Γ|, ••, Γ*, Fi, F2 and JF is called the
relationship algebra of the design.

4. Analysis of the relationship algebra of the design

In order to find the ideals of the algebra 31, the following Lemmas are
useful.

LEMMA 1.

0 < P H < Γ , 0<P 2 ί <r, 0 < P H + P2 i<r, for ί = 1, 2, .., m.
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PROOF. Since NJl^NΊ and N2D2

ιN2 are positive semi-definite matrices,
it follows P H > 0 , P2ί > 0 . Since {T](I-Vι-V2)} { Γ f ( / - F i - V2)}'T*i=r(r -
Pli-PzdTt, it follows

LEMMA 2.

(i) τ\ Vλ = V1T
jf = 0, if and only if Pu = 0.

T\V1 = VλT\ = T*i9 if and only if Pu = r.

TψλφVλT\, if and only if 0<Pu<r.

(ϋ) τ\V2 = V2T\ = 0, if and only if P2i = 0.

Γf Γ2 = F2rf = Γf, if and only if P2i = r.

T] V2 φ V2T% if and only ifθ< P2i < r.

(iii) TKVl + V2) = (V1 + V2)T*i = 0,

if and only if p u = P2ί = 0.

if and only if Pu + P2i = r.

Lemma 2 is essentially the same with that given in \ΊΓ\.

LEMMA 3. Nine matrices Γf, VXT\, T\VU V2T\, T]V2, VλT*Vu VxΎψ2,
V2T]Vι and V2T\V2 are linearly independent, if and only if

0<Pu<r, 0<P2i<r and 0<Pu + P2i<r9

or if and only if

VλT\ φ T]Vλ, V2T\ φ T]V2 and {Vλ + V2) Ύ\ φ Ύ\ (V, + V2\

PROOF. Assume that 0 < P i i < r , 0<P2i<r and 0<Pi/ + P2 ί<r, and for some
constants a, b, c, d, e, /, g, h and k9 we have

(16) aT\ + bVxT] + cT]Vι + dV2Ύ\ + eT]V2 + fV1T]Vι

hV2T\V1 + W2T\V2 = 0

Multiplying (16) by VXT\ or V2Ύ\ from the right and by Ύψx or T]V2 from
the left, we have
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(17) β + 6-hc+/=O

(18) α + δ + e + g = 0

(19) a + c + d + h = 0

(20) a + d + e + k = 0

Multiplying (16) by T\ from the right and Vι or V2 from the left, we have

(21) (a + b)r + (c + /)Pi* + (e + #)P2 l - 0

(α + d)r + (c + h)Qu + (e + ft)P2, = 0

Multiplying (16) by Vλ or V2 from the right and Ύ\ from the left, we have

(22) (a + c)r + (b + /) p l f + (d + A) P2f = 0

(a + e)r + (δ + gr)Pi, + (d + fc)P2; - 0

Using from (17) to (22), we have

(23) a=f = g = h = k=-b=-c=-d=-e

As (/-Γi-F2)Γf(^-^1-^2)^=0, we have α=0, and the proof is complete.

LEMMA 4. Among nine matrices Γf, ̂ rf, ΓJ^, F2rf, ΓfF2,
ViT*iV29 V2T\Vλ and V2T]V2\

(i) Four matrices Tf, ^Γf, TfFx α̂ cZ VιT\Vι are linearly independent and
the rest are zero matrices if and only if

0 < Pi* < r and Q2i = 0

(ii) Four matrices Γf, F2Γ], TfF2 α^d V2T]V2 are linearly independent
and the rest are zero matrices if and only if

0 < P2ί < r and Pu = 0

(iii) Four matrices VλT\Vu VxTψ2, V2T\Vι and V2T\V2 are linearly
independent and the rest are linearly dependent on these if and only if

Pa + P2ί = r and 0 < Pu or P2i < r.

The proof of this lemmas is analogous to that given by S. Yamamoto
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and Y. Fujii \Ίf\, and the proof is omitted.
Now we have the following theorem.

THEOREM II. In a design satisfying the assumptions 1°, 2°, 3° and 4°,
each component of the treatment sum of squares, corresponding respectively to
each of the mutually orthogonal families of treatment contrasts determined by
the association scheme, can be classified into one of the following seven cases
according to the magnitude of the corresponding densities Pu and P2i in the
spectral resolution of N-β^N^ and N2Ώ2lN2.

(1) The case being orthogonal to rows and columns: Pu = P2i = 0. In this
case, [_T*;J is the one dimensional two-sided ideal of 5R, and the principal

idempotent of the ideal is Eγ') =—T\. The component S.S. (sum of squares)
Γ

of α, ( = tr(-4?)) degrees of freedom corresponding to A\ and being defined by

r
T], is orthogonal to the row-block space and the column-block space.

(2) The case being confounded with columns: p l f = 0 and P2i — r. In this
case, [_Tf} is the one dimensional two-sided ideal of ΪR, and the principal

idempotent of the ideal is Eγ' =— T\. The component S.S. of ct{ degrees of
r

freedom corresponding to A] and defined by T\, is orthogonal to the row-block
r

space but confounded with the column-block space.

(3) The case being confounded with rows: P2i = 0 and Pu = r. This is
similar to the case (2).

(4) The case being orthogonal to rows with partial confounding to
columns: Pu = 0 and 0<P2i<r. In this case, [TJ, V2T\, T?F2, V2T]V2~] is the
four dimensional two-sided ideal of <3\, and the principal idempotent of the
ideal is

The component S.S. of 2a{ degrees of freedom corresponding to A) and being
defined by Eψ\ is orthogonal to row-block space and partially confounded with
column-block space. The non-principal idempotent of the ideal being orthogonal
to both row and column-block spaces, is

γ2) = (/

The residual idempotent of the ideal being orthogonal to F^ and confounded



246 Kumaichi KUSUMOTO

with the column-block space, is

The degrees of freedom of these compoents defined by Fγ) and Eψ2i are <X{.

(5) The case being orthogonal to columns with partial confounding to

rows: 0<,Pu<.r and P2i = 0. This is similar to the case (A).

(6) The case being confounded with both rows and columns: 0 < P H < Γ ,

0<P2i<r and Pu + P2i=r. In this case, [VJψ^ VXT]V2, V2Tψλ, V2T\V2~] is
the four dimensional two-sided ideal of SR, and the principal idempotent of the
ideal is

The component S.S. of 2aι degrees of freedom corresponding to A\ and defined

by Eψ is totally confounded with row and column-block spaces. The non-

principal idempotent of the ideal being orthogonal to the column-block space

and confounded with the row-block space is Eψ{=—V\T\V\. The non-princi-
Pli

pal idempotent of the ideal being orthogonal to the row-block space and con-

founded with the column-block space is Eψ{ = — V2T\V2. The degrees of

freedom of these components are a{.

(7) The case being partially confounded with both rows and columns:

0<Pu<r and 0<P2i<r and 0<Pu + P2i<r. In this case, \Ύ\, VλT\, V2T\, T\Vλ,

VλTψx, V2T]Vλ, Tψ2, VxTψ2, V2T\V2] is the nine dimensional two-sided ideal

of ΪR, and the principal idempotent of the ideal is

& i — r _ /) . _ /) . 1 1 i V I1 i y 21 i 1 i v 1 J- i v 2 \ y 21 i y 1 ^ v I1 i v 2

r — Poί

Pit P2i

The component S.S. of 3α, degrees of freedom corresponding to A\ and defined
by Eψ is partially confounded with the row-block space and column-block space.
The non-principal idempotent of the ideal being orthogonal to both of the row-
block space and column-block space is
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r / χi-vι-v2)

The non-principal idempotent of the ideal being confounded with column-block
space is

7(1) _) _ 77(3) y _ .

The residual idempotent of the ideal being confounded with row-block space is

The degrees of freedom of these components defined by Fγ\ Eψ,{ and Eψιt are
α, .

The proofs of the case (1) to (5) are (formally) the same as S. Yamamoto
and Y. Fujii

Proof of case (6): From Lemma 3 (iii), it follows that

=(3)
1
0
0
0

0
0
0
0

1
0
0
0

0
0
0
0

Pi,

Pi,

0
1
0
0

0
0
0
0

0
0
0
0

0
1
0
0

0

0
0
1
0

0
0
0
0

0
0
1
0

0
0
0
0

P2

P2

0
0
0
1

0
0
0
0

0
0
0
0

0
0
0
1

• 0
i

Pli
Pu p 2 i .
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= (θ)
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0 !

where (3)=(F 1ΓfF 1 > VzT\Vίy VλTψt, V2T]V2). Thus the sub-algebra [
V2Ίψx, VXT\V2, V2T^V2J is a four-dimensional two-sided ideal of 9ϊ. The
ideal is irreducible because we can find the following irreducible representa-
tion:

1 0
0 1

0 0
0 1 W-

0 0
0 0 ί

o o
0 0

Vi-

1 j

1 0
0 0

Pu
Pu

Thus the principal idempotent of the ideal is Ef\ and its trace is 2at.

Proof of case (7) From Lemma 4, it follows that

/(»*) = (3T)

1 0 0
o l o 0 0
0 0 1

1 0 0

0 o l o 0

0
0 0 1

1 0 0

III
0
0
0

i1
i

0
0
0

0
0
0

0

0

0
0
0

0

0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
0

0

0
0
0
0

0

0
0
0

0
0
0

0
0
0

0
0
0

0

0
0
0
0

0

0
0
0
0

0
0
0

0
0
0
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??(3*) = ι

0 0
1 1
0 0

0

0

0 0
0 0
1 0

0

0

r Pu
0 0
0 0

0

0

0
0
0

0
0
1

P2i
0
0

0
1
0

0
0
1

Γ

0
0

0
0 0
1 0
0 0

0

0
0 0
0 0
0 1

0

0
Pu
0
0

0

0
1
0

0
0
1

02.
0
0

0

0
0
1
0

0

0
0
0
0

r
0
0

0
0
0

1

1

0
0
1

0

0
Pi

0
0

• P2i

0
0

where (9f*)=(Γί, Vtf, V2Tj, T]VU V1T*iVι, V2T\VU TjV2, FiΓfΓ2, V2TjV2). Thus
the sub-algebra [_T], V.T], V2T], T\VU V1T*iV1, F2ΓfFi, T]V2, VtfVi, V2T]V2-}
is a nine-dimensional two-sided ideal of 91. The ideal is irreducible because
we can find the following irreducible representation

1 0 0
0 1 0
0 0 1

G
0 0 0
0 0 0
0 0 0

W—>

->
0
0
1

0 0
0 0
0 0

0 0
0 0
0 1

0
0
0

T)-

0 0 0
1 1 0
0 0 0

r Pu P2i
0 0 0
0 0 0

The principal idempotent of the ideal is EY\ and its trace is 3α,.
The rest of the proof of Theorem II is easy, and is omitted.
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In order to give the direct decomposition of the relationship algebra 9ϊ,
we shall rearrange ρu and P2i (ΐ = l, 2, • ••, m) according to the magnitude of
Pa and P2i (£ = 1, 2, ... TO) as follows

Piu = f*2u = 0 for u = l, 2, ..-, 5

Pi, = 0, P2v = r for v = s + l9 5 + 2, ..., b

Piw = r, P2w = 0 for w = δ + l, 6 + 2, ...,c

Pi* = 0, 0 < p 2 * < r for * = c + l , c + 2, ... 5d

0<Pij,<r, P 2 j = 0 for y = d + l, d + 2, ...,e

0 < Pi* < r, 0 < P22 < r, r = Pi, + P22

for z = e + l, e + 2, ...,/

0 < Pi* < r, 0 < P2ί < r, 0 < Pιt + P2ί < r

for ί = / + l 3 / + 2 , ...?7τz.

The principal idempotent Eψ of the one-dimensional two-sided ideal [_GJ
of 91 is

In order to obtain the remaining irreducible two-sided ideals of 91 and
their principal idempotents, we shall consider the difference algebra of 9t
modulo [[£, Tf; i = l, 2, ..., /»]], i.e.,

where [[G, T{9 T\, ..., Γ*]] is the ideal of 9ϊ generated by G and Γf (ί = l, ..-, m)
s b c

and the principal idempotent of the ideal is E{^+ Σ ^ L D + Σ E[Ό+ Σ Ew]

+ Σ E'f + Σ £(v2) + Σ £ (

2

2 ) + Σ E(ί3) Generally, this difference
x=c+\ y=d+l z=e+l ί=f+l

algebra is isomorphic to the algebra [/, Vu V2, W~] generated by /, Vu V2 and
W. The latter can be decomposed into the direct sum of four mutually
orthogonal one-dimensional two-sided ideals \J—Vι — V2 — W~], [ T i l [T2H a n ( i
[_W~], and their principal idempotents are respectively the generators them-
selves. In some cases, however, it may happen that the ideals corresponding
to [ T i l [T2I] and \JV^\ degenerate to zero as is the case indicated in []3].
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The principal idempotents Ee, BVl, Bγ2 and Bw of the ideals of 91 cor-
responding respectively to 1—V1 — V2—W, Vu V2, and W may be obtained by
dropping the modulo G and T\ (ΐ = l, 2, ..., m) of the following:

, T\\ ί = 1, ...,

The results

where

Fv

Fγ

may be

V:

i-

1

!

^ V

expressed

; Σ + i ϊ

= s + l

1 + ^

- F 2 -

+

as

V2=BV

JF = Ee + Fe,

e 1
-U X 1 T/"

7» 1

Σ -^^FiΓj
ί=/+l ^lί

^^ i Γ

x=c+l @2x

W = BΨΛ

IP.

!
1 Pi,

1

t=f+i V2t

Is

Έ1

Fw =— IΓCl-

e m

Σ Ff+ Σy=d + l t=f + l

since BVl, Bv2, Eei Bw, FVι, Fv2, Fe and Fw must satisfy the following equations:

V

Fw

1

—

0
0
0
0
FVl

Fv,
Fe

Fw

We may summarize the results obtained so far by the following theorem.
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THEOREM III. The unique decomposition of the unit element of the
relationship algebra 31 corresponding to its direct decomposition is

I = E'£ + BVι + By2 + Ee + Bw

Further decomposition in relation to the row-block space and the column-
block space is

= E^ + BV

% + Σ^V, + Σ^V,
y z t

5. Analysis of variance for two-way design

h

We are considering a design which consists of n — Σ %jjj experimental

units in which the observation vector y' = (Vu %, •••, Vn) satisfies the linear
model

y£a'±j I ' Jn ι̂  ^ f c i | J x l x 2

where r is the general mean, r ' = (ri, • ,r t )) is the treatment parameter
vector, £ί = G9n, βi2, • ?#iδ1) is the row-block parameter vector and βf

2 =
(#2i, #22, •••, #2&2) is the column-block parameter vector being subjected to the
restrictions

(25) Σ r Λ = 0, # 0

respectively, and e' = (el5 e2, , ew) is the error vector being normally distri-
buted with mean vector zero and covariance matrix G2In. The matrices $, Ψx

and ¥2 are the incidence matrices defined in (1), (2) and (10) and j ' n = (l, 1, ...,
1).

Denote,
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(26) grand total: G=j'nV, treatment totals: T=¥/jη,

row-block totals: Ui = Ψ[y, column-block totals: U2 =

The normal equations for the least-square estimation are

(27) ng + r'τ + k[βλ + k'2β2 = G

(28) rg + Drt + Njx + N2β2 = T

Ψ[ ¥1 Ψ[ Ψ2

253

(29) f +
Ψ' ψ2 \ h U2

where, f, βι and β2 are the estimates of r, βx and /92, and r — Φ'j

Multiplying (29) by

and

\\Ψi ¥2 0

0

from the left, we have the following equation

jg + QPΊDϊιN[ - ΨxD^MD^MΌ^Ni + Ψ2D2

ιN'2)ϊ

- ΨλDi ιMD2
Ψ2Ό2

1U2

and multiplying (30) by Φr from the left and substracting it from (28), we
have the adjusted normal equation for treatment;

(31) φr -

- N2D2

ιU2

The complete table of the analysis of variance for the design will be given
in Table I.

6. Illustration of allocation plan to the design for two-way elimina-
tion of heterogeneity

Example 1. An allocation plan for 12 treatments having two-way facto-
rial association scheme.

Table 2 shows the association scheme for the treatments. Each treatment



Table 1. Analysis of variance for two-way design.

Treatments,

eliminating

rows and columns

Rows,

ignoring

treatments

Treatment-

components

Families of
treatment
contrasts

Case (1)
u=l, •••, s

Case (4)
# = c + l , -.., d

Case (5)

Case (7)
t — e + 1 , " ' j τίi

Case (3)

Case (5)
y=d+l9 . 9e

Case (6)
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is the first associate of the other in the same row, the second associate of the
other in the same column and third associate of the rest. Table 3 shows an
allocation of those treatments as a design for two-way elimination.

Table 2

a b e d

e f g h

ί j k I

columns

rows

1

2

3

4

5

6

7

1

a

e

i

2

b

f
j

3

c

g

k

4

d

h

I

Table

5

e

ί

a

3

6

/

b

7

8

k

c

8

h

I

d

9

a

b

c

d

10

e

f
g

h

11

i

j

k

I

As the mutually orthogonal idempotents of the two-way factorial asso-
ciation scheme are

A =

and

3

1
Ί 2 (

-G3(8)/8

N2DϊxN'2 = 3 At + 2^* + A

the above design satisfies the assumptions 1°, 2°, 3° and 4°.
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Example 2. An allocation plan for 16 treatments having L2 association
scheme.

Table 4 shows the association scheme for the treatments. Each treat-
ment is the first associate of the other in the same row or in the same column
and the second associate of the rest. Table 5 shows an allocation plan of
those treatments as a design for two-way elimination

Table 4

column

row

1

2

3
4
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6

7

8
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e
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P
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q
V
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X

Table I
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d
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f
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X
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As the mutually orthogonal idempotents of the L2 association scheme are

A - 16 G

A\ = - ^ ) - -g-G1

A \ = I16 - G4<g>/4)

it can be seen that only for the first portion of row-column incidence as well
as for the second portion, the design does not satisfy the assumptions 3° and
4°. The whole design, however, satisfies those assumptions 1°, 2°, 3° and 4°,
as
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