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1. Introduction.

There are many theorems known about the imbedding of algebraic struc-
tures in quotient structures, that is, structures with all the properties of the
original ones in which suitable candidates (cancellable elements) become in-
vertible, and such that every element of the larger structure is a quotient of
elements of the original structure. The best-known classical theorem of this
sort asserts that an integral domain may be imbedded in a field of quotients.
The construction of such a field, using equivalence classes of ordered pairs,
has been adapted to prove a number of generalizations, such as those of Ore
[1(Γ] and Asano [1J for rings and Vandiver [14] for semigroups and semir-
ings.

In a negative direction, we have the theorem of Malcev \ΊΓ\ that not every
ring without zero divisors can be imbedded in a division ring. On the other
hand, if one is willing to give up associativity, such an imbedding can always
be accomplished (Neumann H9H). We will confine our attention to associative
structures.

In [2J, Asano generalized his own work with a different kind of construc-
tion of quotients using partial endomorphisms (which he called simply "ope-
rators"). This in turn was extensively generalized by Findlay and Lambek
[3]. In recent years there have been many papers devoted to the subject of
rings of quotients: see, for example, [7, 113 a n d references listed in these.

For the purposes of ring theory, constructions via partial homomorphisms
and related ideas are surely more elegant and efficient than the old-fashioned,
but more concrete, constructions via equivalence classes of ordered pairs.
For example, the verifications of associativity and distributivity are trivial
when one uses mappings as elements of the quotient structure.

However, the student is usually introduced first (perhaps solely) to the
more concrete construction. Thus it is of interest to see this construction
in perhaps its most general form, where only the essential ideas are present
at each step. In the process, it becomes clear that for purposes of extending
a multiplicative structure to include quotients, the accompanying additive
structure (if any) is of little or no consequence. Hence imbedding theorems
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for semigroups and semirings may be obtained in the same way.
The general imbedding theorem for semigroups is presented in section 3

and several special cases are noted. In sections 4 and 5 these results are ex-
tended first to semirings and then to rings. In particular, the various im-
bedding theorems referred to in the first paragraph, as well as others, all
appear as more or less immediate corollaries. In the final section, we present
an aside on semirings of endomorphisms of additive semigroups, which has
as a consequence a different sort of imbedding theorem for finite rings and
semirings.

The essential ideas in the general construction were suggested (in the
context of rings) by A. W. Goldie in a lecture course. However, this construc-
tion was left out of the published version of the lecture notes for the course
[5].

The author's interest in semirings was stimulated by a recent collaboration
with A. Giovannini [Ά2 on a problem in theoretical physics which gave rise
to a semiring in a natural way.

2. Definitions.

A semigroup (5, •) is a set S with an associative binary composition .
A semiring (S, +, •) is a set S with two binary compositions such that (S, + )
and (5, •) are semigroups and distributes over +. A ring is a semiring
(5, +, •) such that (S, +) is an abelian group.

A cancellable element of a semigroup (5, •) is an element c such that each
of the equalities ca = cb and ac = bc implies that a=b. If (5, +, •) is a semi-
ring which has an additive identity 0 (in particular, a ring), an element c is
regular if each of the equalities ca = 0 and ac = 0 implies a=0. It is well-
known (and easy to zee) that an element of a ring is regular if and only if it
is cancellable. In a semiring with 0 such that 0a=0 = a0 for all αυ, a cancel-
lable element is clearly regular, but the converse is not true2). Since im-
bedding theorems for rings are usually stated in terms of regular elements,
we will use this term in section 5, but otherwise we will use the term cancel-
lable.

Let 5 be a semigroup which contains cancellable elements. A (right)
divisor set in 5 is a non-empty multiplicatively closed subset C of cancellable
elements satisfying the (right) common multiple property: Given any a G S
and c£C, there exist a\ 6 S and c\ 6 C such that

(1) acι = ca\.

We will consistently use boldface notation for elements of a (fixed, but arbi-

1) This follows from the definition of 0 if addition satisfies the cancellation laws, but not in general.

2) Consider 2 x 2 matrices with non-negative integer entries and the usual addition and multiplication.
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trary) divisor set, and ordinary notation for elements not so restricted. Note
that C might be the set of all cancellable elements, which is necessarily multi-
plicatively closed. However, even if the set of all cancellable elements is not
a divisor set, there may be smaller subsets which are. One should note that
some of the arguments in sections 3 and 4 are a little more complicated than,
for instance, those in Ql], because some of the cancellable elements that occur
need not be in the divisor set.

A semigroup of (right) quotients (of 5 with respect to C) is a semigroup
5c with identity which contains an isomorphic copy of 5 (which we identify
with 5) and which has the properties:

(2) Every c E C is invertible in 5c

(3) Every element of 5C is of the form ac"1, aeS, ceC.

If (5, +, •) is a semiring (in particular, a ring), a divisor set for (5, +, •)
is a divisor set for (5, •)• The definition of semiring (ring) of quotients is
exactly the same as for semigroups, but note that the imbedding must pre-
serve both operations.

3. The imbedding theorem for semigroups.

Let (5, •) be a semigroup which contains cancellable elements and C a
divisor set in 5. The objective of this section is to prove that a semigroup
Sc of quotients exists.

Consider the set SXC of ordered pairs (α, c). We will introduce a rela-
tion in this set by defining (α, c)^-(ό, d) if and only if

(4) caι = dcι=$aaι = bc\ (a\ € 5, c\ 6 C).

REMARK. ax need not be in C, but it is cancellable. If aχx = aιy, then
caι% — caιy^dcιx=dcιy=$x = y By (1), there exist α2, c2 such that
Then caιa2 = dcιa2 = cc2^aι(i2=:C2- Hence, if xaι= yai, then xaιd2=

xc2 = yc2z=$x = y.

We defer for the moment showing that ~ is a well-defined equivalence
relation, and prove first that (4) implies an apparently stronger condition,
useful for technical purposes.

LEMMA 1. Suppose (a, c)^-(δ, d). Then

(5) ca2 = dc2=5aa2 = bc2 for all a,

PROOF. Let αi, c\ be as in (4), and ca2

=dc2, with c2 not necessarily in
C. By (1), there exist eu e2 such that c2ei = cie2. Then ca2eι=dc2eι=dcιe2

bc2, as desired.

COROLLARY. ^ is a well-defined relation on SXC.
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PROOF. Take c2 € C in Lemma 1.

LEMMA 2. ~ is an equivalence relation on 5XC

PROOF. The relation is clearly reflexive. Suppose (a, c)~(δ, d); to prove
symmetry, we have to show that da2 = cc2 implies ba2 — ac2. By ignoring the
fact that c2 may be taken in C, this follows from Lemma 1.

Now suppose that (α, fc)~(c, d) and (c, €f)~(e,/). To prove transitivity,
we have to show that baι=fcλ implies aaι = ecι. Let eu e2 be such that
de2~fcιeι=baχeι. From (α, 6)^(c, d) (and Lemma 1), we have aaχeι = ce2.
From (c, cf)M>,/), we have ce2 = eciβi. Hence ααiβi^eciβi and aaι = ecu as

desired.
We now denote the equivalence class of (α, c) by α/c. Let Sc denote the

set of these equivalence classes. A product operation will be defined in Sc

by:

(6) (a/c)(b/d) = aa1/dcι, where cai = ba.

LEMMA 3. The product (6) is well-defined.

PROOF. Suppose α, b, c, d, au a are as in (6). If ca2 = bc2, it is easy to
verify that aaι/dcx = aa2/dc2, and we omit this. Suppose (α, c)^(a\ c'\
(ό, d)~(6', d'\ and cfa2 = b'c2. We must show that €10103=^203 implies

Using the definitions of αi, α2, ci, c2 and (δ, d)~~(b\ d'\
bfc2c3=^caιa3 = ca2c3. Then the desired conclusion fol-

lows from (α, c)^(a\ c) and Lemma 1.

THEOREM 1. If S is any semigroup with at least one cancellable element
and C is any divisor set, then Sc is a semigroup of quotients for S with respect
to C.

PROOF. A straightforward verification shows that the product (6) is
associative. Similarly, one may verify directly from (6) that any element
c/c is both a left and right identity. Since there can be only one identity
element, c/c=d/d for all c,d€:C.

Let φ: S-^Sc be defined by φ(a)=ac/c. This is clearly well-defined. If
φ(a)=φ(b), then ac2 = bc2, hence a — b. Also (ac/c)(bc/c) = acai/ccu where
cai = bcci, so the product is abccι/ccu hence φ is a monomorphism. Since
(c2/cXc/c2) = c3/c3 = c/c, φ{c)-ι = c/c2. Finally, a/c = (ac/cXc/c2) = φ(a)φ(c)~\
Hence conditions (2) and (3) are satisfied.

COROLLARY 1. If S is a semigroup in which the set of cancellable elements
has the common multiple property (1), then S can be imbedded in a semigroup
in which all its cancellable elements become invertible.

COROLLARY 2. (Vandiver [14]) If S is a semigroup with cancellable ele-
ments, all of which lie in the center of 5, then S can be imbedded in a semi-
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group with identity in which the cancellable elements form an abelian group.

COROLLARY 3. [15, Theorem 20.3]. If S is a commutative semigroup with
cancellable elements the conclusion of Corollary 2 holds.

COROLLARY 4. [15, Theorem 20.2]. A commutative semigroup, all of whose
elements are cancellable, may be imbedded in a commutative group.

4. Applications to semirings.

Let (S, + , •) be a semiring, and let C be a divisor set in 5. Let Sc be
defined as in the previous section. We define addition in Sc by:

(7) a/

where dc1 = cdχ = n.

LEMMA 4. The sum (7) is well-defined.

PROOF. The proof that the sum is independent of the choice of a and
dι is straightforward, and is omitted. We give the rest of the proof to in-
dicate the use of Lemma 1.

Suppose (a, c)—(a, c) and (b, d)—(bf, d'). Let n'=drc2=cd2. We have
to show that neι = n2e2 implies (adι + bcι)eι = (ad2+b'c2)e2. The hypothesis of
this statement can be written dcιeι=cdίeι=d/c2e2=c d2e2. From the first
and third terms, since (6, d)^(b\ dr), we have bcλeλ — bfc2e2. From the other
two terms, using (a,c)^(d,c) and Lemma 1, we have adλe\ — a d2e2. The
desired conclusion follows.

THEOREM 2. // 5 is any semiring with at least one (multiplicatively) can-
cellable element, and C is any divisor set, then Sc (with the operations (6) and
(7)) is a semiring of quotients for S with respect to C.

PROOF. Again we omit the proof of associativity of the extended addi-
tion and distributivity of the product (6) over the sum (7). We have a one-
to-one mapping φ: S-+Sc, as in the proof of Theorem 1, which preserves
products, and Sc has properties (2) and (3). It remains to show that φ pre-
serves sums. From (7) we have immediately φ(a)+φ(b) = (ac/c)

COROLLARY 5. If S is a semiring in which the set of cancellable elements
has the common multiple property (1), then S can be imbedded in a semiring in
which all its cancellable elements become invertible.

COROLLARY 6. (Vandiver H14]). If S is a semiring with cancellable ele-
ments, all of which lie in the center of (S, •)> then S can be imbedded in a semi-
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ring with identity in which the cancellable elements form an abelian group
under multiplication.

COROLLARY 7. If S is a semiring with cancellable elements and if multi-
plication in S is commutative, then the conclusion of Corollary 6 holds.

The results of section 3 can also be applied to semirings by considering
the additive semigroup. For example, Corollary 4 can be used to prove the
following classical result.

THEOREM 3 [15, Theorem 20.8]. If S is a semiring such that addition is
commutative and satisfies the cancellation law, then S can be imbedded in a
ring.

PROOF. Corollary 4 states (5, + ) may be imbedded in a commutative
group (5c, + ) in which every element has the form a — δ, α, b € 5. We extend
the product operation to Sc in the obvious way:

(8) (a-b)(c-d) = ac + bd-(ad+bc).

Associativity and distributivity of this product over addition are easy to
check, but the fact that it is well-defined is not quite trivial.

One verifies easily that condition (4) for the equivalence relation can be
translated, under the present hypotheses, into a—b — a—V if and only if
a+V=a + b. Suppose we have a + V = a + b and c + df = c + d. These equa-
tions give

(9a) ac + b'c =

(9b) ad+b'd = afd+bd,

(9c) arc + afd' = άc+afd,

(9d) bfc + b'd' = b'cf+bfd.

Then ac + bd+ad' + b'c' may be shown to equal ac'+b'd' + ad+bc by car-
rying out the following steps: (i) replace ac and bd by equivalent expressions
from (9a) and (9b); (ii) replace a!c and V d using (9c) and (9d); (iii) make
appropriate cancellations.

In connection with this theorem, it is easy to see that not every semiring
can be imbedded in a ring [13].

5. Applications to rings.

Theorem 2 has several immediate corollaries in the case where the semi-
ring S is actually a ring.



On Semigroups, Semirings, and Rings of Quotients 129

THEOREM 4 (Asano [2]). If S is a ring with at least one regular element,
and C is any divisor set, then Sc is a ring of quotients for S with respect to C.

PROOF. The proof that the sum (7) is commutative when (S, +) is com-
mutative is, like many of the other necessary verifications, straightforward
and omitted. To complete the proof, it suffices to observe that if 5 has an
additive identy 0, then 0/c is an additive identity in Sc, and if α + ( — α) = 0
in S, then (α/e) + ( — α/e)=0/e in Sc, both of which are trivial.

COROLLARY 8 (Asano [1]). If S is a ring in which the set of regular ele-
ments has the common multiple property (1), then S can be imbedded in a ring
in which all its regular elements become invertible.

COROLLARY 9 (Ore [10]). If S is a ring in which the non-zero elements
are all regular and have the common multiple, property, then S can be im-
bedded in a division ring.

COROLLARY 10 [15, Theorem 23.9]. Any integral domain can be imbedded
in a field.

6. Έndomorphisms of additive semigroups.

Let (5, +) be a semigroup, Jί(S) the set of mappings of 5 into itself, and
<f(S) the subset of endomorphisms of 5. If Jt(S) is equipped with the opera-
tions of pointwise addition and composition as sum and product, respectively,
it fails to be a semiring only in that one of the distributive laws is not always
satisfied. £(S) does not have this difficulty, but is not necessarily closed under
addition. However, if S is commutative, <f(S) is closed under addition, and
so is a semiring. Furthermore, if S is an abelian group, <?(S) is a ring. (See
[6, pp. 1-2] for the details of some of these remarks.) Whether or not <f(S)
is a semiring, we may speak of a semiring (ring) of endomorphisms of 5,
meaning a subset of &(S) which forms a semiring (ring) with respect to the
indicated operations.

THEOREM 5. (See also [6, p. 54, Theorem 1]). // (S, +, •) is a semiring
(ring) with at least one cancellable element, then S is isomorphic to a semiring
(ring) of endomorphisms of (S, + ).

PROOF. For each ae S, let Ra denote the operation of right multiplica-
tion by a in 5:

(10) bRa = ba, for all beS.

The right distribμtive law says that Rae<?(S) (meaning, of course, endomor-
phisms of (S, +), not of (5, +, •))• The left distributive law can be written
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(11) Ra+b=Ra + Rb,

and associativity of multiplication implies

(12) Rab = RaRb.

Thus R: S-+#(S), where R(a)=Ra, is a homomorphism. If c is a cancel-
lable element in S, then Ra = Rb=^ca= cb=^a=ό, so R is one-to-one, and the
image R(S) is a semiring of endomorphisms isomorphic to S.

We next observe that c is a cancellable element of S if and only if Rc is
one-to-one. If 5 is a finite semiring (for example, one of those studied by
Vandiver in [12]), then a mapping of S into itself is one-to-one if and only if
it is onto, so that c is cancellable if and only if Rc is an automorphism. Thus
Theorem 5 yields the following analog of Corollaries 5 and 8 via a quite dif-
ferent approach:

COROLLARY 11. If(S, +, •) is a finite semiring in which addition is com-
mutative (in particular, a finite ring) and which has at least one cancellable
element, then S can be imbedded in a finite semiring (ring) in which its cancel-
lable elements become invertible.

We remark that a finite semiring (in fact, a finite semigroup) has a can-
cellable element if and only if it has an identity [12, Theorem 1].
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