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Dimensions of the Derivation Algebras of Lie Algebras
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Let L be a Lie algebra over a field of arbitrary characteristic. In the
paper [ 3], J. Dozias has shown that if L=~ L, L] then the dimension of the
derivation algebra (L) of L is not less than dim L. In this paper, making
use of the method of constructing outer derivations of L which has been shown
in [ 6], we shall give some effective estimates of dimD(L).

In Section 1 we shall recall some results which have been already shown
in(47]and [6]. In Section 2 we shall give several estimates of dim®(L). If
Z(L) is the center of L and C([L, L7]) is the centralizer of [ L, L] in L, then
one of the estimates is that if L=A[L, L]

dimD(L)>dim L+ max {dim Z(L)dim L/[ L, L ]— dim C("L, L7)), 0}.

In Section 3 we shall give several examples which are connected with the re-
sults in Section 2.

1. Throughout the paper we denote by @ a field of arbitrary character-
istic unless otherwise stated and by L a finite dimensional Lie algebra over a
field . We denote by ©(L) the derivation algebra of L, that is, the Lie al-
gebra of all the derivations of L and by (L) the ideal of (L) consisting of
all the inner derivations of L. We denote by Z(L) the center of L and, for a
subalgebra H of L, by C(H) the centralizer of H in L. As usual [L, L] will
be denoted by L2

In the next section we need the following two results.

Lemma 1. Let L be a Lie algebra over a field @ and let M be an ideal of L
of codimension 1 containing Z(L). Then:
1) [L, ZM)]CZ(M) and
dim Z(M)= dim Z(L)+ dim[ L, Z(M)].
(i) If L=(e)+ M and Z(L)=(0), every endomorphism of L sending e to
any element of Z(M)\[ L, Z(M) ] and M into (0) is an outer derivation of L.

Lemma 2. Let L be a Lie algebra over a field @. If L is the direct sum of
the 1deals L; and L, then

dim(L)=dimD(L,)+ dim D(L,)+ dim Z(L,)dim L,/L{+
+ dim Z(L,)dim L,/L3.
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The statements (i) and (ii) in Lemma 1 have been shown respectively in
the proofs of Lemma 1 and Theorem 1 in [67] (see [5]). Lemma 2 is an easy
consequence of Lemma 1 in [4].

2. We first prove the following

Tueorem 1. Let L be a Lie algebra over a field @ such that L=~L? and
(0)£=Z(L)CL*. Let L=(ei, ez ..., ex)+L* with n=dimL/L* and let M;=
(61, ey €1y €141y --ny €n)+L2.

(i) If we denote by G the space spanned by all x € L such that [ x, e; ] € [e;,
Z(M;)] for some i, then

(1) dimD(L)>dim L+ dim Z(L)(dim L/L*—1)— dim C(L?)+ dim (C(L}) NG).

(i) If we put Z;=>nex, Z(M))/[ei, Z(M;)] where F; is the set of all the
wdeals M complementary to (e;) and such that [ e;, Z(M) = e;, Z(M;)], and if we

denote by H the space spanned by all x € L such that [ x, L] C[Z\l Lei, Z(M;)], then
@) dim (L) > dim L+ max(dim Z;)+ dim Z(L)(dim L/L*—2)
t — dim C(L*+ dim (C(L* N H).
Proor. (i): Put m=dimZ(L). Then by (i) of Lemma 1 we have

dim (Z(M;)/[e;, Z(M;)])=m for each i. Choose the elements z;;, j=1,2,...,m, in
such a way that

Z(Mi):(zib Ty zim)+[ei) Z(Mz):l

By (ii) of Lemma 1 every endomorphism D;; of L sending e; to z;; and M; into
(0) is an outer derivation of L. The set of D;; with :=1,2, ..., n and j=1, 2,
..., m is linearly independent. If we denote by I the space spanned by all
the D;;, then dim9M=dim Z(L) dimL/L?*. Let x € L be such that ad x is a
non-zero element of Y(L)NM. Then [ x, L*]=(0) and [ «, e; ] & [e,, Z(M;)] for
i=1,2, ..., n. It follows that x € C(L»)\(C(L*)N\G). Hence

dim ((L)NWM) <dim C(L*)— dim (C(L*)NG).
Consequently we have
dim (L) >dim (J(L)+ M)
= dim QL)+ dim M — dim (L))
>dim L+ dim Z(L)(dim L/L*—1)— dim C(L?) + dim (C(L»)NG).
(ii): We may assume that dimZ, =max(dimZ;. Put A=dimZ,. Then

we can write
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EMG%IZ(M):(ZH, sty Blms Bl,maly s Blmys s Blmy _+1s " 0y zlmk)+[el> Z(My) ],

where mk:h) (Zlh ] zlm) C Z(Ml), (Zl,m+1: ) zlml) C Z(Mll)a ) (zl,mk_1+1) )
21m,) CZ(My;) and My; € §, for j=1,2,..., k. Making a convention that m=um,,
for any j such that m;_; <j<m; we denote by D;; the endomorphism of L send-
ing e; to z;; and My; into (0). Then by (ii) of Lemma 1 D;; is an outer deriva-
tion of L. For i=1, ..., n and j=1, 2, ..., m, we define D,; as in the proof of
(i). Then the set of all D;; is linearly independent. In fact, if >11;D;=0,
1,7
then ﬁ%lllejelzﬁ%lljzlj =0. Hence 4,,=0 for j=1,2,..,h It is now
7= 7=

immediate that 1;=0 for ;1=2,3, ..., n and j=1, 2, ..., m. Thus these D;; are
linearly independent. If we denote by 9 the space spanned by all of these
D;;, then

dimM=~h+ dim Z(L) (dim L/L*—1).

Let x € L be such that ad x is a non-zero element of J(L)NMM. Then [x, L*]
=(0) and [ x, e; ] belongs to a subspace of L complementary to [e;, Z(M;)] for

i=1,2, ..., n. Hence [x, L]N(\[e:, ZM)])=(0). It follows that x € C(L?)
\(C(L®)NH). Therefore o
dim (JL)NIWM) < dim C(L*)— dim (C(L*) N H).
Consequently we have
dim (L) > dim (J(L)+ 1)
> dim L— dim Z(L)+ h+ dim Z(L) (dim L/L?— 1)
— dim C(L?)+ dim(C(LHNH)

=dimL+hA+ dim Z(L) (dim L/L*—2)— dim C(L?*) +dim (C(L*) "\ H).

Thus the proof is complete.

In order to obtain further estimates of dim®(L), we first consider the
case where L has no non-zero abelian direct summands. If L=L? then
dimD(L)>dim K L)=dim L— dim Z(L)
=dim L+ dim Z(L)dim L/L?*— dim C(L?).
If L=~ L% and Z(L)=(0),
dimD(L)>dimJ(L)=dim L
=dim L+ max {dim Z(L)dim L/L?—dim C(L?), 0}.

Now assume that L=~L% and Z(L)=(0). Then Z(L)C L?. With the notations
of Theorem 1, Z(L)C C(L>>"\G. Hence by (i) of Theorem 1 we have
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dim D(L)>dim L+ dim Z(L)dim L/L*— dim C(L?).

Let Dy; and zy; for j=1, 2, ..., m be the same ones as defined in the first part
of the proof of Theorem 1. If we denote by I, the space spanned by the set
of all Dy;, then dim9; = dim Z(L). We assert that M;N\J(L)=(0). In fact,

suppose that adx € DuUNS(L). Then adxzﬁ/l,-Dl,». If }@]l,-zlj#o, i]/llej
i=1 i=1 i=1

must be an outer derivation of L by (ii) of Lemma 1. Hence i]ljzl ;=0. It
j=1

follows that 2;=0 for all j. Thus ad x=0. We now have

dim (L) >dim (FL)+ D) = dim J(L) + dim M,
=dimJ(L)+ dim Z(L)=dim L.

Next we consider the case where L has a non-zero abelian direct sum-
mand. If L is abelian, then

dim®(L)=(dim L)?= dim L+ dim Z(L)dim L/L* — dim C(L?).

Assume that L is not abelian. Then L is the direct sum of a non-zero abelian
ideal L; and an ideal L, which has no non-zero abelian direct summands. Put
k=dimL,. If L,=L% by Lemma 2 we have

dimD(L)= dimD(L;)+dim D(L,)+ dim L; dim Z(L,)
>k*+dim L, —dim Z(L,) + k dim Z(L,)
=dim L+dim Z(L)dim L/L*—dim C(L?)
=dimL+(k—1)dim Z(L),
and

(k—1)dim Z(L)>0.
If L,-~ L}, then by using Lemma 2 and the first case above we have

dim (L) = dim D(L1)+dim D(Ly)+dim L, dim Z(L,) +dimL,dim L,/L?
>k*+dim L, +max {dim Z(L,)dim L,/L;—dim(C(L}) N\ L,), 0}
+kdim Z(L,)+kdim L,/L}
—dim I+ max {dim Z(L) dim L/ T2 — dim C(L2),
k(dim Z(L)—1+dim L,—dim L)}
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and
k(dim Z(L)—1+dim L,—dim L3)>0.
Therefore, in this case we obtain
dim D(L)>dim L+ max {dim Z(L)dim L/L*— dim C(L?), 0}.
Thus we have proved the following theorems.

Tueorem 2. Let L be a Lie algebra over a field @ which has a non-zero
abelian direct summand. Let L; be such a direct summand of maximal di-
MENnsion.

(i) If L/L,=(L/L,y, then

dim ®(L)>dim L+dim Z(L) (dim L, —1).
(i) If L/L,5(L/L.)* then
dim D(L)>dim L+ max {dim Z(L) dim L/L*—dim C(L?),
dim L, (dim Z(L)—1)+dim L,(dim L/L, — dim (L/L,)*)}.
Tueorem 3. Let L be a Lie algebra over a field ®. Then
dim®(L)>dim L+dim Z(L)dim L/L*—dim C(L?).
In particular, if L=~ L%, then
3 dimD(L)>dim L+ max {dim Z(L) dim L/L*—dim C(L?), 0}.
As an immediate consequence of Theorem 3 we have the following

CororLrary 1. Let L be a Lie algebra over a field @. If dimC(L?*)<<
kdim Z(L) and dim L/L*>>k for some integer k>0, then

dim®(L)>dim L+ dim Z(L) (dim L/L?— k).

CoroLLARrY 2. Let L be a Lie algebra over a field @. If C(L*)=Z(L), or
if L satisfies the condition that (ad x)>=0 implies ad x =0, then

dim®(L)>dim L+dim Z(L) (dim L/L*—1).

Proor. If L satisfies the condition that (ad x)*=0 implies ad x =0, then
for any ye C(L*) we have (ad y)’L C(ad y)L*=(0) and therefore ad y=0, that
is, ye€ Z(L). Hence C(L*)=Z(L). .Therefore the statement follows from
Corollary 1.

8. In this section we shall show several examples which are connected
with the results obtained in Section 2.
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Let L be the Lie algebra over a field @ described in terms of a basis e,
€y, €3, €4, €5 by the table:

Lel, es]=es, [ei, es |=es, [62, 64]:64

([17], p. 126). Then with the notations in Theorem 1 we have L2=(es, ey, €s),
Z(L)y=(es), L=(ey, ex)+L* G=L, C(L*)=L? and dim®(L)=6. Hence in
this case equality holds in the inequality (1) of Theorem 1.

Let L be the Lie algebra over a field of characteristic =2 described in
terms of a basis e, es, ---, eg by the table:

Lei, ez ]=es, [e1, es]=es, [e1, es]=es, [e1, es]=ces,
[61, esjzes, [61, 67:|=€8, [62, 63:|=€5, [62, 64]:%,
Lez, es ]=er, [es, e5]=2es, [e3, €4 ]=—er+es,

[es, e5]=—esg

([17, p. 123). Then with the notations of Theorem 1 we have L?=(es, e, ---,
es), Z(L)=(es), L="_(e1, es)+L? [e;, Z(M)]= (es), Dnmess, Z(M) = (es, e1, es),
dimZ;=2(i=1,2), H=C(L*)=es, €7, es), and dimD(L)=10. Hence in this case
equality holds in the inequality (2) of Theorem 1.

In the remainder of the paper, for simplicity we denote by m max{dimZ(L)
dim L/L*—dim C(L?), 0}.

For every non-zero abelian Lie algebra L over @, equality holds in the
inequality (3) of Theorem 3 and m is >0 if dimL>1.

Let L be the Lie algebra over a field of characteristic =2, 3 described in
terms of a basis ei, ey, ---, es by the table:

[e1, ez ]=es, [e1, es]=es, [e1, es]=er, [e1, es]=—es,
[6’2, 63]:‘58, [62, 64]:6'& [62, 36]: — €7,
[63) 64]= —es, [es, 65]:—6’7, [64, 66]:—88

([2]). Then L*= (es, es, €7, es), Z(L)=(ers, es), C(L*)=L* and dimD(L)=12.
Hence in this case equality holds in the inequality (8) of Theorem 3 and m =4.
Let L be the Lie algebra of n xn triangular matrices over a field of
characteristic 0. Then dimZ(L)=1, dimC(L*)=2 and dimL/L*=n. Hence
if n>>3 then L satisfies the condition in Corollary 1 to Theorem 3 with £=2.
Let L be the Lie algebra over a field @ described in terms of a basis
e1, €2, ---, e by the table:

[61, 63]:&1, [6’1, 64:|=—€3, [62, 65]:(363

Les e6]=—es, [e3, es ]=[es, es |=er.
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Then L%=(es, ey, es, es, €7), Z(L)=C(L*)=(e;) and dimL/L?*=2. Hence L
satisfies the first condition in Corollary 2 to Theorem 3 and m=dim Z(L).

Let @ be the field of real numbers and let L be the Lie algebra given
above. Then we can show that if (ad x)?=0 then adx=0. Thus L satisfies
the second condition in Corollary to Theorem 3.
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