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§1. Introduction

The purpose of this note is to prove some results on the stable homotopy
types of the stunted lens spaces analogous to those in [87], [97] and [6].
The (2n +1)-dimensional standard lens space mod % is the orbit space

L"(k)y=S*"*'/Z,, Zy=4e*"*|1=0,1,..., k—1}, (n>0),
where the action is given by z(z,-.-, z,) =(zz¢, -+, 22,). Let [z, --, 2, ] € L"(k)
denote the class of (z,-.-, z,) € S?**!. Imbed naturally L™(k) CL*(k) by iden-
tifying [ zo,---5 Zm =205 > Zm, 0,---, 0] for m<<m, and consider the subspace

Ly(k)=A{Lz0,++, zn]|zn is real =0} CL™(k) CL"(k).

Then L™k)—L7(k) and L7(k)—L™ (k) (n<n) are (2m-+1)- and 2m-cells
which make L"(k) a finite CW-complex. The stunted spaces

L'(k)/L" k), L*(k)/Lg(k), Ly(k)/L™ (k) and Ly(k)/L73(k),

for k=p” where p is a prime and n >m, will be studied in this note.

We say that two spaces X and Y are stably homotopy equivalent (S-
equivalent), if the suspensions S$°X and S°Y are homotopy equivalent for
some a and b.

We obtain the following theorem which is [8, Th. A7] when r=1.
TueoreEM 1.1.  Let p be a prime and r a positive integer such that p’=¢2.
If the stunted lens space L"(p")/L™ *(p") is S-equivalent to L""'(p")/L™**(p")
for n>m, then
t=0 mod pt»=m-DIts-17,

The same is true for L"(p")/Lz(p"), Le(p")/L™(p") and Li(p")/Lz(p").

For the case p’=2, we have the following theorem which is proved
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THEOREM 1.2. If the stunted projective space RP"/RP™ ' is S-equivalent
to RP""'/RP™ 't for n>m, then

t=0 mod 2M/21%1 ¢f o< 4, t=0 mod 2m**r9)=1 jf \p>4,

where

[(n—m+1)/2] tf m is odd { ¢(n, m—1) 1f m=<0 mod 4
W =

N [(n—m)/2] 1f m is even, o(n, m) 1f m=0 mod 4,

and ¢(n, m) ts the number of integers s such that m<s<n and s=0, 1, 2, or
4 mod 8.

For the converse of these results, it is known by [4, Prop. (2.6), Prop.
(4.3)], [2-11I, (6.3)] and [1, Th. 7.47] that

TueoreMm. If t=0mod 2°"~™ 9, then RP"/RP™ ' is S-equivalent to RP"*'/
RPm—lth.
Also, by [6, Th. 87,

THEOREM. Suppose p is an odd prime. If t=0 mod pt”=™/*=DI " then
L"(p)/L™ *(p) is S-equivelent to L""'(p)/L" '*'(p). The same is true for
L*(p)/Ly(p), Ly(p)/L" " (p) and Ly(p)/Ly(p).

In addition, we have the corresponding results for L"(p?).

Taeorem 1.3.  Let p be a prime, and h=[(n—m)/(p—1)]. Assume

mod p*  if k=<0 mod p or h=0
(1.4) =(
mod p"*' if h=0 mod p and h>0,

then L"(p®)/L™ '(p®) is S-equivalent to L"*'(p®)/L™ '*'(p*). The same 1is true
for L*(p*)/Lz(p?).

For Ly(p*/L™ *(p*) and Li(p*)/Ly(p?), the same is also true when p is an
odd prime, and the same conclusion holds when p=2 under the assumption that

(1.5) t=0mod 2" ™! if n—m=2 mod 4, t=0 mod 2" ™ otherwise.
Also, corresponding to [ 6, Th. 4], we have

TueoreM 1.6.  Let p be a prime and n>m. L"(p?)/L™ '(p*) (resp. L"(p?)
/Lu(p?) 1is S-equivalent to L*"(p*)* (resp. L"""(p?)) if and only if (1.4) for
t=m holds. L3i(p®)/L"*(p*) (resp. Li(p®)/Ly(p?) is S-equivalent to Li~"(p*)*
(resp. Ly™(p?) tf and only if it holds (1.4) for t=m when p is an odd prime
and (1.5) for t=m when p=2. Here, X* denotes the disjoint union of X and
a point.
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We prepare some elements of the K-groups of the stunted lens spaces in
§2 using the results on the K-group K(L"(p")) [7, Th. 1.1 (i)], and prove
Theorems 1.1 and 1.2 in §3 by the same way as in the proof of [8, Th. A7,
using the properties of the Adams operation Z?"*! on the K-groups [17.

Theorems 1.3 and 1.6 are proved in §§4 and 6 by the same methods of T.
Kambe-H. Matsunaga-H. Toda [ 6], using the fact that the stunted lens space
is homeomorphic to the Thom complex of some canonical bundle (cf.[6, Th.
17), the results of M. F. Atiyah [4, §27] on the stable homotopy types of the
Thom complexes, and the structures of the J-groups J(L"(p*)) and J(Li(p?)).
They are determined in Theorems 4.5, 6.9 and 6.13, by making use of the J’-
group of J. F. Adams [2-IIT'], the results on the KO-groups KO(L"(4)) and KO
(L(4)) [10, Th. B, Th. 5.227 and those on K(L"(p*))=K (Li(p*) [7, Th. 1.47).

§2. Some results on K-rings of stunted lens spaces

The following results on the K-rings K(L"(k)) and K(Lz(k)) are known
(cf. [7, Lemmas 2.3-47)):

(2.1)  The induced homomorphism K (Li(k))—K (L2 '(k)) of the inclusion
18 eptmorphic.

(2.2) K(L2(k)) contains exactly k" elements, and K*'(Lz(k))=0.

(2.3) K(L"(k))=~=K(Lx(k)) by the induced homomorphism of the inclusion.
Lemma 2.4.  We have the following exact and commutative diagram :
0—K (L ®/ Lyp(k)-5K (L”~(k))—>f< (Lg(k)—0
0 R (L) L0002 R (F3 k) — R (L ()0,

where two j are the projections and others are induced by the inclusions.

Proor. By (2.1-3), it is easy to see that the two sequences are the Puppe
exact sequences. Since the middle homomorphism is isomorphic by (2.3), the
left is also so by Five Lemma. q.e.d.

Lemma 2.5. We have the following split-exact and commutative diagram:
0— K (L"(k)/ L7 (k))— K (L"(k) /L™ *(k)) -+ K (§2™)—0
0—K (L3(k)/ Ly (k))—K (L3(k) /L™ (k))—K (5*™)—0

where homomorphisms are induced by the appropriate inclusions and projec-
tions.



290 Teiichi KoBAvAsHI and Masahiro SUGAWARA

Proor. We see that K(Li(k)/L7(k))=0 by the lower Puppe exact
sequence of the above lemma and (2.2). Hence the desired lower sequence is
the Puppe exact sequence, since K~'(5*")=0. The upper is also so, by the
fact that i' is epimorphic. This follows from the commutativity of the

diagram
K(Lg’*‘1(k)‘L/L'”*1(k))——>K(IS‘2’”)—»O
R (R)/L7 1 (k) ~LR(S™™)

where the upper sequence is exact as is seen above. The desired left homo-
morphism is isomorphic by the above lemma, and the middle is also so by

Five Lemma. Finally, the two exact sequences are split since K(S?*")~Z.
q.e.d.

Now, let » be the canonical complex line bundle over L”(k) or LZ(k), and
put

(2.6) o=7—1 ¢ K(L"(k))=K(L3(k)),

where the two rings are identified by (2.3). The following are known (cf.
[7, Prop. 2.67)):

(2.1)  The ring K(L"(k))=K(L{(k)) is generated by 7, and
A+0) —1=0, o+t =0.

Consider the exact sequences of Lemma 2.4. Because ¢”*'=0 (;>0) in
R(Lm(k)) by (2.7), we can define

(2.8) gmh=jt-lgmi ¢ R(L"(k)/Ly(k)), for i >0.

For the case k=p’ and p is a prime, it is proved that the element ¢’ ¢
R(L*(p")) is of order p"**, h=[(n—i)/(p—1)], in [7, Th. 1.1 (i)]. Since j' of
Lemma 2.4 is monomorphic, we see the following

ProrosiTion 2.9. For a prime p, the element c*" (i >0) of (2.8) s of
order p"*', h=[(n—m—1)/(p—1)], in K(L"(p")/L3(p")))-

§3. Proof of Theorems 1.1 and 1.2

We prepare the following lemma.
Lemma 3.1.  Let p be a prime, and t=up’, (u, p)=1, then

(Pri_l)t___(i_l tEqu+r mod pv+r+1, ,prrﬁFz
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Especially, let t=u2?, (u, 2)=1, then
3'—1=2""2mod 2°*3 if v==1, =2 mod 8 if v=0.

Proor. Let f be a positive integer, and x and y be integers such that
x— y=p’ mod p’*'. Then clearly

(3.2) x?— y?= y?"1p/*1 mod p’*?, if p/ae2.

(3.3) x"—y"=ny"'p’ mod p’*!,  for any integer n >0.
Since (p”+1)—(+1)=p’, the repeated applications of (3.2) show that

(p/ +1)?" —(+1)""=p**" mod p**"+1,
Then, for any integer u >0, we have
(p'+ 1)#° — (x 1)t = up”*” mod Pv+r+1
by (8.3), as desired. Especially, for the case p=r=2, we have
8'—(—1)'=2""2 mod 2°*3,

and so the desired result if v=1. Also, if v=0, then 3'+1=4 mod 8 and so
3’ —~1=2 mod 8, as claimed. q.e.d.

To prove Theorem 1.1, we use some results on the Adams operations:
?/: K(X)->K(X),
which enjoy the following properties [ 1, Th. 5.17:
(8.4) ¥’ is natural for maps, and is a ring homomorphism.
(8.5) If & is a complex line bundle over X, then ¥eé=¢,
For the element ¢ € K (L"(k)) of (2.6), these show that
(3.6) Vigi=((c+1)'—1)" in K(L"(k)).

Now, consider the following diagram:

R(L"(k)/ Ly (k)= K (S*(L"(k)/ Lg (k)

v | v |

R (L"(h)/ L5 (k)" K (S*(L"(k)/ Ly (k)
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where I denotes the isomorphism defined by the Bott periodicity [5, Th. 17.
This diagram is not commutative, and

let:jtlt@'j

by [1, Cor. 5.3].

For the case j=k+1, we see that the left Z**! is the identity by (2.7),
(8.6) and Lemma 2.4. Therefore, we have

(3.7 PHl=(k+1)" on K(S*(L"(k)/Ly(k))).

Proor or Tueorem 1.1. In the first place, we shall prove the theorem
for L"(k)/Lp(k), where k=p">:2. Suppose that L"(k)/L7(k) is S-equivalent to
L"'(k)/Ly+'(k), then there is a homotopy equivalence g: S¥****(L"(k)/L3}(k))—
S25(L***(k)/Ln+'(k)) for some integers s and ¢.

The map g induces isomorphisms of K-rings, and the following com-
mutative diagram by (3.4):

R(S* (L™ (k) /Ly (k)))-£-K (82 2*(L" (k) / Lg (F)))

gk+1 gk+l

R(S** (L™ (k)/ Ly (k) 2L K (S* 2 (L (k) /Ly (k))).
Hence (3.7) implies that
k+1)" gt =g'(k+1)"=(k+1)g"

On the other hand, K(S****(L"(k)/Ly(k)))(= K(L"(k)/L7(k))) for k=p” con-
tains the element I**°¢"*1 of order p” *L*~"-DI(?=L1 }hy Proposition 2.9. Since
g' is an isomorphism, these facts imply that

(Pr+1)t+s;(P7+l)sEO mod Pr+[(n—m—1)/(p—1)].
Because p” +12<0 mod p, it follows that
(3.8) (p”+1)'—1=0 mod p”*L*=7=1i=1],

Therefore, we have t=0 mod pt*~""1/?-D] by Lemma 3.1, as claimed.

The theorem for Lz(k)/L7(k) is proved in the same way since K(Lz(k)/
Lr(k)=K (L"(k)/L7(k)) by Lemma 2.4. For L"(k)/L" '(k), a cellular homo-
topy equivalence g’: S**25(L"(k)/L™ (k))— S*(L""*(k)/L™ '*'(k)) defines a
map g: S**2(L"(k)/Le(k))— S**(L**'(k)/Ly+(k)), and it is easy to see that g
induces an isomorphism of K-rings by the direct sum decomposition of
Lemma 2.5. Thus we have the desired results for L”(k)/L™ (k) by the above
proofs, and in the same way for Lz(k)/L™ (k). q.e.d.
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Proor or THEOrREM 1.2. Assume that there is a homotopy equivalence
g: S (RP"/RP™ 1)—>S*(RP"*'/RP™ ") for n>m. Then we see that ¢ is
even by their homology groups. By [1, Th. 7.37,

K(RP"/RP™)=Z,y if m is odd, ~7PZ if m is even,
where v is the number of the theorem. Therefore, we have
82 —1=0 mod 2*
by the similar way to (3.8). This shows that =0 mod 4 if +=2 and
t=0 mod 2¥~! if y>3,

by the latter half of Lemma 3.1. Thus, :=0 mod 8 if y—>4.

On the other hand, under the assumption that t=0 mod 8, it is proved in
[9, Lemma (4.2)] that t=0 mod 2°°! if RP"/RP™ ! and RP"*'/RP™''' are
mod 2 S-related, where ¢ is the number of the theorem, using the Adams
operation #3 on KO-rings. It is clear that two spaces are mod 2 S-related if
they are S-equivalent, and so we have the theorem. q.e.d.

Remark. For the numbers v and ¢ in Theorem 1.2, it holds that
v—p=0, 1.

§4. J-groups of L"(4) and LZ(4)
Let J(X) be the J-group of a finite C W -complex X and J: KO(X)—J(X)

the projection (J-homomorphism). Then, J. F. Adams [2-1II, Th. (1.1)] has
proved that the diagram

KO(X)-L-J(X)
(4.1) 7| g
J'(X)=J'(X)
is commutative, where
(4.2) J'(X)=KO(X)/ :43 (/;\ke(fl”‘ —1)KO(X))

and J” is the natural projection and p is an epimorphism.
The KO-groups of L"(4) and L7(4) are given as follows [10, Th. B, Th.
5.227:
Zonst @ Zaniz for even n>0
KO (L") Zon @B Zatnsres for n=1 mod 4
(4.3) Zzn @ Zg[nlzl fOT nE3 mOd 4,
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Zon P Zoniz Sfor n=0mod 4, n>0

KO (L3(4)= { I?O(Ln(ég) Sfor n=0 mod 4,

and the first summand is generated by ro and the second by r-+28"%%g,
where ro is the real restriction of 6=7—1 of (2.6) and xr=p—1 is the stable
class of the non-trivial real line bundle p over L"(4) or Lz(4).

Lemma 4.4. The Adams operation ¥/ on fO(L”(4)) or fO(Lg@)) 18 given
by

| ro  for odd j ! p For odd j
Viro={ 2k fo'rjEszdél W/C—_—{ 0
0 for j=0mod 4,

for even j.

Proor. Since t+1=p is a real line bundle, #/x=(1+£)’—1 by [1, Th.
5.17]. Hence, we have the second equality using (1+£)?=1 of [10, (6.3)].

To prove the first equality, it is sufficient to show it in @(L”(ti)) for the
case n=3 mod 4, by the naturality. Consider the complexification

c: KO(L"(4))—R(L*(4)).

Then ¢%’=%7¢ by [1, Th. 417, and cro=0%/(1+0) and ck=0(1)=1+0)*—1
by [10, Lemmas 3.10-11]. Therefore, we have

ciro=%cro=%(0?/(1+0)=(1+0) —1)2/(1+0)’

0*/1+0)=cro if j is odd
:{ 2(14+0)2—2=20(1)=2ck if j=2 mod 4
0 if j=0 mod 4,

by (8.4), (3.6) and (1+0)*=1 of (2.7). Because ¢ is monomorphic if n=3
mod 4 [ 10, Cor. 5.4, this equality implies the desired result. q.e.d.

By this lemma, (4.3) and (4.2), we see that Ker J/=0 for X=L"(4) or
L7(4). Therefore, we have the following theorem by the commutativity of
(4.1).

Tueorem 4.5. The J-homomorphisms
J: KO(L"))=J(L*4),  J: KO(Li(4)=J(L§(4)
are isomorphic, and their reduced groups are given by (4.3).
CoroLLARY 4.6. The order of the element Jro is equal to

2+l wn J(L*(4)) for even n, or in J(L2(4)) for né2 mod 4,
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2" am J(L'(4)) for odd n, or in J(L2(4)) for n>=<2 mod 4.

The following results are used to prove Theorems 1.3 and 1.6.

For a real s-vector bundle « over a finite C ¥ -complex X, X* will denote
the Thom complex of «, i.e., the mapping cone of the (s—1)-sphere bundle p:
E—X associated with a. A cellular decomposition X=\e} of X gives
naturally a cellular decomposition of X*=e’U\Uei*" of X“.

Turorem 4.7. There exists a cellular homeomorphism between the stunted
lens space L"(k)/L™ '(k) and the Thom complex (L"™(k))™"", where n=0+1 s
the canonical complex line bundle and ry is its real restriction.

This theorem is proved by the same proofs of [6, Th. 1], which is the
theorem for the case k=p.

CoroLLARY 4.8.  We have the following cellular homeomorphisms:
L"(k)/ Ly (k)= (L"™(k))"""/ S*",
Ly(k)/ L™ (k)= (L~ "(k)™"",
Ly(k)/ Ly (k)= (L~ "(k))"""/ S*".

Proor oF THEOREMS 1.3 AND 1.6 FOR p=2. Assume (1.4) for p=2, then
tJro=0 in J(L""™(4)) by Corollary 4.6, and so

JGnrp)=J(mry+2t+tro)=J(m+t)ry) in J(L* ™(4)),

since 14+0=7%. Therefore (L*"™(4))"" and (L""™(4))™*97" are S-equivalent by
(4, Prop. (2.6)]. Then, Theorem 1.3 for L*(4)/L™ *(4) follows from Theorem
4.7. In the same way, we have the desired results for the other cases using
Corollaries 4.6 and 4.8.

Similarly, Theorem 1.6 is proved by use of [4, Prop. (2.9)]. q.e.d.

§5. J-homomorphism for L#(p*), p odd prime

Now, the rest of this note is devoted mostly to the J-group J(L#(p?)) for
an odd prime p, which is determined in Theorem 6.9.
Consider the real restriction r and the projection J”/ of (4.1):

K(Ly(p*)N--KOLy(p*)L5 T (La(p®)).-

Lemma 5.1. For an odd prime p, r is an epimorphism, and Ker r 1is
generated additively by the elements

(5.2) A+oyY—A+0)"7 (0<j<p*.
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Proor. The first half is proved in the proof of [7, Prop. 2.11 (i)]. Let ¢
be the conjugation, then 1+:¢=cr, r=rt and ¢ is a ring homomorphism (cf.
[1]). By use of (1+0)”=1 of (2.7), we have :((1+0))=t1+0))/=1A+0)"7
=140)", and so r((1+0) —(1+0)?"7)=0.

Conversely, assume 3 ¢ Ker r, then £ € K(Li(p®) and so a={/2 exists
and ra=0 by (2.2). Also, f=a+a=a—ta since a+ta=cra=0. Then g is
a linear combination of the elements of (5.2), because « is a linear combina-
tion of (1+0), 0=j<p® by (2.7). q.e.d.

Lemma 5.3. The kernel of the epimorphism J''r is generated additively
by the elements

(5.4) ool 1<j<p), oo +o)e’ A=;<p’—p),
where c(1)=(140)?—1.

Proor. Since rZ*=¥*% [3, Lemma A2], Ker J”r is generated by the
elements of (5.2) and N\ k°(Z*—1) K(Li(p?), by (4.2) and the above lemma.

Since Z *(1+0)7 =(1+d)e”f by (8.4-5) , it follows from (2.7) and (2.2) that /" £°
@FT*—1)K(Li(p») is 0 if k=0 mod p and is generated by (1+0)*¥—(1+0)7 if
k=0 mod p. Thus, Ker J''r is generated additively by

5 { ali, N=A+0)y*—(1+0)  (0=i<p, 1=j<p),
B@)=(1+0)?—(1+0) (1=i<p),

where (0, 1)=p3(1)=0. Considering the elements ¢(1)=(1+0)?—1, we have
a(0, j)—a(0, j—1)=c(1+0g)! A<j<p),
a(i, )—a@—1, )=c1)A+ag)¢- D+ (1=i<p, 1=j<p),
B —RGE—1)=01)(L+0)¢"D* (1<i<p).

Therefore, we see that Ker J''r is generated additively by the elements
cl+0) ™t A<j<p), c)A+0) A=ji<p®—p).

It is easy to see that the elements of the lemma are linear combinations of
these elements and the inverse is also true. g.e.d.

Lemma 5.6. Ker J=Ker J” in (4.1) for X=Li(p*), and so J(Li(p*») =
J(L3(p*).

Proor. It is proved in [2-1, Th. (1.3)] that, if a« € KO(L#(p®)) is a linear
combination of O(1)- and O(2)-bundles, then, for each k, there is an integer
e>0 such that J(k*(Z*—1)a)=0.
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This is true for a=r((1+0))=r(y’) and we have
Jrke @ *—1)A+0)) =k*Jr(A+0)% — (1+0)/) =0.

This implies that Jr((1+0)¥—(1+6¢))=0 if k=0 mod p, since the order of
K(Li(p) is p*" by (2.2). Thus the elements of (5.5) vanish under Jr, and we
have the desired results by the commutativity of (4.1). q.e.d.

Combining these lemmas with (2.7), we have
ProrosiTiON 5.7.  For an odd prime p, the composition
Jri K(Ly(p*)——KO(Ly(p*)-L0 (Li( p*))

of the real restriction r and J-homomorphism is an epimorphism, and its
kernel is generated additively by the elements (5.4). Furthermore, J (Li(p*))==
Z P J(Lp») and J(Li p*) is generated additively by the elements

ay=Jro =(—1)""1Jr(c?) A=j<p)
ar=Jro(D)=(—1)Jr(c(L)e’)  (0=j<p*—p),

(5.8)

where 0 =7—1 is the element of (2.6) and c(L)=1+0)?—1=9"—1.

Furthermore, we have

Lemma 5.9. Jr(0)) = (—1)720()) (@o—ar) + (= 1) 'ay for 1<j <p?
J(L#(p*), where 0(j) is the integer defined by

N S il ]
(5.10) ZOEDHEIEA)
To prove this lemma, we use the following lemmas.
& (a\(b+1\_ @ b
Lewa 511 3 (~1) <L>< ' )_(—1) ( D

Proor. These are the coefficients of x° on both sides of the equality
A—=(x+D)(x+1)’=(—1)x%(x+1)". q.e.d.

Lemma 5.12.  For odd p and the integer 0(j) of (5.10),
)
_ i_P . N
5(-D (i)a< j+i)=0.
Proor. The left hand side is equal to
P\ (TN S e 1yi(P\(T TR
(- ><’>Z( 1)< p> ;;o( L ;:1( D <z>< kp)

~04~( L1y p) (i ) =0

a)

b
;
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as desired, using the above lemma. qg.e.d.

Proor oF LEmma 5.9. If j<p, the desired equality is the first equality
of (5.8) since 6(j)=1. For j=p,itis proved by the induction on j as follows:

Jr(@)—(=1'"'ay

=Ir e =5 (E) ) —(— e (by 6=+~ D)

= — (DT ~V(B)o—p+d@—a) - (~1 B (DD
(by (5.8) and the inductive assumptions)

, )4 R
=(—1"'0(j)(@—a:)  (by Lemma 5.12 and go(— 1) '<€’> =0).
q.e.d.

The following properties of 6(;) are used in the next section.
Lemma 5.13. Let j—1=a(p—1)+b, 0=b< p—1, then

(5.14) 0(7)=0 mod p* for any j >0,

(5.15) 0(j)=(—1)p* mod p**! for b=p—2 or a=p.

. . e i T
Proor. Consider the integer 0(}, k) EO( 1 <ip gl k) for 0=k <p, then

it is clear that
0(j)=0(j, 0)=0(j—1, 0)—0(j—1, p—1).
Also, because (l—l—x)f‘lE:g}:@(j—l, E)x* mod x?+1, we have
(5.16)  (L+2) 1= TH0G—1, H—(~1'0(j—1, p— D} «* mod P(x),
where P(x)=(x?+ 1)/(x+1):l.721(—1)’.x‘., and the right hand side of (5.16)

has the constant term 6(;) by ffﬁg above equality.
On the other hand, there is an integral polynomial Q(«x) such that

(L+x)"" = pQ(x) + P(),

since (P;1> =(—1)" mod p for 0<<i<<p—1. Therefore, we have

A+%)T=(A4%)""1)*A+ ) =p°Q(x)*(1+ x)° mod P(x).
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This equality and (5.16) show the first desired result.
Since Q(—1)=—1 by the definition, there is an integral polynomial
Q'(x) such that Q(x)=(1+=x)Q(x)—1. Therefore, if b=p—2,

(14 2)7 "' =p%Qx)* A+ 2)* "2 =p*((1+ 2)Q'(2) = 1) (L + x)*~*
=(=D%p*A+x)""?+p*(1+x)"'Ry(x)
=(—1)?p*(1+2)* ">+ p**'Q(x)R1(») mod P(x),

for some integral polynomial Ri(x). Also, if a=p,
(L4 2) 7 =p"(A+x)Q'(x) — 1)’ A+ x)°
=(=1"p*A+2)"+p"" ' Ra(2) + p*(1+ 2)"Q" (%)
=(=1)’p*(1+ %)’ + p*"* R3(x) mod P(x),

for some integral polynomial R;(x). These and (5.16) show the second
desired property. q.e.d.

§6. J-group of L%(p*) and L"(p®) for odd prime p

The reduced K-group K(L3(p®), which is isomorphic to K(L*(p®)) by
(2.3), is given as follows [ 7, Th. 1.47]: Let

61)  n—p+l=a(p*—p)+b; 0=<b;<p*'—p) for i=0,1,
and consider the following elements of K(L#(p?)):
j o(1)o? 4 p1#-Dgb+i Gf b,<j<bi+p—1)
62) oL, )= oo +p@rOE-Dgr (if j<by—(p—1)2)
1 o(1)a? (otherwise),

for 0<<j< min (p*—p—1, n—p), where ¢ is the element of (2.6) and o(1)=
(14¢)’—1. Then,

(6.3) For an odd prime p and n >0,
KLY pN= 3 Zy,, m=min (p*—1, n), (direct sum)
i=1
where Z; indicates a cyclic group of order t and

{ P (if P=j<p+b; (i=0, 1)
1=
ol gt Gf P b= <ptt (=0, 1)),
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and the j-th direct summand Z,, is generated by
o of 1=j<p), o, j—p) Gf p=j<p").
In connection to (6.1), we see easily the following
Lemma 6.4. Let ci=[b,/(p—1)], then
ao=[n/(p—1)]=ap+1+cy, bi=ci(p—1)+bo.

Hence, the condition ao=0 mod p s equivalent to c;=p—1, and so to
p2—2p< b.

By the results of the last sections, we have the following lemmas in
J(L(p*).

LemmA 6.5.  For the generators a, and a, of (5.8),
P ay=0 if n=p—1 phai=0 iof by=p*—2p
{ a=01f n<p—1, ptlay=0if by >p®—2p.
Proor. We see that p'*“g? '=0 if n=p—1 by (6.3) and 1+b,=p—1,

o?='=0 if n<p—1 by (2.7), and p"**-Vg(1)g#~*»~=0 by [7. Prop. 4.13].

These show the above results by (5.8) and (6.1). q.e.d.

By (5.14), there is an integer ¢'(;) such that
(6.6) 0(H=p°0’(j), ea=LG—D/(p—DJ]
Lemma 6.7.  For the elements of (6.2) and Jr of Proposition 5.7,
(—Ya,+(—=1)Y6(p+j)p? Ve, (f by=j<bi+p—1)
JI'O-(]-, ]) = . .
(=D +(=1)0(p+p ¢ Dy (if j<bi—(p—1))
=(—Da,+ (=10 (p+))p™ “ay (if one of the above holds).

Proor. The first equality follows from (6.2), (5.8) and Lemmas 5.9 and

6.5. The second follows from Lemma 6.4, (6.6) and the fact that
[p+j—D/(p—1)]=ci+11if 6,<j<b;+p—1, =1if 0<j<b;—(p—1)% q.ed.
0 if b1<p®’—2p or n<p—1
Lemma 6.8. phay=

plar if b1>p2—2p and n=p—1.

Proor. Let j, be the integer such that
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@) jo=a(p—1)+p—2and b;<j,< min (b;+p—2, p’—p—1),

then ¢’'(p+jo)=(—1)**! mod p by (6.6) and (5.15).
If n=>p*—1, 0(1, jo) is of order p* by (6.3), and so

0=(—1)p"Jra(1, jo)=p a1+ 0 (p+jo) pcto=p™a1+(—1)"* p¥a,
by the above two lemmas. This implies the lemma, because p“a;=0if b, <
p*—2p by Lemma 6.5, and a=p—1 if b, >p*—2p.
pr—1§n<p2—1, then a;=0 and b;=n—p+1=(as—1)(p—1)+bo, and

so a=ao—1 and p*>p+jo=n+1by (*). Therefore, we have ¢”*2=0 by (2.7),
and

0=(—=1)"Jr(a*)=0(p+jo)eo—a) +a1=(—1)"p s+

by Lemma 5.9, (5.15) and Lemma 6.5. This shows the lemma as above.
If n<p—1, then a,=0 and ;=0 by Lemma 6.5. q.e.d.

Now, the group structure of J(L%(p®)) is determined by the above con-
siderations.

THEOREM 6.9. Let p be an odd prime, and
ao=[n/(p—1)], ai=[(n—p+1)/(p*—p)]

be the integers of (6.1) for n>0.  Then, the J-group J(Li p*)=Z D J (L p*))
18 given by

Y 0 if ap=0
J(LAp*N= | Zper B Zpes if ao><0 mod p
l Zpagﬂ 69 Zi,a, ’if CLOEO mod p and a0>0,

and the first summand is generated by c, and the second by o, —p*~ “ay which

can be replaced by «, for the second case. Here, ay=Jro and «,=Jro(1l) are
the elements of (5.8).

Proor. For the case ¢y=0, we have n<p—1 and ay=a;=0 by Lemma
6.5, and so the desired result by Proposition 5.7.

For the case n—=p—1, we consider the abelian group

Zpaa EB Zi)“l if ao*ﬁo mOd P
(6.10) G=

Zpa.,n @ Zp'lx if GQEO mod P
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whose summands are generated by 5, and §; respectively, and put
B1=P1 (if ap=<0 mod p), =p{+p= 43, (otherwise).

Then, by Lemmas 6.5, 6.8, 6.4 and Proposition 5.7, we see that the homomor-
phism

h: Gﬂi(Lg(Pz)), hﬁozao, hBl“__al)

is well-defined and epimorphic. To prove that 4 is isomorphic as claimed, we
consider the diagram

K(Lyp =  C
h

R(Ly(p*)-LT (L p*)),
where the homomorphism g is defined for the generators of (6.3) by
ga)=(-1)7"18, if1<j<p,

J (=171 +(—=1)70'(p+ j)p* “Bo

(6.11)
(if b,<j<b1+p—1 or j<b,—(p—1)?

gO'(l, ]):
) (—1)’8; (otherwise).

If it is proved that g is well-defined and
(6.12)  g(@)=(=1)""10(;)(Bo—B1)+(—1)""'p, for 1=j<p?

then the theorem is proved as follows: According te (5.8), Lemma 6.7 and
the definition of A, we see that the above diagram is commutative and so
Ker g CKer Jr. On the other hand, for 0<;j<p*—p, we have

g@W)= £ (~0 (D)ot +XBa— 80+ 5 (— 0 (D)ai=(~ 1),

by ¢(1)=1+0)?—1, (6.12) and Lemma 5.12. This and the first equality of
(6.11) show that g(Ker Jr)=0 by Proposition 5.7. Thus we see that Ker g=
Ker Jr and & is isomorphic since g is epimorphic, and the theorem is proved.

Proof that g is well-defined. For the case b;,<j<b;+p—1, the order of
o1, j) is p™ by (6.3), and it is clear that p“(8:+0'(p+)p™ “Bo)=0 if ao=<0
mod p by (6.10). If ao=0 mod p, then b, >p*—2p by Lemma 6.4, and so [(p+
j—1)/(p—1)]=p and ¢'(p+;)=—1mod p by (5.15) and (6.6). Thus

poBL+0' (p+))p* “B0)=p"B1—p*Bo=0
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by (6.10). These show that g is well-defined for ¢(1, ;) if 6,<j<b:+p—1.
The proofs for the other generators are easier.

Proof of (6.12). Suppose p—1<n<p’—1 and n<j<p? then ¢’=0 by
(2.7). Also, a;=0and 1<a,<[(j—1)/(p—1)]<p. If ay<p, then 3;=0 and
p®Bo=0 by (6.10), and 6(;j)=0 mod p™ by (5.14). If ay=p, then B,=p*B, by
(6.10), and 0(j)=—p“ mod p”*' by (5.15). These show that the right hand
side of (6.12) is 0, and we obtain (6.12).

For n=p®—1>j or p*—1>n_j, (6.12) is proved by the induction on j.
If 5:<j—p<bi+p—1, then we have c(1)o’?=0d(1, j—p)—p2? Vo’ by (6.2),
and so

(L+p D)0 = g 0(Lj—p)— 2 (£ )ri*-2)
=(= 18,4 (= 170+ (— 107X Bo— 1)

inductively, using (6.11) and (6.6), by the same way as in the proof of Lemma
5.9. Also, the last is equal to

(L+pH=D)(=1)7710(j)(Bo—B1)+(—1)7"181),

and so we have (6.12) since the order of G is a power of p. We can prove
(6.12) similarly for the other ;. q.e.d.

For the J-group J(L"(p?)) of the lens space mod p* we have the follow-
ing theorem, which is proved by the same proofs of [6, Prop. 2] using the
split-exact and commutative diagram

0—>K(L"(p*)) —>K(Li(p*)) —>0

0—>KO(S*"*1)—>KO(L"( p*))—>KO(L2( p*))—>0
(cf. [7, Lemma 2.4 (ii)]) and the fact that KO(S?*+!)=J/(S*"+')=J(S*"*1)
r2-11, (3.5)7.

TueoreM 6.13.  For an odd prime p, J(L"(p*)=J(Li(p*)) if n=0 mod 4,
= J( Ly p*) D Z; if n=0 mod 4.

CorOLLARY 6.14. For an odd prime p, the order of the element Jro of
J(L"(p*)) or J(LI(p*)) is equal to

p* if a0 mod p or ap=0, p»*' if ap=0 mod p and a,>0,
where ap= [n/(p—1)].

Proor oF THEOREMs 1.3 AND 1.6 FOor opD PRIME p. We can prove them
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for an odd prime p using the above corollary, by the same way as in the
proofs for p=2 in §4. q.e.d.
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