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§1. Introduction

Throughout this note ¢ will denote an odd integer >1, and n a positive
integer. Let L"(¢) be the (2n+1)-dimensional standard lens space mod g¢,
and let L=(q) be \/L"(q), which is the Eilenberg-MacLane space K(Z,, 1),

where Z, is a cyclic group of order g. Denote by ¢(€ H'(K(Z, 1); Z)=Z,)
the fundamental class of K(Z,,1). The element y,(€ H'(L*(q); Z,)=Z,) is
called the distinguished generator if y,=i*c, where i*: H'(K(Z,, 1); Z,)—
H'(L"(q); Z,) is the isomorphism induced by the natural inclusion i: L"(q)—
L~(¢)=K(Z,, 1).

For a given d € Z,, a continuous map f: L"(¢)—L"(q) is said to have degree
d(=deg(f)), if f*yn=dy, where f*: H'(L"(q); Z,)—> H"'(L"(q); Z,) is the
homomorphism induced by f, and where y, and y, are the distinguished
generators. If n <m, the set of homotopy classes of maps of L"(¢) in L"(q)
is in one-to-one correspondence with H'(L"(¢); Z,)(=Z,). Thus the homo-
topy class of a map f: L"(q) > L"(q), n<m, is completely characterized by
deg (f).

The first purpose of this paper is to consider the question: “Which homo-
topy classes of continuous maps L"(g) > L"(g) contain a differentiable immer-
sion (or a differentiable embedding)?”

S. Feder has investigated in [2] the question on complex projective
spaces and H. Suzuki has studied in [10] and [117] the question in the case of
higher order non-singular immersions for projective spaces. The problem
for general manifolds is treated by E. Thomas [137, [14] and M. Adachi ['17].

By the work of M. W. Hirsch [3] and D. Sjerve [8] we see that any map
L*(qg)— L™(¢q) is homotopic to an immersion for m>n+[n/2]+1 if ¢ is odd
(cf. §2). For m<n+[n/2], we have the following results.

Tueorem A. Let q be an odd integer >1, and let k be an integer with 0<
k=[n/2]. Ifamap f: L"(q)— L"**(q) with degree d is homotopic to an im-
mersion, then

(1) n—l—i)( n-l-{t-l-l )dz]'

iti=k 2 J

18 a quadratic residue mod q.
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CoroLrarY A. If (=1 23(” E_n[/7§62]> 18 not a quadratic residue mod g,

then a map L"(g)— L**t"?1(g) with degree 0 is not homotopic to an immersion.

Tueorem B.  Let p be an odd prime, and let k be an integer such that 0<k
<[n/2]. Assume that ("}.”)xo mod p for some | and j with k<I=j=

[(n/2]. Then a map f: L"(p)— L"**(p) is homotopic to an immersion if and
only 1f deg(f)==*1.

CoroLLARY B.  Suppose p is an odd prime and (”Ern%/]z])zo mod p.

Then a map f: L"(p)— L"*t"*1=1( p) is homotopic to an immersion if and only
1f deg(f) =+1.

According to D. Sjerve [9, Th. (4.7)7], for an odd prime p there are exam-

ples of immersions of L"(p) in L"*t"*1-(p) with degree 0, if <n_['—n[/7éé|2]>20

mod p.
As for embeddings, we get the following

Tueorem C. Let g be an odd integer >1, and let k be an integer with 0<
k<[n/2]. If a map f:L"(q)—L""*(q) with degree d is homotopic to an
embedding, then the following congruence holds:

Z (—1)'(nji>(n+k.+1>dzj5d2"+2k+z mod q.

it+tji=k 7]
CoroLrary C. If <nE;Z|}’é§2]>A£O mod g, then a map L*(g)— L**t"'?)(q)

with degree 0 is not homotopic to an embedding.

It is well-known that for an odd integer ¢ there is no embedding of L"(q)
in Euclidean 2n+2[n/2]+1 space R?"*2L#/21+1 jf <nE—n5'%2]>éEO mod gq.

The second object of this note is to discuss the embeddability of L”*(5)
in Euclidean space. We have

Tueorem D. If n=238.5'"1+5 then L"(5) cannot be embedded in R>"*+2.

Recently, E. Rees has proved in [7, Th.1] that a smooth odd torsion
manifold M of dimension m (i.e., a closed, smooth m-manifold such that
H(M; Z)RZ,=0 for 0<i<m) can be embedded in R” for every r—=8(m+1)/2.
The result of E. Rees is seen to be the best possible general result for odd
dimensional manifolds by the above theorem, because the mod 5 lens space is
an odd torsion manifold.

In §2 some preliminaries are given. The proofs of Theorems A and B
are carried out in §3, and Theorem C is proved in §4, by the technique of
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S. Feder [2, Part I]. In §5 we verify Theorem D by making use of W.S.
Massey’s subalgebra (cf. [47], [5] and [67).

§2. Preliminaries

Let X be a finite CW-complex. It is said that a stable bundle « € @(X )
has geometric dimension <% if there is a k-plane bundle 5 over X such that
a+k=p. For a smooth manifold M we denote by (M) the tangent bundle
and to(M)(=t(M)—dim M) the stable tangent bundle. The following theo-
rem of M.W. Hirsch [3] reduces the problem to that in homotopy theory.

(2.1) Tueorem (M.W. Hirsch). Let N and M be smooth manifolds with
dim N<dim M, and f: N— M be a continuous map. Then f is homotopic to
an immersion if and only if the stable bundle f'to(M)—t,(N) has geometric
dimension < dim M—dim N.

As for the geometric dimension of the stable bundle over the lens space,
D. Sjerve [8] obtains the following result.

(2.2) Tueorem (D. Sjerve). Let g be an odd integer >1, and 7: S*"*' —
L"(q) be the matural projection. If &€ IE@(L”(g))/\Ker n!, then g-dim &<
2(n/2]+1.

The next result is a consequence of (2.1) and (2.2).

(2.3) ProprosiTION.  Suppose q is odd. If m=n+[n/2]+1, any map f:
L"(q)— L™(q) is homotopic to an immersion.

Proor. By (2.1) it is sufficient to show that the stable bundle f'r,(L™(q))
—1o(L"(g)) has geometric dimension < 2m—2n.
There is a map f which satisfies the following commutative diagram :

52n+1 f S2m+1

Pk
L(g) —L— L"(g)
where 7 and 7’ are the natural projections. Thus we have
' (f 'ro(L™(@)) — o(L(@))) = f'n" v o(L™(¢)) — m'zo(L™(q))
=f'7o(S*"+1) —ro(S*+1) =0,
since the sphere is stably parallelizable. Hence, by (2.2),
g-dim (f'ro(L™(g))—7o(L*(¢)) = 2[n/2]+1<2m—2n. q.e.d.
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Let A: H'(L"(q); Z,)—>H?*(L"(q); Z,) be the Bockstein homomorphism
associated with the coefficient sequence: 0—»Z,—~ Z,:— Z,—0. For the dis-
tinguished generator y, € H'(L"(q); Z,), put x,=A y, € H*(L"(q); Z,), which
is also called the distinguished generator. Since the Bockstein homomor-
phism is natural for maps and the above A is isomorphic, we have

(2.4) Lemma. A map f: L*(q)—>L™(q) has degree de Z, if and only if
[*x%m=dx,.

Hereafter, we shall omit the subscripts and write x and y instead of x,
and 1y,, respectively.

As is well-known, the cohomology algebra H*(L"(q); Z,) is the tensor
product of the exterior algebra on y and the truncated polynomial algebra
on x with relations: A y=x and x"*'=0.

The mod ¢ Pontrjagin class p; and mod ¢ dual Pontrjagin class p; of
L"(q) are given by the following equations [12, Cor. 3.27:

(/2]
(2.5) p= Z pi=Q+x®)"H
[n/2] [n/2] . ; X
@)  p= 3% p=Q+a = B (D) a,
i=0 i=0

§3. Immersions of L"(q) in L"(g)

(3.1) Lemma. Let g: L"(q)— L""*(q), k>0, be an immersion with degree
de€ Z, Denote by v(g) the normal bundle of g. Then the Pontrjagin class
p(v(g)) ts given by the following:

p(u(g))zt'%]{_ = (_1)i<n;!-i><n+k_+1>dzj}xzr

t=0 \i+j=¢ ]

[n/2] .o .
— Z <n —|-ik+1>(d2_1)zx21(1+xZ)k—z.

i=0

Proor. By the assumption we have the Whitney sum decomposition:
(&) D (L) = g't(L"*(g)).
Since H*(L"(¢); Z) has no 2-torsion for odd ¢, it holds that
p(g) p(c(L"(g))) = g*p(z(L***(g))).
By (2.5) and (2.4), we obtain

P(y(g))=(g*(1+xZ)n+k+1)(1+xZ)—n—1___(1+deZ)n+k+1(1+x2)—n—1
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E”/23<n+k+1>dzj 2][nl2]<_n_ > Y

j=o
= 52 (T e

Also we have

p(v(g))=(l+x2+(d2—1)x2)”+k+1(1+x2)“”'1
[n/2] . . .
s (”+f+1)(d2—1)'x2'(1+x2)k—' q.e.d.
i=0

Proor or THEOREM A. Suppose that the map f is homotopic to an im-
mersion g: L"(q)—> L"**(q). Then deg(g)=deg(f)=d. Let v(g) be the nor-
mal bundle of g. By (3.1) we have

_ N rti ntE+HL g5 ok

po()= 5 O ae,
On the other hand, p,(v(g)=x(»(g))?, where x(»(g)) is the Euler class of
v(g). Thus we obtain the desired result. q.e.d.

Let S?"*1={(zy, .-, 2, € C"*| Z} |z;]2=1} be the unit sphere in complex

(n+1)-space C"*'. The image of (zo, ., z,) by the natural projection S***'—
L"(q) is denoted by [ zo,---, 24 .

Proor oF THEOREM B. Suppose that the map f is homotopic to an im-
mersion g: L"(p)—>L"**(p). Then deg(g)=deg(f)=d. Let i:L"**(p)—
L"*'='(p) be the standard inclusion defined by i[zo,--, zuir] =[20s--5 Znsts

1-k-1
0,-.., 0. Then, clearly, the composite map ig: L"(p)—>L"*'"'(p) is an im-
mersion with degree d. Since the normal bundle v(ig) is (2/ —2)-dimensional
and p is odd, we must have pi(v(ig))=0 for j=I. Thus it follows from the

second equality of (3.1) that
R e AV By AP i 2 :
poen=5(" (11T e -pis=0, =L
A simple calculation shows that, for any j with [ <j<[n/2],
n—}-l 2 1V —
( ] Nd*—~1))=0  mod p.

By the assumption, we see that d= =1, because p is a prime.
Conversely, if deg(f)=1, f is homotopic to the standard inclusion which
is obviously an immersion with degree 1, and if deg(f)=—1, f is homotopic
k

to the map ¢: L*(p)— L"**(p) defined by ¢[zo,--, 25] = [Zo,---5 Zny Oy--, 0]
which is seen to be an immersion with degree —1. q.e.d.
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§4. Embeddings of L"(¢) in L"(q)

(4.1) Lemma. If g: L"(g)—>L"**(q), k>0, is an embedding with degree
d, then the mod q Euler class x(v(g)) of the normal bundle v(g) of g s equal

to d"+k+1xk.

Proor. Let gy: H'(L*(q); Z,) > H**(L"**(q); Z,) be the Gysin homomor-
phism defined by the following commutative diagram:

HYL'(q); Zy) —E+— H*(L"*Mq); Z,)

4.2)
H,, 1 (L"(q); Z,) —5+— H2n+1(Ln+k(¢]); Zy)

where the vertical maps are the Poincaré duality isomorphisms, and the lower
horizontal map is the homomorphism induced by g. Then, according to S.
Feder [2, Th. 1.3], we have

x (v(g)): g*g*(l): g*(d”+1xk) — dn+k+1xk,
by (4.2), (2.4) and the definition of the degree. ce.d.

Proor oF THeorEM C. Suppose that the map f is homotopic to an embed-
ding g: L"(¢)—>L"**(¢). Then deg(g)=deg(f)=d. By the first equality of
(3.1) we have

_ _hifn+iNn+E+1N 525 o
p()=, 5 (P T (A e,
On the other hand, (4.1) shows that

Pr(v(@))=2(v(g))? = d?"+2k+2 52k,

Thus we get the desired formula. q.e.d.

§5. Embeddability of L”(5) in R™

First, we recall the properties of W.S. Massey’s subalgebra. Suppose that
a compact, connected, smooth manifold M of dimension m is embedded differ-
entiably in (m+1)-sphere S™*'. Let E be the total space of the normal S'~*-
bundle associated with the embedding, and let p: E— M be the projection.
Then there is a subalgebra 4*=3A4' of H*(E; Z,) satisfying the following
properties (cf. [4] and [5]):

(6.1) A* is closed under cohomology operations.
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(56.2) The following direct sum decomposition holds:
H{(E; Z)=p*H(M; Z)+ 4, 0<i<m+I1—1.
(5.3) Ai=0 for izm+1—1.

Proor or Tueorem D. Suppose that L”(5) is embedded differentiably in
R®**2, We may assume that L"*(5) is embedded differentiably in S3**%, Let
E be the total space of the normal S”-bundle associated with the embedding,
and let p: E— L"(5) be the projection. Then there exists a subalgebra 4*=
3 A of H*(E; Zs) which satisfies the properties (5.1-3) for M=L"(5) and =
n+1.

Since the Euler class of the normal bundle of the embedding vanishes,
the Gysin sequence breaks up into pieces of length 3 as follows:

0 — H(L"(5); Zs) £ H'(E; Zs) —¥— H'""(L"(5); Zs) —> 0.

Let a € H*(E; Zs) be an element such that v(a)=1€ H°(L"(5); Zs). Then we
have the following direct sum decomposition (cf. [4, §87):

(5.4) HY(E; Zs)=p*H(L"(5); Zs)+a- p*H ""(L"(5); Z5).

We may assume that a € 4”. Then, by (5.1), a? € 4*". By (5.4), there exist
unique elements o € H**(L"(5); Zs) and 8 € H*(L*(5); Z5) such that

(5.5) a*=p*a+a-p*p.
According to [4, Th. IV, it holds that 4a+ #*=p,, s, and hence
(5.6) Ri=x"+a,

because p,;=x". It follows from (5.2) and (5.4) that
(X)) A= H(L"(5); Zs) = Z; for n<i<3n.

Note that o=+ x", £2x” or 0. If a=x" or 2x”, then B2=2x" or —2x",
respectively, by (5.6). But this is impossible. If a=—x", then =0, by
(5.6), and so, a®*=—p*x"=~0, by (56.5). This is inconsistent with the fact
that a% € 4%" and the direct sum decomposition (5.2).

Assume that = —2x". Then, by (5.6), 8= +2x"%  Thus, by (5.5),

a®=p*(—2x")+a-p*(£2x"'%).

Let p*u+a-p*x"/ y be a non-zero element of 4*"*', where u € H****(L"(5); Zs).
Then a(p*u+a-p*x"?y)=a-p*(u+2x"y) € A****. Since A" A1 C A*"+1=0
by (5.8), we have u= F2x"y. Therefore, we see, by (5.7), that 4*"*! is gene-
rated by p*(F2x"y)+a:p*x"?y.

Put s=n/8=2.5', and let #°: 4" — A*" be the reduced power operation
mod 5. According to [6, Th. 17, we have
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Pa=p*a;+a-p*Q,,

where «; is an element of H**(L*(5); Zs), and where Q, € H*(L"(5); Zs) is the
characteristic class defined by Q,=¢ '2°U (¢ is the Thom isomorphism of the
normal bundle and U is its Thom class). By an easy calculation, we can see
that Q,=—2x"%. Finally, consider the operation 2°: 42"*!— 4%"+1, Then,
2 (p*(F2x"y)+a-p*x"? y)=a-p*x"y5~0. While, 4***'=0, by (56.3). This is
a contradiction.

In the case a=0, we get a contradiction in the same way. q.e.d.
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