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1. Introduction

Let S be a symmetric space of the non-compact type. In his paper [10],
S. Helgason obtained the Paley-Wiener theorem for the Fourier transform of
the functions in C2(S).

The purpose of this paper is to characterize the Fourier transform of the
distributions with compact support.

The crucial points of our proof are as follows. By means of convolution
by a Dirac sequence we consider the regularization of tempered distributions (for
the characterization of the Fourier transform of tempered distributions, see
Theorem 6 in [1]) which, we notice, are the functions in C®(S). Then we use
the above mentioned Helgason’s Paley-Wiener theorem.

2. Notation and Preliminaries

As usual R and C denote the field of real numbers and the field of complex
numbers, respectively. Let i denote a square root of —1. If M is a manifold,
C*(M) and C2(M) denote the set of complex valued C* functions on M and the
set of C® functions on M with compact support, respectively. If V is a finite
dimensional vector space over R, &#(V) denotes the space of rapidly decreasing
functions on ¥ ([12]) and D(V) denotes the algebra of differential operators with
constant coefficients on V.

Let R* be the n-dimensional Euclidean space, |x| the Euclidean norm of
x & R" and dx the Euclidean measure on R”. Let p be the function on R" defined
by

p(x)={ aexP{_lTllx—[_z} if |x|<1,
0 if |x]=1,

where
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a1 =Sm<lexp{— T:IIW} dx.

For ¢>0, p,, the function on R" is defined by p,(x)=¢"p(x/e). We call {p,},>0
a Dirac sequence on R".

Let G be a connected semisimple Lie group with finite center, g the Lie algebra
of G, g, the complexification of g, # the universal enveloping algebra of g, which
is identified with the algebra of left invariant differential operators on G and
<, > the Killing form of gc. Let g=f+p be a Cartan decomposition, 6 the
corresponding Cartan involution, a, a maximal abelian subspace of p, K and 4
the analytic subgroups of G with Lie algebras T and a,, respectively. Let a}
denote the dual of a, and a¢ its complexification. Leth be a maximal abelian
subalgebra of g, which contains a,, b its complexification and 4 the set of nonzero
roots of g¢ with respect to h¢e. Put hnf=aqa, and h*=a,+ia,. Select compatible
orderings in the dual spaces of a, and h*, respectively. Each root a4 is real
valued on h* and we get an ordering of 4. Let P and P, denote the set of
positive roots and the set of positive roots which do not vanish identically on

a,, respectively. Let p=—l— @ and n=( g%) Ng, where a is the restric-
4 2 acP 4+

a€P +
tion of a to a, and g* is the root space for each o. Let N and N denote the

analytic subgroups of G with the Lie algebras n and fi=0n, respectively. Thus
we obtain G=KAN the Iwasawa decomposition corresponding to the decom-
position g=f+a,+n. Any element g G is written uniquely as g=x(g)exp
H(g)n(g), (x(9)€K, H(g)€a,, n(g)eN). For ac A we write H(a)=loga. If
A, uEajc let Hyea,c be determined by A(H)=<H,;, H> for HEa,¢ and put
<A, pu>=<H;,H,>. Since <, > is positive definite on p we put [[1||= <4,
A>1/2 for A€a} and ||X[|=<X, X>1/2for Xep. For each Al€a},, we put
A=RA+iI1, A, FAEa}, and put ||A||=(||2A]2 + |||l#A]>)1/2. Let M and M’
be the centralizer and normalizer of a, in K, respectively, and put W=M'/M,
which is called the (little) Weyl group of g with respect to a,. D(K/M) denotes
the algebra of K-invariant differential operators on K/M.

Let /=dima,. The Killing form induces Euclidean measures on 4 and
a} respectively; multiplying these by the factor (2n)~(!/?! we obtain invariant
measures da and dA respectively, and the inversion formula for the Fourier trans-
form

f‘(A)=SA f@exp{—illoga)}da, Aca},feL(A),
holds without any multiplicative constant:

f@={ i Dewp filtoga}dr,  fes@),
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where &(A4) is the Schwartz space in the usual sense. We normalize the Haar
measure dk on the compact group K so that the total measure is 1. The Haar
measures of the nilpotent groups N, N are normalized so that

0(dn)=d, SN exp {—2p(H()}di=1.
The Haar measure dg on G can be normalized so that

SG 1(9)dg =g f(kan)exp {2p(loga)}dkdadn,  fe& C=(G).

KAN

For x& G, define
E(x)= SKexp{ — p(H(xk)}dk.
Since any x G can be written uniquely as x=k.exp X, (k€ K, X €p), we put

a(x)=|IX1.

Then E and o are spherical functions.

3. K-Bi-Invariant Case

In this paragraph we define the Fourier transform of the K-bi-invariant
distributions on G with compact support, and characterize the image of them.

We summarize some results which are used below.

The space &#(K\G/K) is defined as the set of functions f € C*(G) satisfying
the following conditions (a) and (b) viz.: (a) f(kxk')=f(x), (xE G, k, k' € K).
(b) For each left invariant differential operator D on G and each integer m=0,
we have tp,(f)<+oo; here tp,, is the seminorm defined by

T, () =5up (1 +0(N"E(0)* (D))

The space £ (K\G/K) is topologized by the seminorms 7, given by the
above with varying D and m. It is a Fréchet space.

The space #(K\G/K) is preceisely what Harish-Chandra calls I(G) in [6].

Let &#(a¥)” be the subspace of W-invariants in &(a}¥). These spaces are
equipped with their usual topologies.

For any A€ a}¢, the function defined by

$:)= | exp (12— p) (H(xk)}dk

is called the elementary spherical function corresponding to A. It is known that
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¢sa=¢, for any s W ([5, Corollary to Lemma 17]).
For f € #(K\G/K), its Fourier transform is defined by

(FN DT D= f04-sdx,  (Gap).

THEOREM 1. (Harish-Chandra [5, 6, 7], Helgason [8]). The map f—f is
a topological isomorphism of (K\G/K) onto & (a})¥.

Let &(K\G/K) and &’(a})" be the strond duals of £(K\G/K) and
&L(a¥)¥, respectively. If we consider the transposed inverse (#~1)* of the Fou-
rier transform, we obtain the following.

COROLLARY. The map (¥ ~1)* isatopological isomorphism of &' (K\G/K)
onto & (af)".

The space 2(K\G/K) is the set of K-bi-invariant functions f & C®(G). Let
H#(a}c)? denote the set of functions Fe C(af) satisfying the following con-
ditions: (a) F can be extended to an entire holomorphic function on aj¢, (b)
F(sA)=F(A) for any s€e W and A€a}¢, (C) there exists a constant R=0 such
that for each integer m=0

sup (1+[[|y"exp { - RIS} [F(D)] < + 0.

lea"‘,c

Helgason [9] and Gangolli [2] proved the following Paley-Wiener theorem.
THEOREM 2. The map f—f is a bijection of 2(K\G/[K) onto # (akc)¥.

ReMARK. The constant R in the above condition (¢) is characterized by the
fact: f(exp H)=0if |H|| >R, H=a,.

Let ¢/(K\G/K) denote the dual of the space #(K\G/K) of K-bi-invariant
functions f € C*(G), elements of which are distributions on G with compact sup-
port. We define the Fourier transform of T € &’(K\G/K) as follows:

(FT) W=TD=T@), (“A<a}),
where ¢, is the elementary spherical function.

Now in order to state our theorem we introduce the function space 5 (a¥¢c)"
on aj which consists of functions F e C(a}) satisfying (a), (b) and (c) viz.: (a)
F can be extended to an entire holomorphic function on a}c. (b) F(sA)=
F(2) for any se W and A€afc. (c) There exist a constant R=0 and an integer
m=0 such that
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sup (1+[I2)~"exp {— RIIFA[} [F(D)] < + oo.

lEapc
THEOREM 3. The map T-T is a bijection of &'(K\G/K) onto o# (a*c)¥.

ReEMARK. The constant R in the above condition is characterized by the
fact: T(f)=0if f € 2(K\G/K) and f(exp H)=0 for Hea,, |[H||<R.

Proor. Let us first verify Te.}t’,(ajc)W. The condition (a) is an immedi-
ate consequence if we consider the local expression of T and the fact that ¢,(x)
is an entire function with respect to A€af;. The second condition is clear
from the W-invariance of ¢,. Let Q be any compact set in G. Then we have

sup [¢,(9)| < c exp {RIFA,

where c is a positive constant and R=supa(x). Since T is a continuous mapping

xef
of #(K\G/K) into C with respect to the topology of &(K\G/K), there exist
b, ..., b, # and a compact set Q in G such that for any fe#(K\G/K) and a
constant ¢>0

IT(f)<c sup|(b,f) (x)I.

1sisrxeQ

Hence

ITDI=IT($pI<c L, Supl(bidy) ().

SiSrxe

By Lemma 46 in [5], for each b & there exist an integer d=0 and a constant
a>0 such that

(b)) () =a(l+[A)isa(x),  (A€aic)
Therefore we can find a positive integer m such that
IT()| < e(1+ 1A exp {R]l.£A]}.
Hence T s# (a¥:)”. The injectivity follows from the corollary to Theorem 1.

Next we prove the surjectivity of the map. Let {p,},., be the Dirac sequence
on A and put ¢.(a)= ;)— >, p(sa), where a—sa is a canonical action of W on 4
w

and w is the order of SVSV Then ¢, 2(4)". If we put F-1($,)=f,, then
f.€ 2(K\G/K) and {f,},>, is a Dirac sequence on K\G/K. Let fe be defined
by f.(x) =f,(x"1) (x€G). Let F be a function in # (a}c)” and R be a constant
in the definition of 52 (a}c)”. Since o (afc)? is contained in #'(a})¥, there
exists a distribution T€%'(K\G/K) such that T=F. Let Txf, denote the
convolution of T and f, defined by
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(T+f) )=T,(f.(y"'x)),  (x, y€G),

where the subscript y denotes the argument on which the distribution T acts. If
we attend to K-bi-invariance of T and f,, it is not difficult to see that

(F(T*£) (W) =F(DF Q).
Since f,€ 2(K\G/K), by Theorem 2
sup (1+ |12 [)"exp { —&l|l#A]} | F (D] < + oo

leapc
for any integer n=0. So we obtain

sup (1+|A[)7exp { - (R+&) LA} [F)| | f(D)] < + o

Aeapc
for any integer p=0. Hence we have
(T+f,) (expH)=0 if |H||>R+¢, Hea,

by the remark of Theorem 2. For any g,>0 we can select ¢ such that g,>¢>0
and

(T*£,) (exp H)=0 if |H|>R+s¢,, HEa,.

Now if we take a function fe 2(K\G/K) such that f(expH)=0 for Hea,,
[[H||<R+¢g, then T(f)=0. In fact,

0=(T*f,, f)=(T; frf),

and ﬂ* f tends to f with respect to the topology of & when ¢ tends to. 0. As g,
is arbitrary T(f)=0if f € 2(K\G/K) and f(exp H)=0 for Hea,, ||[H||<R.

4. General Case
In this paragraph we consider the general case and take off the condition of
K-left-invariance on distributions.

The space &(G/K) is defined as the set of functions f € C*(G) satisfying the
following conditions (a) and (b) viz.: (a) f(xk)=f(x), x€G, kK. (b) For
each left invariant differential operator D on G and each integer m=0, we have
Up,m(f)< + oo} here py,,, is the seminorm defined by

o f) =P (1+ 0()"EC) (D)D)

The space &(G/K) is topologized by the seminorms p, given by the above
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with varying D and m. It is a Fréchet space.

Let &(a}¥ x(K/M)) denote the set of functions Fe C(a¥ x (K/M)) which
satisfy the following condition: for each E€ D(a¥), u€ D(K/M) and each integer
r=0,

Vu(F)= sup  (1+[JA[)|(E;unF)A, kM) < + oo,
(A, kM)ea} x (K/M)
where the subscripts A and k denote the arguments on which E and u act respec-
tively.

Then the collection of these seminorms v, , given by the above with varying
E, u and r, topologize &(a} x (K/M)) so that &(a}¥ x (K/M)) becomes a Fréchet
space.

For any continuous complex valued function F on a}¥ x (K/M) let us extend
the domain of F to all of a¥ x G by defining

F(x)=F(, x)=exp {(il— p) (H(x))}F(4, k(x)M), (xG).
Define the function 2F; on G by

(PF,) (x)= gKFA(xk)dk, (xEG).
For any function f€ % (S), its Fourier transform f is defined by

(FF)0 kM) =F(h, kM) = SAN f(kan) exp {(—iA+ p)(log a)} dadn
for léa;‘, kMeK|M.

Now let #(a¥ x (K/M))¥ denote the subspace of #(a} x (K/M)) consisting
of all Fe % (a} x (K/M)) which satisfy the following functional equation:

PF,,=2F,, (A€a} and seW).

The spaces &#’(G/K) and &’(a} x (K/M))¥ are the strong duals of the topo-
logical vector spaces &(G/K) and #(a} x (K/M))¥, respectively. Let (F~1)*
denote the transposed inverse of the Fourier transform.

THEOREM 4. (Eguchi and Okamoto [1. Theorem 6]). The map (& 1)*
is a topological isomorphism of &'(G/K) onto &'(a} x (K/M))¥.

We need the Paley-Wiener type theorem. In order to state the theorem by
Helgason [10] we denote by 5#,(aj¢c x (K/M))¥ the set of functions Fe C*(a} x
(K/M)) which satisfy the following conditions (a), (b) and (c) viz.: (a) For each
kM in K/M the function on o} defined by A—F(A, kM) can be extended to an
entire holomorphic function on ayc. (b) PF,=2F,, (Aca}; and s€W). (c)
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There exists a constant R>0 such that for each integer m=0

sup  (L+[Al)mexp {—R|FAI} |F(A, kM)| < + oo.
(A, kM)ea pc* (K/M)
The space 2(G/K) is the set of K-right-invariant functions f e C*(G) with
compact support.

THEOREM 5. (Helgason [10]). The map f—f is a bijection of 2(G/K)
onto 3 (afc X (K/M)¥.

RemaARrkK. The constant R in the above condition (c) is characterized by the
fact: f(gK)=0if a(9)>R, g=G.

Let £'(G/K) denote the strong dual of the space £(G/K) of K-right-invariant
functions f & C®(G), elements of which are distributions on G with compact
support. For each distribution T €&’(G/K) we define the Fourier transform of
T by

(FT)A, kM)=T(2, kM)=Texp {(—iA—p) (H(x"'k)}),
(A€a} and kM € K/M),
where the subscript x denotes the argument on which the distribution T acts.

The space s#,(afcx(K/M))¥ is the set of functions FeC®(a} x(K/M))
satisfying the following conditions (a), (b) and (c) viz.: (a) For each kMe
K/M, the function on af defined by 1 —F (A, kM) can be extended to an entire
holomorphic function on aj¢c. (b) PFy,=2F,, (A€ajc and s€W). (c) There
exist an integer m=0 and a constant R>0 such that

sup (1+ A mexp { = RIFAI} [F(A, kM)| < + oo.
(L, kM)ea}, o % (K/M) .

THEOREM 6. The map T—-T is a bijectién of &'(G|K) onto ##,(akcx

(K/M)¥.

Proor. Let us first verify Teaf,(a:c x (K/M))¥. The condition (a) is an
immediate consequence if we consider the local expression of T and the fact
that exp{(—il—p) (H(x~'k))} is an entire function with respect to A€a};. The
second condition is clear from

@T) @ )=T({ exp{(=i2—p) HO xkN}dk) = Ty(d: ).

To prove the third condition we use the following

LEMMA. Let Q be a compact set in G. Put lﬁk(lzx):exp{(—i/l—p)
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(H(x~1k))} for Aea}, x€G and kK. Then for any be &, we can select an
integer d=0 and a positive constant ¢ such that

I(bx¥) (A: x)| = c(1+ [|A[)*exp{[l.# Allo(x)}.

PROOF OF THE LEMMA. We can prove this lemma by arguments similar to
the proof of Lemma 46 in [5]. Let 84, ..., B, be a fundamental system of roots
in P. Select linear functions A, ..., 4, on b such that A(H,)=2,(Hg)d;;
(1=i,j<r). Then by Theorem 1 of [3], there exists an irreducible representation
7; of g on a finite-dimensional space V; with the highest weight 4;,. Select a unit
vector &;in V; belonging to A;. Extend A and p to linear functions on } by defining
them to be zero on a,. Then A= Z} A;A; and p= Z plA where 1,€C and
p;ER. We have |m(x " 1k)¢; I—exp {A (H(x‘lk))} Let Xl, ..., X, be a base for
g over R and for any xG and t=(ty,..., t,)ER", put x,=xexp(t; X+
+t,X,). Let M=(m,, ..., m,) denote an n-tuple of nonnegative integers
and write |M|=m;+---+m,, tM=¢7:...¢tm and denote by X(M) the coefficient
(in &) of tM in (M)~ 1(t, X, +---+t,X,)!Ml. Also put [t|= max]t,l and M+ M’
=(m;+my, ..,m,+m;) if M'=(m},...,m;). Let E; be the space of all linear
endomorphisms of V; (1< j<r). Forany T€E;, put |T| —] slléq |Tv|. Then E;
is a Banach space under this norm and o

mexp {— (1 X+ +,X)}) = ZM(= DIMn (X (M),

the series converging absolutely and uniformly in E; (see [4, §5]) provided [¢|
remains bounded. Let § denote the conjugation of g, with respect to the com-
pact real form u=%+ip and b— b* (b #) be the anti-automorphism of # over R
which coincides with —& on g;. Then it is clear that 7;(b*) is the adjoint of
n;(b) (in the sense of Hilbert space theory). Put

by= % (=DMXM))*X(M,)

M;i+M,=M

for any M. Then it is obvious that
|mi(xz 1R)E 12 = [my(x~ 1 K)E;12 + |M|Z; Ot L Tbam (xR)C)
for all k, x and t(1<j<r). Put
¥, j (%) =m(x)¢;172(m(x)E;, miba)mj(x)E)),  (xEG).
Then |¥y ;(x)| <|n;(by)|. Hence ¥, ; is a bounded analytic function on G and

Im G R = O I 3T My (7).

Obviously this series converges uniformly with respect to x, k and ¢ provided x
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varies within a compact subset of G and |#| remains bounded. Therefore, if we
put v;=il;+p;, by the binomial theorem,
exp{(—il—p) HEF R} = TL |my(er kg

=exp {(—il—p) (H(x"1k))} ;tM‘I’M(x‘lk: )

provided |¢] is sufficiently small. Here ¥,(x: 1) is a function on G x a¥¢ which can
be written as a polynomial in v; and ¥y ; (1< j=<r, |M’'|<|M]|) with constant
coefficients. Therefore it is clear that there exist a positive number a,; and an
integer d,,=0 such that

[P p(x: D) S ap(1+ |44, (x=G and A€a}).
From this our lemma follows easily.

Now we return to the proof of the theorem. Since T is a continuous map
of £(G/K) into € with respect to the topology of #(G/K), we can select by, ..., b,
€4 and a compact set Q in G such that for any fe&(G/K) and a constant
c>0

IT(NIe. 33 supl(b;f) ().

Hence o
(FT)A, kM) | =|T(exp {(—ii—p) (H(x"k)})|

<c. 2 sup|(b;¥) (A: x)l.
1SjSr xeQ

Therefore, by the above lemma, we can select a positive integer m and a positive

constant R such that
(F T4, kM)|<c(1+[|AlD)mexp {R|.£A]}.

Hence #T e # (a}c x (K/M))¥. The injectivity follows from Theorem 4.
Next we prove the surjectivity of the map. Let F be any function in s#,(aj¥¢
x (K/M))¥ and assume
sup )(1+ 4D~ exp{—R|FA}F(4, kM)| < + oo

(}.,kM)Ea; CX (K/M
for a positive number R and a positive integer m. Since £ (aj¢ x (K/M))¥ C
&' (a} x (K/M))¥ there exists a unique distribution T'in &’(G/K) such that # T=
F. Let {f,},>0 be the Dirac sequence which was defined in §3. The convolu-

tion of T and f, is defined by (T*f,) (x)=T,(f.(y"*x)). Then for A€a} and
uMe K/M
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(F(Txf) (4, uM)=(Txf,),(exp {(—il—p) (H(x"*u))})

= Ty(Ssz(y‘lx) exp {(—il—p) (H(x"1u))} dx)

=1({_fme{(=iz-p) (HG1y-1w)dx}),

Since x~1y~lu=x«(x"1k(y~u))exp{H(x 1xk(y~1u))+ H(y~'u)}n, by Iwasawa de-
composition, the last formula equals to

1,({_feoexp{(=ir—p) B0 w)}dxexp {(— 12— p) (HO™ 1))
= y(fz(l’ K(y— 1 u)exp{( —il— p) (H(y— ! u))})
=T (AT (exp{(—ii—p) (Hy~'u)})
=f(A)F(4, uM),

where we used that f, is K-bi-invariant. From this for any integer n=0 and
usD(K/M) we can select constants ¢; and c, such that

L+ 1AD" (& (T f))) (4, kM)
= {(L+ 2"+ FD}{A+ A", F) (A, kM)}
<cic,exp{(R+¢) ||£A]]}.
So,

(1 + 1A exp{ — (R +8) LA} (ui(F (T* A, kM)

u
(4, kM)ea}, o x (K/M)
< +oo.

Hence, by Theorem 5 (T*f,) (x)=0 for xeG, o(x)>R+¢. Therefore, for any
go>0 if we select ¢ as 0<e<egg, then (Txf,) (x)=0 for xG, o(x)>R+¢,. Now
if we take a function fe2(G/K) such that f(x)=0 for xeG, a(x)<R+¢g,
then T(f)=0. In fact,

0=(Txf,, /)=(T, f*f)

and fx f,, tends to f with respect to the topology of & when ¢ tendsto 0. As g,
is arbitrary T(f)=0 if f € 2(G/K) and f(x)=0 for xeG, 6(x)<R. This proves
our theorem.
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