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§1. Introduction

An independence condition was introduced by M. Ohtsuka [2] in relation
with the condititonal Gauss variational problem. This notion was generalized
by the author [3] and applied to the study of semi-infinite programs. It was
shown in [3] that a decomposition theorem (Lemma 4 in [3]), i.e., the existence
of a full system of components, plays an important role in the study of the con-
ditional Gauss variational problem. One of our aims is to further generalize
the independence condition and the decomposition theorem. By making use of
our decomposition theorem, we shall study a change of values of semi-infinite
programs.

§2. An independence condition

Denote by R" the n-dimensional Euclidean space, by R} the positive orthant
of R" and by e, the vector in R™ whose j-th coordinate is equal to O if js=k and
1if j=k. Weset R=R! and R,=R}. For a subset B of R", we denote by
B° the interior of B in R*. Denote by ((v, w)) and ||w|| the usual inner product
of v, we R" and the usual distance from 0 to we R” respectively, i.e.,

(@ W)= Zrys; and [l =[(w, w)]'2

for v=(ry, ..., r,) and w=(sy, ..., S,)-

Let X be a real linear space and P be a convex subset of X such that 0 P.
Let fi(x) (i=1, ..., n) be a real-valued function defined on P satisfying the follow-
ing conditions:
(@) f{tx)=tf(x) for all teR, and x& P such that tx P,
®) filx+y)=fi(x)+f(y) for all x, ye P such that x+ye P.
In case P is a convex cone, conditions (a) and (b) imply that fi(x) is positively
homogeneous and additive.

Now we introduce an independence condition which coincides with the one
in [3] in the case where P is a convex cone.

DErINITION. Let xe P. We say that {f}={f;;i=1, ..., n} is x-indepen-
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dent if there exists a set {x;}={x;; j=1, ..., n} in P called a system of com-
ponents of x such that x—x; P for each j and det(f(x;))==0, where det(a;;)
denotes the determinant of a matrix (a;;).

Let A be the transformation from P into R” defined by

Ax =(f1(x)a SRR fn(x))

The condition det(f(x;))=<0 in the above definition is equivalent to that {4x;;
j=1, ..., n} is linearly independent. Denote by A(P) the image under 4 of P, i.e.,

A(P)={Ax; xe P}.

Clearly 0= A(P) and A(P) is convex by conditions (a) and (b).
A system of components {x;} of x is called to be full if

In this case we say that x has a full system of components.
First we have

THEOREM 1. Let u and x be elements of P and set x*=eu+(1—¢)x with
O<e<1. If {f;} is u-independent, then {f;} is x*-independent.

Proor. Let {u;} be a system of components of u. Then ¢u;e P and x*—
eu;=gu—u;)+(1—e)xe P for each j. It is clear that {A(eu;)} is linearly inde-
pendent, so that {eu;} is a system of components of x*.

We shall prepare

LEmMMA 1. Let B be a convex set in R™ such that 0 B. If B contains
© a set of n vectors in B which is linearly independent, then B° is nonempty.

Proor. Let {z;} be the set of n vectors in B which is linearly indepen-
dent. Then the set V defined by
V={ Zn] rizj; (ry, ..., r,)ERE and Z" ri<1}
Jji=1 j=1
is contained in B. Since V° is nonempty, our assertion is clear.

LEMMA 2. Let B be a convex set in R™ such that 0B. If zo=B° and
2o5=0, then there exist a set {z;} of n vectors in B° and a set {a;} of n strictly
positive numbers such that {z;} is linearly independent,

n n
Zo=j§1ajzj‘ and 1§10j<1.

Proor. Let us put zo=(c,, ..., ¢,) and choose ¢; in such a way that ¢;=
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lif c;=z0and ¢;=—1 if ¢;<0. Let r>0 be a number such that z,+re;e; € B°
for each j, m be the number of vanishing ¢;’s and v be the vector in R* whose
i-th coordinate b; is equal to 0 if ¢;5~0 and b<O0 if ¢,;=0. We choose |b| so
small that zo+v+reje;&B° for each j and r+mb>0. Let us take z;=2z¢+v
+reje; for each j. Writing

co=j§1|cjl, ao=co/(co+r+mb),
a;= [[le(1 —ag)— bjsjao]/r,
we have a;>0 for each j,
Znaj=ao<1 and ZO=Znajz.i.
Jj=1 Jj=1
We show that {z;} is linearly independent. Suppose that Zn] t;z;=0 for {t;}
j=1
CR. Setting t,= Z"} t;, we have
i=1
0=t0(20+v)+ il rsjtjej
j=
=to 2, (c;+by)es+ 2, retye;

=j§":1 [to(cj+ b)) +re;t;]e;.
Since {e;} is linearly independent, we have
@ to(c;+by)+re;t;=0
for each j. Multiplying both sides by ¢;, we have
to(lc;| +ejbj)+rt;=0,

so that
0= 3 [tolles| +2;b) + rt]=to(co+ mb+).

Since c¢o+mb+r>0, we have t,=0 and hence ;=0 by (1). Namely {z;} is
linearly independent and {z;} and {a;} satisfy our requirements.
We have

THEOREM 2. If zo€ A(P)°, then there exists x& P such that Ax=z, and
{f} is x-independent.
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Proor. First we consider the case where z,=~0. Applying Lemma 2 with
B=A(P), we can find a set {z;} of n vectors in A(P)° and a set {a;} of n strict-
ly positive numbers such that {z;} is linearly independent,

n n
Zo=zaij and Z aj<1.
Jj=1 Jj=1

There exists x;€ P such that Ax;=z; for each j. Taking x= Z"; ajx;, we see
j=1

that xe P and Ax=z, by conditions (a) and (b). Since {A4x;} s linearly inde-
pendent, we see that {a;x;} is a full system of components of x. In case zy=0,
let us choose r>0 so small that

r>e;cA(P)° and —re;cA(P)°
ji=1

for each j. There exists a set {u;} of n+1 elements in P such that

Auj=_rej (j:‘]-, EERE] n)’

n
Au"+1=r Z ej.
Jj=1

+1
Writing x;=u;/(n+1) for each j and x=nZ X, we have x& P and Ax=0. It
=
is clear that {x;; j=1, ..., n} is a system Jof components of x. This completes
the proof.

CorOLLARY. If zo€ A(P)°, then there exists x& P and t>0 such that
Ax=zy, (1+0)x< P and {f;} is (1+t)x-independent.

ProOF. Since zo= A(P)°, there exists t>0 such that (1+1)zo€ A(P)°.
On account of Theorem 2, there exists x* € P such that Ax*=(1+1)z, and {f;}
is x*-independent. Taking x=x*/(1+1), we see that xe P, Ax=2z, and (1+f)x=
x*e P.

We shall often use

LEMMA 3. Let {v;; j=1, ..., n} be linearly independent in R". If ((v;, w))
=0 for each j, then w=0.

Proor. Letv;=(ayj, ..., a,;) and w=(ry, ..., r,). Then we have

n
Z r,-a,-j=0.
i=1

Since det(a;;)7=0, we have r;=0 for each i, i.e., w=0.
We have

THEOREM 3. If {f;} is x-independent, then tAx € A(P)° for every t,0<t<1.
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ProoF. Let us put zo=Ax and let {x;} be a system of components of x.
Since {Ax;} c A(P), A(P)° is nonempty by Lemma 1. Suppose that there exists
t, such that 0<ty<1 and tozo ¢ A(P)°. By means of the separation theorem
([11, p. 71, Proposition 1), we can find a nonzero weR" and a=R such that

((tozo, W))=a=((z, w))
for all ze A(P). Since tzo€ A(P) for every t, 0=t<1, we have ((zq, w))=0,
so that a=0. Since Ax;e A(P) and A(x—x;)€ A(P) for each j, we have
0=((4x, w)=((4x, w))=((z0, W)=0,

and hence w=0 by Lemma 3. This is a contradiction. Therefore tz, A(P)°
for every t, 0<t<1.

COROLLARY. Assume that {f;} is x-independent. If there exists t>0
such that (1+t)x€ P, then z,=Ax< A(P)"°.

ProoF. Let ¢ be a number such that 0<e<1 and e<t. It is valid that
(1+e)xe P, so that (1+¢&)zo=A((1+¢e)x) A(P). Since A(P) is convex, £zyE
A(P)° by Theorem 3 and z, lies on the segment connecting ez, and (1+e¢)z,,
z, belongs to A(P)° ([1], p. 51, Proposition 15). This completes the proof.

§3. A decomposition theorem

We shall be concerned with the existence of a full system of components of
x in case {f;} is x-independent.
For x € P, we define C[x] by

Clx]={usP; x—uec P}.

It is clear that C[x] is convex and contains 0 and x. Denote by Q(x) the convex
cone generated by A(C[x]), i.e., ze Q(x) if and only if there exist >0 and u = C[x]
such that z=tAu.

We have

LemMma 4. If {f;} is x-independent, then Ax € Q(x)°.

Proor. Let {x;} be a system of components of x. Since {Ax;}cQ(x),
Q(x)° is nonempty by Lemma 1. Suppose that Ax ¢ Q(x)°. There exist a
nonzero we& R* and a € R such that

((4x, w)=a=((z, w))
for all ze Q(x) by the separation theorem ([1], p. 71, Proposition 1). Since Q(x)
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is a cone, we have =0. From x;& C[x] and x —x;& C[x] for each j, it follows
that

0=((4x;, w)) =((4x, w))=0,

so that w=0 by Lemma 3. This is a contradiction. Therefore Axe Q(x)°.
Now we shall prove the following decomposition theorem.

THEOREM 4. Let x& P and Ax=0. If {f;} is x-independent, then x has
a full system of components.

Proor. Our assertion is clear in case n=1, so we assume n=2. We first
show that there exist a set {x;} of n elements in C[x] and a set {s;} of n strictly
positive numbers such that {A4x;} is linearly independent, nx;e C[x] for each
j and

n
ZO=AX= Z S]ij.
Jj=1

We can apply Lemma 2 with B=Q(x), since Q(x) is convex and contains 0, z,=~0
and z,€Q(x)° by Lemma 4. There exist a set {z;} of n vectors in Q(x)° and a
set {a;} of n strictly positive numbers such that {z;} is linearly independent and

n
Zo= ), a;Z;.
Jj=1

There exist u;e C[x] and ;>0 such that t;4u;=z; for each j. Taking x;=u;/n
and s;=najt;, we see easily that {x;} and {s;} satisfy our requirements. In case

So= Zn: 5;=1, we have x= Zn} s;x;&C[x] and Ax=z,. By choosing
Jj=1 j=1
xF=s;x;+(x—X)/n

for each j, we see that {x*} is a full system of components of x. In case so>1,
we have

Xo= i]l (sj/so)x;€ C[x] and Ax,=2z¢/so.
f=

Let us define x¥ by
x}f=(si/50)x]'+(x—x°)/n

for each j. Since x—x,&C[x] and nx;e C[x], it is valid that x}eC[x] for
each j and x= Zn:xf In order to prove that {x*} is a full system of com-
ponents of x, it1i=s1 enough to show that {4x*} is linearly independent. Sup-
pose that
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for {b;} cR. Then it follows that

0= 33 bi(s fso)Ax;+(1~1/so)zo 3, (bu/n)

j§:1 bi(sj/so)Ax;+(1— 1/So)jg”:1 Sijjkgn]l (by/n)

&3

= 32 [b(silso) +(1=1/s0)s; 3, (bu/m)]Ax;.

J

I

Since {Ax;} is linearly independent, we have
bj(s;ls0)+(1=1/50)s; 2 (bu/m)=0
for each j, so that
o) b,+(so—1)bo/n=0  with b0=l_§1 b,
Thus we have
0 =,§"1 [b;+(so— 1)bo/n] =s0bo,

and hence b,=0. Therefore b;=0 by (2). Namely {Ax*} is linearly indepen-
dent. This completes the proof.
This is a generalization of Lemma 4 in [3].

THEOREM 5. Let x€ P and Ax=0. If {f;} is x-independent, then x does
not have a full system of components.

PrOOF. Suppose that there exists a full system of components {x;} of x.
Then we have

0=fi(x)= 3 /i)

for each i, so that

J

3, A= (S o 1500
=(0, ..., 0)=0.

Namely {A4x,} is linearly dependent. This is a contradiction. Therefore x does
not have a full system of components.
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§4. Semi-infinite programs

Let g(x) be a real-valued function defined on P. Given zy€ R™, let us con-
sider the following semi-infinite program :

1)) Minimize g(x)
subject to xe P and Ax=z,.

Problem (I) was studied in [3] in the case where P is a convex cone and g(x) is
positively homogeneous and convex. We investigated the problem how the
value of problem (I) changes as g and f; change by using a duality theorem.
We shall be concerned with an analogous problem by using our decomposition
theorem.

Assume that g(x) satisfies conditions (a) and (b) in §2. Let {f{¥} and
{g‘”} be sequences of real-valued functions on P which converge (pointwise) to
f; and g respectively and {z} be a sequence of vectors in R" which converges
to z,. Here we assume that f{P) and g satisfy conditions (a) and (b). Let us
put

Ax=(fP), ..., [P (),
SP ={xe P; A x=zP}, S={xe P; Ax=1z,},
M,=inf{g®P(x); x€S®},  M=inf{g(x); xS}

Here we use the convention that the infimum of a real-valued function on the
empty set is equal to oo.

We shall prove

THEOREM 6. If zo€ A(P)° and zy5~0, then it is valid thatExoMng.

ProoF. We may assume that M <oco. For any a> M, there is xS such
that g(x)<a. Since zo= A(P)°, there exist X P and t>0 such that (1+#)X < P,
AX =2z, and {f;} is (1 +#)X-independent by the corollary of Theorem 2. Writing
x*=g(1+0)x+(1—e)x with O0<e<1, we see that x*e P, Ax*=(1+¢t)z, and
{f;} is x*-independent by Theorem 1. Since Ax*=~0, there exists a full system
of components {x*} of x* by Theorem 4. First we show that there exists p, such
that {A4,x*} is linearly independent for all p=p,. Supposing the contrary, we
may assume that there exists wP=(s{?, ..., s{P)eR" such that ||w®||=1 and

N (P *
j;lsl' Apxl' =O

for infinitely many p. By choosing a subsequence if necessary, we may assume
that {w®} converges to w=(sy, ..., 5,). Then we have
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lwl|=1  and jésij?:O’

since limA,x¥=Ax* for each j. This contradicts the fact that {4x%} is linearly

pP—>®

independent. Therefore there exists p, such that {4,x*} is linearly independent
for all p=p,. Let D¥ be the convex set in R" defined by

D} ={ Z": riAx¥; (ry, ..., r)ER} and }"':, rix*e P}.
=1 =1

We show that there exists p; such that z” €D* for all p=p,. Supposing the
contrary, we have z(”) ¢ D¥* for infinitely many p. In case zP ¢ D¥ and p= po,
we can find y” €R" and «,&R such that ||y®?||=1 and

((z?, y?)=a,=((z, y?))

for all ze D} by the separation theorem ([1], p. 71, Proposition 1), since (D})°
is nonempty by Lemma 1. By choosing a subsequence of {y”} if necessary, we
may assume that {y”} and {a,} converge to y and « respectively. It follows
that ||y||=1, «a<0,

((zo, Y)=a=((4x}, »))

for each j and

@S (5, Ax], D) =((Ax*, ) =(1+ ez

Therefore « =0 and hence «=0. Thus we have ((Ax¥, y))=0 for each j, so that
y=0 by Lemma 3. This is a contradiction. Therefore there exists p, such that
p1>po and zPeD* for all p=p,. For z” D%, there exists a unique v =
P, ..., r¥)e Ry such that

n n
(3) ZP=3rP4x* and xP=3 rPx*eP.

ji=1 Jj=1
It is valid that x® e S® and
@) M, < g (x®) = Z": (P g®(x¥)
Jji=1
for all p=p,. Next we show that {||v‘”|} is bounded. Supposing the contrary,
we may assume that v(=£0 for all p and |[vP|| > as p—oo. Setting u®=

v @[ 0@ =P, ..., bP), we have [[u®||=1 and

n
j§1 b}")A‘,x}‘ = z(”)/llv(”) ”
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By choosing a subsequence if necessary, we may assume that {u‘”’} converges to
u=(by, ..., b,). It follows that |[u||=1 and

3, b;Ax* =0,
Jj=1

which contradicts that {4x*} is linearly independent. Therefore {||v”|]} is bound-
ed. Let v=(ry, ..., r,) be an accumlation vector of {¥”}. Then we have by (3)

5) j§1 riAx¥ =z,.

On the other hand, we have

6) ile; = Ax*=(1+¢t)z,.
&

Since {Ax%¥} is linearly independent, we have by (5) and (6) that r;=1/(1+ef)
for each j. Thus we have shown that

@) lim r? =1/(1 +&f)
p—->®
for each j. On account of (4) and (7), we have

im M, < lim 3, r{Pg®(x)=g(x*)/(1+et)
pP-® j=1

pP—>®

=[e(1+0)g(%)+ (1 —e)g(x)]/(1 +&1).
Letting e—0, we have

lim M, < g(x)<a.
pP—®

By the arbitrariness of «, we obtain the desired inequality.
This is an improvement of Theorem 10 in [3].
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