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1. Introduction

Let G be a semisimple Lie group and L?(G) denote the space of square-integra-
ble functions on G with respect to the Haar measure. The Fourier transform
& can be regarded as an isometry of L2(G) onto the Hilbert space L2(G) which
is defined by irreducible unitary representations of G.

In his paper [6(m)], Harish-Chandra introduces the Schwartz space %(G)
consisting of functions on G. It is analogous to the Schwartz space & (R")
of rapidly decreasing functions on a eulidean space R" and is contained densely
in L2(G). It is of much interest to ask about the image of #(G) in L2(G) under
& . This is a Paley-Wiener type question for #(G). There are some results for
this problem. It is solved by J.G. Arthur[1] in the real rank one case. More-
over, the problems for the Schwartz space on Riemannian globally symmetric
spaces and for a certain subspace are studied by Eguchi-Okamoto[4] and Harish-
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Chandra [6(h, i)] respectively.

The purpose of this paper is to give a characterization of the Fourier image
of the Schwartz space for non-compact real semisimple Lie groups G with only
one conjugacy class of Cartan subgroups and without any complex structure
(we shall discuss, in another paper, the case that G has a complex structure).
Now we assume that G has the above mentioned properties. Then it is known
that only one continuous series connects with the Plancherel formula. We can
obtain the Plancherel measure in a concrete form via the method of integration
by parts from the character formulae of the irreducible unitary representations of
the principal series. As an immediate consequence of the main theorem we obtain
the theory of Fourier analysis for tempered distributions on G.

The most difficult part of this theorem is to prove the surjectivity and the
continuity of the inverse Fourier transform. We shall prove this by means of
induction with respect to the real rank of G. For this, we have to study in detail
the Eisenstein integrals, in particular, not only their constant terms but the asym-
ptotic behaviour at infinity along the walls of Weyl chambers, and we use some
of Harish-Chandra’s estimates for differential equations with respect to the center
of the universal enveloping algebra of the Lie algebra of G. Arthur’s methods
in [1] are very effective in our discussions.

The paper is arranged as follows. We fix an Iwasawa decomposition g=T1+
a+n of the Lie algebra of G and a nonzero element H in a. In Section 2 we
prove that the derived algebra ii; of the centralizer m; of H in g has only one
conjugacy class of Cartan subalgebras. In Section 3, we prove the character
formula for the representations =, ; of the principal series, and in Section 4
we obtain the Plancherel measure in explicit form, which is a polynomial, and
prove the Plancherel formula. We state the main theorem in Section 5 and prove
the injectivity of the Fourier transform & for %(G) in Section 7. We state
Theorem 8.1 in Section 8, which is a sufficient condition for the map & to be
surjective, and in Sections 10-13 we describe Harish-Chandra’s work in the form
suitable for our purpose and show that his estimates are uniformin a sense. In
Section 14, making use of his estimates, we obtain the functions 6; on the analytic
subgroup M of G corresponding to i, and we prove that we can apply the induc-
tion hypothesis to D0;, where D is the ratio of the Plancherel measure correspond-
ing to G to that corresponding to M. In Section 17, we define the Fourier
transform of tempered distributions on G and characterize their images by this map.

It seems that, when we consider the analogue of Theorem 5.1 for arbitrary
semisimple Lie group G, the part corresponding to continous series in the proof
of the surjectivity of the Fourier transform map can be proved by induction on
the real rank of G, similarly to our proof.

The author is pleased to express his gratitude to Professor K. Okamoto and
Dr. M. Wakimoto for many stimulating conversations.
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2. Notation and preliminaries

We shall use the standard notation R and C for the field of real numbers
and the field of complex numbers respectively. We shall use i as well as \/—1
to denote a square root of —1. If S is a set, T a subset of S and f a function
on S, the restriction of f to Tis denoted by f |T. If S is a finite set [S] denotes
the number of elements in S. If S is a topological space cI(T) denotes the closure
of Tin S. Composition of functions and operators will often be denoted by .

If M is a manifold (satisfying the second countability axiom), the space of
infinitely differentiable functions on M and the set of those of compact support
are denoted by C*(M) and C®(M) respectively.

If Vis a vector space over R, V¢ denotes the complexification V& xC of V.
V can be seen as a differentiable manifold in the usual manner. Let D(V) denote
the algebra of differential operators on V of constant coefficients. Following
Schwartz [13] we denote the space of rapidly decreasing functions on V with
usual topology by (V). If feC=(V) and D= D(V) the value of Df at a point
v will usually be denoted by f(v; D) but sometimes by D, (f(v)).

Lie groups will be denoted by Latin capital letters and their Lie algebras by
corresponding lower case Germann letters. If G is a Lie group and g its Lie
algebra the adjoint representation of G is denoted by Ad and the adjoint repre-
sentation of g by ad.

Let g be a reductive Lie algebra and ) a Cartan subalgebra of g. Let o
be a linear function on the comlex vector space h¢ and g* denote the linear sub-
space of g¢ given by

g*={Xeg°: [H, X]=a(H)X  for all HED*}.

The linear function « is called a root of the pair (g¢, h¢) if g*2{0}. In this case
g* is called a root subspace.
Let L be a connected reductive Lie group over R with Lie algebra I,

jilcle

be the inclusion and L¢ be a complex analytic group with Lie algebra [¢. L€
is called a complexification of L if j extends to a homomorphism of L into Le.
Reductive Lie algebra I can be written as I=I,+¢, where [, is a semisimple
ideal of I and c¢ is the center of I. Let L;, C(L§, C¢) be the analytic subgroups
of L(L¢) corresponding to [, ¢(I§, ¢¢) respectively. Lc¢ is said to be quasisim-
ply connected (q.s.c.) if L§N Cc={1}, where 1 is the unit element of L¢, and if
§ is simply connected. L is called q.s.c. if it has a q. s. ¢. complexification.

Fix a complexification j: L—»L¢ and a Cartan subalgebra § of I. Let A4
and A¢ be the Cartan subgroups of L and L¢ associated with ) and §¢, that is,
the centralizers of h and h° in L and L¢ respectively. Clearly j(4d)c A°. It is
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known that A€ is connected ([6(k), Corollary to Lemma 27]). If A is a linear
function on b, there exists at most one complex analytic homomorphism

£, A°»C
such that for every Hebhe
& (exp H)=e D),
We also write &, for the homomorphism
£0j: A-C.

£, can be seen to be independent of the complexification A< used, provided that
&, is defined on that complexification.
Cleary £, exists for any root a of (15, h¢). If Py is the set of positive roots
of (I¢, h¢) relative to some ordering, let
1
p=—5 2, .

aePb

It is easy to see that the question of the existence of £, is independent of the order-
ing of the roots (I¢, h°) and of the choice of Cartan subalgebra h. If &, exists
Le is said to be acceptable. L is said to be acceptable if it has an acceptable
complexification.

If Le is q.s.c., it is known that it is acceptable ([6(k), Lemma 297). If L, N C
is finite, it is clear that L has a finite, and hence acceptable cover.

Suppose L is a compact, connected acceptable Lie group with Lie algebra
[. Let b, Py, A and p be defined as above. For each a define an element H,
in h¢ by

B(H,, H)=a(H) for all Hebe,

where B denotes the Killing form of [¢ restricted to hc. Put

w=I]H,.

aePb

Then @ is in S, the symmetric algebra on §¢, and can be regarded as a polynomial
function on he. Let I7 be the lattice of linear functions

A:y/=1h-R

for which &, exists. Let /I'={Aell: w(1)x0}. If W, is the Weyl group of
(I¢,H°), W, acts on \/—1h. Then W, acts on 17 as follows

(su)(H)=u(s~'H), uell,se W, and He ./ —1b.

For s€ W,, put &(s)=(—1)"®), where n(s) is the number of positive roots that are
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mapped by s into negative roots. For a regular element he 4, put
A(h) =&, (MII(1 = &(h™1).
ae )

If o is an irreducible unitary representation of L on a Hilbert space V, and
le L, let tra(l) denote the trace of ¢(l) and let dimo denote the dimension of V.

LEMMA 2.1. There is a map u—ao(w) from II' onto the set of unitary equiva-
lence classes of irreducible representations of L. o(u,)=0(u,) if and only if
1y =Su, for some s€ W,. Furthermore, if h is a regular element of A,

tro(u)(h) =(signw(w)-A(h)~" (2 e(s)Esu(h).-
SE 1
Also there exists a constant c;, independent of p, such that

dimo(p) =c,|w(w).

Finally, if peIl' and B(u, )>0 for each « € Py, then yi—p is the highest weight
of the representation of the Lie algebra 1€ corresponding to o(u).

For a proof see [1, Lemma 1].

If ¢ is an irreducible unitary representation of L and o =0 (p) for a linear func-
tion ue I’ then u is said to be associated with a.

Let G be a connected semisimple Lie group and g its Lie algebra. Let
g=T+p be a fixed Cartan decomposition with Cartan involution 6. Let a, be
a fixed maximal abelian subspace of p and a be a fixed maximal abelian subalgebra
of g, which is a 0-stable Cartan subalgebra, that is, a=a. We put a;=anf.
Let K be the analytic subgroup of G corresponding to . We assume that G
has finite center. This implies that K is compact. If f) is a Cartan subalgebra
of g, we denote the set of non-zero roots of (g¢, h°) by 4(h), sometimes, we write
simply 4 instead of 4(a).

Let m and M be the centralizers of a, in f and K respectively, and let M’
be the normalizer of a, in K. Then a, is a Cartan subalgebra of reductive Lie
algebra m. We write the finite factor group M’/M as W, which is called the
little Weyl group of g with respect to a,.

Fix compatible orders on the real dual spaces of a, and a,+./—la,=ag.
Let P and P, be the set of positive roots of (g¢, a¢) relative to this order and the
set of roots a€ P which do not vanish on a, respectively. We also denote the
complement of P, in P by P,,. For every non-zero root a4, H,Eag is defined
by

B(H, H,)=a(H) for every Hea,

where B denotes the Killing form of g¢. For simplicity, a root a € 4 is often iden-
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tified with H,. Since a, is a Cartan subalgebra of i we van 1cgaiu £y as uc
set of positive roots of (m¢, af). We put

af={Hea,: a(H)>0  for every ocP.},

which is called the positive Weyl chamber of a,. For each root «& 4 the linear
function «f is defined by

«’(H)=a(H), Hea.

A root « is said to be real (imaginary) if a(H) is real (pure imaginary) for
every H<a; if a is neither real nor imaginary, then « is said to be complex.

Two Cartan subalgebras b, h, of g (two Cartan subgroups A, A, of G)
are said to be conjugate under the adjoint group Int(g) (the group of inner auto-
morphisms of G) if there exists y €Int(g) (an inner automorphism ¥ of G) such
that Yy(h,)=bh, (Y(4,)=4,). Itis known that the number N(g) of the conjugacy
classes of Cartan sublgebras of g is finite ([14, Corollary to Theorem 5]). N(g)
is clearly equal to the number N(G) of the conjugacy classes of Cartan subgroups
of G.

For every Cartan sublgebra ) of g the following two subalgebras

h,={Heb: all eigenvalues of adH are pure imaginary},
br={HeEb: all eigenvalues of adH are real}

are called the toroidal part and the vector part of ) respectively.
A 0-stable Cartan subalgebra §) of g is said to be standard with respect to
the triple (%, p, a) (simply, standard) if

ach=bnt and hnp=h,ca,.

It is known that there exists a finite number of Cartan subalgebras which are
standard and that any Cartan sublgabre Iy of g is conjugate under the adjoint
group Int(g) to one of them ([14, Theorem 2]).

Let w: X—tr(ad(X))? (X g°) denote the Casimir polymonial of g¢. For
any Cartan subalgebra h of g set [_(h)=sup(dim(}_)), where h_ runs over all
subspaces of h on which w is negative definite; put [_ =supy[_(h) () running
through the Cartan subalgebras of g). A Cartan subalgebra f) of g is said to be
fundamental if I_ =I_(§)). Then the rank of f is equal to [_ and, [) is fundamental
if and only if the pair (g¢, h¢) admits no real roots.

The following lemma permits us to make use of induction to prove the main
theorem (see Section 16).

LEMMA 2.2. Let H be a non-zero element in cl(a}), m, the centralizer of
H in g and W, =[m,, m,;]. If the number of conjugacy classes of Cartan
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subalgebras of g is one, then the number of conjugacy classes of Cartan subal-
gebras of W, is also one.

Proor. We have clearly,

(2.1) mi= 2, CH,+ 2, (9°+9™)+ 2. (8%+4¢7)

aePp N
and
iy =minNg,
where P’ denotes the set of = P such that a(H,)=0. Put
i,=m; Nt and w,,=m,Np.

Since a®(Hy)=o(0H,)=—a(H,) the first term in the formula (2.1) is O-stable.
As is easily seen, if e P, then —a®€ P, and if = P,, then f?=p. So the last
two terms in (2.1) are both #-stable. Thus T, is f-stable. The sum W, =m,,+
iy, is a Cartan decomposition of i; and 6[w; is the corresponding Cartan
involution. In fact, if we put

D=ﬁ”+\/ﬁ'ﬁf1p
and denote the conjugation of m{ with respect to i, by #, then
noCo, My =M, No, M,,=m,; N(/—1v) and vcu=f+./—1p.

Since u is compact and v is semisimple, v is also compact (cf. [10, pg. 615]).
Hence mi, =i, +1,, is a Cartan decomposition.
Now put
b=(2LCH)Ng.

Then b is a Cartan subalgebra of i, and 6b=5b since 6(H,)=H,. To prove
the lemma, it is sufficient to see that b has a maximal and minimal vector part.
By the previous remark, to prove that b has a minimal vector part we shall show
that b is a fundamental Cartan subalgebra. We put

b, ={Heb: 0H=+H)}.

Then, clearly, b=Db, +b_ is a direct sum, b, ca; and b_ca,. We denote the
center of m, by-3,, the centralizer of m, in a, by [ and put

31:={Z€3,:02)=+Z}.

Then [C3y, 31+Cag and 3;_Ca,. So3;,_cl. Thereby3,_=I[. Let 4, denote
the set of non-zero roots of (Mg, b¢). Then each a4, can be regarded as a
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root of (g¢, a®) and «/3,;, =0. Since N(g)=1 by the assumption, (g¢, a¢) has
no real roots. Therefore (7§, b¢) has no real roots. Hence b is fundamental

and has a minimal vector part.
The following lemma assures that b has a maximal vector part, and hence

it completes the proof. Q.E.D.

LEMMA 2.3. For a 0-stable Cartan subalgebra by of g, the following con-
ditions 1) and 2) are equivalent:

1) b has a maximal vector part,

2) X,={acd(h): g*cpc} is empty.

For a proof see [11, Lemma 4.3].
Now in the following, we put on G the following assumption:

N(G)=1,

that is, the number of conjugacy classes of Cartan subgroups of G is equal to one.

By going to a finite cover we can assume that G is q.s.c. and hence acceptable.
Thus, if j: gc g and G¢ is a simply connected analytic group with Lie algebra
g¢ then j extends to a homomorphism

Jj: G—>Ge.

Since K is reductive, by going to a further finite cover of G, we may also assume
that K is acceptable.

If we understand the harmonic analysis of a finite cover G of G then we
understand the theory for G. We throw out those unitary representations of G
which are non-trivial on the kernel of the covering projection. Therefore, the
above two assumptions can be made with no loss of generality.

Now let A be the Cartan subgroup of G associated with Cartan subalgebra
a, that is, the centralizer of a in G. We put

A;=ANK,  A,=expa,.
Then
A=A A,

We denote the inverse of the map exp: a,— A, by log. Since a is fundamental
in our case, A; is connected (cf. [16(a), Proposition 1.4.1.4 and its proof]). Let
m be the centralizer of a, in f. M and M’ are the centralizer and normalizer
of a, in K respectively.

Let M° be the connected component of M. Let W, and W, be the Weyl
groups of (g,a) and (m,a,) respectively. Fix any meM. Then a, and
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Ad(m~1')a, are maximal abelian subalgebras of m. So, there exists an element
moeM° such that Ad(m,)a,=Ad(m!)a, (cf. [7(a), Theorem 6.4, pg. 212]).
If we put y=mm, then

Ad(y) a;=ay.

On the other hand, Ad(y) fixes a, pointwise. Hence, Ad(y)|a, can be regarded
as an element of the subgroup which consists of those elements of W, generated
by roots vanishing on a,, and as an element of W,. This being so, there exists
an element m, € M such that

Ad(y)la;=Ad (m,).

Hence, Ad(ym7!) fixes a, pointwise. y,=ym7! is obviously in the coset
mM°n A;. This implies that 4; has the same number of connected components
as M. Therefore M is also connected.

Let &,,(&x) be the set of unitary equivalence classes of irreducible representa-
tions of M(K resp.). For o< &), we define the norm |o| of ¢ by

|01 =Bk, 1,),

where p, is any real linear function on \/—1a, associated with o. Since the Kil-
ling form B of g¢ can be regarded as a positive definite form on either \/—1a,
or its real dual space and W, acts on \/———la, as a group of isometries under B,
|o| is well defined. Since K is acceptable by assumption, the representation in
& can be indexed by certain real linear functions on \/:Ta, as in Lemma 2.1.
If te & and t=1(v) for some real linear function v on \/—la,, then we write

12 =B(v, v).
|t] is also well defined.

L 2.« ona, and p=0 on a,.

Define p by p= 3
aePy

Let I=dima,. The Killing form induces euclidean measures on 4,, a, and
a}¥; multiplying these by the factor (2m)~(1/2)! we obtain invariant measures da,
dH and d2 so that the following Fourier transform holds without any multiplicative
constant:

1 W={ @ essoda,
P

f@(  rr@enoomas, seat,  fesA).
“p
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We put nc=) g% n=n°Ng and i=60n. Let N and N be the analytic sub-
a€P+

groups of G corresponding to n and # respectively. Let G=KA,N be the

Iwasawa decomposition of G (cf. [7(a), pg. 373]). Each g G can be uniquely

written as
g=x(g)expH(g)n(g), «(g)eK, H(g)Ea,, n(g)eN.

We normalize the Haar measures dk, dm and du on the compact groups K, M
and A, respectively, so that the total measures are 1. The Haar measures of the
nilpotent groups N and N are normalized so that

0(dn)=dn, S_e‘2@<"(i))dﬁ= 1.
N
The Haar measure dg on G can be normalized so that

SG f(g)dg =S S(kan)e*etos9 ddadn,  feC2(G).

KXAp

Now P=MA,N is clearly a subgroup of G. If s=&), acts on the finite
dimensional Hilbert space V, and if A€ a¥, then the map ¢ from P into End(V,)
(the algebra of linear endomorphisms of V) given by

(cA)(m-exp H-n) =a(m)e 14U, meM, neN, Leaf,

is an irreducible unitary representation of P. Let &, ; be the unitary representa-
tion of G on the Hilbert space s#, , obtained by inducing ¢4 from P to G; here
4., is the set of functions @ from G into V, such that
@) S(xEH=(0E)  B(x), xeG, P,
(i) &(k) is a Borel function on K,
(i) SK|¢(k)]2dk< + oo,

and the inner product on J#, , is given by

@, ¥)={ (@0, ¥®)ydk, &, ¥H,;

where ( , )y, is the inner product in V,. If des#, ;, n, ,(y)P is given by
(74, 1(N)PNx) =P(y~ 1 x)eeHO™I=N+eHN, x, yeC.

For any A€a} and any d=s#,, we can define a function ¢ from K to
V, by restricting @ to K. This identifies 5#, , with a Hilbert space 5, of square-
integrable functions from K into V,. s#, is the Hilbert space on which w, acts.
The above equivalence between #, and £, ; gives an intertwining operator bet-
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ween n, and =, ,|K, the restriction of «, , to K.

Any element s in W (the little Weyl group) acts on a, by reflection and so on
its dual space a}. s also induces an automorphism of M, modulo the group of
inner automorphisms. Therefore s defines a bijection:

S.0—>S0

of &, onto itself. If we let s act on P, we can transform the representation
ol into the representation (so)(sA). Now, if A€ a} and 6 €&, it is known that
m,; is equivalent to 7, ;. Furthermore, the representations {7, ;},cs,,. reat*s
where a}" is the positive Weyl chamber in a}, are all irreducible and inequivalent
([2, Theorem 7; 2]).

For each o€ E), and regular A€a}, that is, w(4)#0 for 117=GEZP H,, let

Ns$(2) be a fixed unitary intertwining operator between =, ; and 7y, ;. Then

NoD 7, a(X)NG(A) ™ =7, 2(x),  x€G.

3. The character of =, ;

In order to obtain the Plancherel measure and the Plancherel formula we
shall study the character of the unitary representation n, ; of G. To do this,
we use notations by Harish-Chandra.

Put

AM(ah):ég(a)I;[ (1_5,1((1_1)), aEAIa hEAp-
For ge C?(MA,), write
Fah)=4y(@  gim*ahm*=Vdm*,  ac Ay, he 4,
M/Ay

and ah is a regular element in 4 and dm* is the invariant measure on the
homogeneous space M/A;. Hereafter we denote the set of regular elements
in A by A’. It is known that there exists a constant c¢; >0 such that for
any ge C2(MA,)

3.1) S g(mh)dmdh=c1$ A1 (@F¥ (ah)dadh,
. MxAp ArxAp

X

(see [6(k), Lemma 41]).
For fe C*(G), write

(.2) Fy(a)=4(a) SG‘ f@dx*,  acd,
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where G*=G/[A, a** =xax™'(a€ A, x€ G) and dx* denotes the invariant measure
on G*. Here we remark that g in the definition of F, in [6(k)] is 1 in our case
bacause a is fundamental. Since a is fundamental we can apply the Harish-
Chandra’s limit formula to F,. Namely, there is a positive constant ¢ such
that for any fe C2(G)

(3.3) f()=(=1)1F(1; w),
where q———[P+] and w=[]H, We writt o"=[[H,. Let A be the
aeP aePn

normalizer of Ain G. Then W,=A/A is a finite group (see [6(k), pg. 488]).
If ye 4, se W, and yA=s then W, acts on A and hence on a by

hs=yhy=1, he A.
We put
(@) =eo(s)m™,
where go(s)=1 or —1. It is clear that for any f & C?(G)
(3.4 F ((h%) =¢o(s)F ;(h), hed', seW,.

LemMA 3.1. Let U be a compact real semisimple Lie group with Lie
algebra u and g the complexification of u. Let ), be a Cartan subalgebra
of u, by its complexification and let W, , denote the Weyl group of (g,h). If
s€ W,y then there exists an element u€ U such that sH=Adu(H) (Heb).

Proor. Let 4 denote the set of non-zero roots of (g, h) and g* the root sub-
space of as4. Let E.,=g** such that [E,, E_,]J=—H, and put X =n(2(a,
«))~1/2 (E,+E_,), where the number = is the ratio of the circumference of the
circle to the diameter. We put o =exp ad(X). Then o is an automorphism of
g. We shall prove that ) is invariant under ¢ and that, if we denote the dual of
o which acts on the dual space h* of ) by o*, then (¢*)"! =G can be regarded
as the reflection s, associated with «. By induction on p, we can prove easily
that

(adX)?P+1-H =(—1)p* 1 n2r+La(H)(2(t, @)~/ 2(E,— E_,),
(adX)?P*2-H =(—1)P*1 2P+ 2o(H) (o, )~ 1 H,, Hel.
Hence,

o(H)=H+ 2 ),(adX)2P+1H+Z o +2)'(adX)2P+2H

Y (2p +1
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= H+a(H)Q(, )72 5 (~ 1)t 2 (B~ E-)

@ P+ 7'52p+2
+a(H )(a, o) lpgo("l) lm «
=H — a(H)(2(a, &))"/ 2sin n(E,— E_,)+o(H)(et, &)~ *(cosn—1)H,
=H—-20(H)(e, )" 1H,.

Therefore we obtain the above assertion.
Now let 1 be the conjugation of g with respect to u. Then } is invariant
under 7 and there exists a vector X, € g* such that for all x4

JIX A X )en,  [X, X_J=2, o) 'H,
(cf. [7(a), pg. 219, Lemma 3.1]). If we put
Eia=\/ —1{(0(, a)/z}l/ZX:ta’

then they satisfy [E,, E_,]J=—H, and X =n(2(a, o))~ 1/2(E,+ E_,)=u. This
proves Lemma 3.1. Q.E.D.

By the above lemma it is clear that, for any s W,,, there exists an element
meM such that sH=Ad(m)H (Heaf). Since m fixes a, pointwise, we have
meA. Hence, from the formulae (3.2) and (3.4) we obtain the following:
For any f € C?(G),

3.5 F ((ash) =¢&(s)F ;(h), acA;, hed,, ahe A, seW,.

For f € C2(G) define a function g, in CP(MA,) by
g ,(mh)=e'~’('°9")g S flkmhnk-Y)dkdn, —meM, he A,
NJK

By Lemma 52 in [6(k)] we know, in our case, that there exists a positive constant
¢, scuh that

(3.6) F;(ah)=c,F¥(ah), acA;, aheG'.
The map K x af x K—G given by
(ky, H, ky)— kyexp H'k,

is a diffeomorphism onto G’. Furthermore, there exists a constant ¢>0 such
that for any f € C2(G)
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Xf(x)dx=c§ g F(kyexp H-k,)|D(H)|dk, dk,dH,
G ap KxK

where

D(H)=T] sinh a(H).

aePy

Let © be an irreducible unitary representation of G on a Hilbert space
#. Let feC®(G). Then itis known that the operator

n(f)={_f(onxydx

is of trace class and that the map

f—tra(f)

is a distribution on C®(G) (see [6(c), § 5]). This distribution is called the charac-

ter of 7.
Let €6y, A€a}’ and O, ; be the character of the representation 7, ;.

Put t=;— (dimg—rankg) and choose u I1’ such that ¢ =0(p) as in Lemma 2.1.
THEOREM 3.1. There exists a constant c¢q>0 such that for every f < C®(G),
0, N =co(~1)Gign @ W)|  F;(ah),(@e oM dadh.
ArxAp

ProoF. Let A be the operator on #, ; defined by
4= f@r,dx,  feCczo).
G
We want to compute the trace of A. trA is equal to trA*, where A* is the adjoint

operator of A and the bar denotes complex conjugation. For ¢, ,; and
k,eK,

(A @)ie))=(|_76Im, i~ dx-@ k)
= SGJTx)qp(xkl)e—e(H(xkl))dx
= SG TR ®(x)e-e N dx

=S TR B (k) e+ )00 m gk dhd .
KXApXN

In the last integral, substitute km for k and integrate with respect to M. Then
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(A*D)(k,) =SK Jemhnks o (m™1) s+ eioa b (k) dkdmdhdn.

XMXAPX
Now to deal with this expression further we consider the principal fiber
bundle

M— K— K/M.

The map m—o(m~1') defines a complex vector bundle E, over K/M with fiber
V,, the space on which ¢ acts. Let F(k,, k) be the operator-valued function
defined by

Fk,, k)=gM A

x4dp

f(kmhnk7)a(m=1)elitte)oa®) dmdhdn.
XN

Now it is easy to see that M normalizes N and that for fixed m & M the measures
dn and d(mnm~1) on N are equal. Then for m,, meM

F(k,m,, ki) =(m7")F(k,, k)o(m).

Therefore F(k,, k) can be regarded as a section of E,[x|E¥*, where E* denotes
the adjoint bundle of E; and E,|X|E* denotes the exterior tensor product of
E, and E*, a bundle with base space K/M x K/M and fiber V,QV*.

In §2 we note that there exists a natural equivalence between 5, , and
#,. However, o, is the space of square-integrable sections of E, with respect
to a K-invariant measure on K/M. F(k,, k) can be regarded as the kernel of
the linear operator A* on this space. Then for any @ on s#,

(A*®)(k,) = SKF(kl, K)@(k)dk.

To evaluate the trace of A* we need the following lemma.

LemMma 3.2. Let X be a compact infinitely differentiable manifold of
dimension n. Let dx be a positive nowhere vanishing differentiable n-form
on X. If E»X is a differentiable Hilbert bundle of fiber dimension s, let
I?(E) be the Hilbert space of square-integrable sections of E. If F(x,, x) is
a continuous section of E|x|E*, F(x,, x) defines a bounded linear operator F
on I*(E) in the obvious manner. Then if F(x,, z) is differentiable in both varia-
bles F is of trace class. Furthermore

trF= Sx(tr F(x, x)dx.

For a proof see [1, Lemma 4].
By the lemma,
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tr A* = S FmAnk=T) tr ¢ (m~")e++00oah dkcdmdhdn.
KxXMXA p XN
Therefore,

trA=tr A*

I

g F(kmhnk-1) Tro (=T e~++00oeh dkdmdhdn
KxXMxApxN

=S gs(mh)-tra(m) e~ **(°sh) dmdh,
MxAy

since

tro(m=1)=tr a(m)* =tr o(m).

Recall that
g=—-[P], [P]=t.

Then
[Py]=[P]-[P,]=t-2q.
If ac A, then
Ay (a) =4y (a)(— )P =4y (a)(—1)".
Now for any me M
tro(mam=1)=tra(a), (aeA)).

Therefore, from (3.1) we see that

tr A =c,S FY1 (ah)Z(@)tr o(a)e=308 M) dadh.
A Ap

%

By Lemma 2.1, this equals

. (singn w™(p))(—1)tc, SA XApr,”f(ah)e‘““°9")£§’fo(s) ¢su(a))dadh.

I

By formula (3.5) this expression equals

(singn 0" () (~1'(es fe2)" | Fj(ah)em 30T 0o(s)E,, (@) dadh.

Arx

Now if s W, substitute sa for a in the above expression. From (3.5)
we obtain the formula
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trA4

= sign o ()~ D'(er e )IW | Flah)e 090 (a) dadh.

This implies the theorem if we put cy=(c,/c;)[W,]- Q.E.D.

4. The Plancherel measure and the Plancherel formula

By means of the character formula for 7, ,, we shall find the explicit Plancherel
measure. v
For any real linear function u€lI’ on /—1a, and any Ac€a} we extend

them to real linear functions on /—1a,+a, defining =0 on a, and A=0 on
J—1a;. We write

o(u: =w(u+il),
which is clearly equal to

o™(u) [1 <p+ild, H,>.

aePy

Since the Cartan subalgebra a is fundamental in our case, all elements in P,
are positive complex roots. If we denote the conjugation of g¢ with respect to
g by 5, then for each a€ P, a"= P, so the complex roots occur in pairs. We
have the formula

“4.1) <p+il, H,>-<p+ild, H, > =—(u(H)? + A(H,)?).
Therefore,

sign {TT <p-+il, H,>}=(-1),

where q=—;—[P+].

It is clear that

4.2) o(u: Hw(u: Y7t =(—1)sign o™ (k)
and

4.3) o(u: —)=o(u: ).

Let €&y, pll’ and o=o(u). In §2 we define soc=&, (Which we
write also as o%) for each se W. Then we can choose p,7I’ such that ¢°=
a*(u;). For a given p, p, is not uniquely defined. However the expression
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sign @"(u)w(p,: A)
is well defined for any A€ a}f. Furthermore
4.9 sign o"(u)ow(u,: A) =sign w(w)w(u: A).
Now let f € C2(G), then from the formula (3.3)
(3.3) S =01/e)(—=1)7F;(1; ).

By the Fourier inversion formula on the connected abelian group 4, x 4,

FO=/)(~11 % S [S  Folahs m)&f”(a)e‘“(“’g")dadh} da.
ap ArXx

uell

Since imaginar/y roots are all compact in our case, by [6(k), Lemma 40] and
[6(g), Theorem 2] we obtain F,eC¥(A4). So we can apply the integration by
parts to the above and we see that

JO=fr (=T § wiu: A, Fyani,@)eriiomdadnlan,
uellJay -

Arx

where t=[P]. By Theorem 3.1 this expression equals

(Wead (=01 T § @(u: = Dsign @™(W)O, (/e
P

Now we define
Bu: 2)=(o/coc)(— 1w (p; — A)sign w™(u),

where w=[W]. Then we see from (4.2) that B(u: ) is nonnegative. Also
from (4.3) we see that

“4.5) Blu: —2)=p(u: ).

For s W, it is clear that the expression B(u,: A) is well defined. (4.4) implies
the formula

Blus: ) =P(u: A) =P(us: sh).
Since, for any A€a}’ and o€ &y, 7, ; and 7, -1, are equivalent,
@scr,). = @a,s‘ 12

Therefore we obtain the formula

FO=51 . Bu: DOy (i
ue ey
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It is clear that

Blsu: y=pu:2),  (SEW,).

Then if 6 € &, choose any pe I’ such that 6 =0(y1). Define

B(a: A)=[W,1B(u: A).
Then f(o: 1) is well defined and f(o: 1) satisfies the formula

=X S _B(o: DO, [(f)dA.
eeémJa »

If o€y and Aeay’, then it is clear that B(s: A)#0 from the definition of
P(o: 2). Furthermore, since f(s: 1) is a polynomial in p and A, for every
d € D(a}), there exist polynomials p,, p, such that for €&y, A€ a}

1B 2; d)| = ps(la)p2(I1AD.

Thus we obtain the following lemma.

LeEmMA 4.1. B(o: 1) is a non-negative function on &y x a¥ such that for
any f€C2(G)

.6) f=3 . B: 00, 1)d2.
geEfmJ/a v

Moreover B(c: A) has the following properties.

(i) PB(o: X)=p(e, —1)=P(s0, si) (sew).

(ii) For every deD(a}), there exist polynomials p,, p, such that for
P
oES Yy, AEa¥

4.7 1B(o: 4; ) < p1(loDp2(I1AD.

" Now let s#,(c) be the space of Hilbert-Schmidt operators on s, with the
Hilbert-Schmidt norm ||-|[,.
Let I2(G) be the set of functions

a: #yxaf— DH#,(0)

gef M
which satisfy the following conditions:
(i) a(o: A)e#,(0) for each o= & and A€ a}.
(i) a(so:sA)=N5(Da(o: YN(A)~1, o€y, A€a}’ and seW.

(iii) For any 6 &y, a(o: 1) is a Borel function of A.
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@) llal?=0 3 { la@: DI3Beo: Hdd<+oo.
OgES M ﬂp

(In (ii) we can regard the operators N$(2) as maps from o7, to 57, if we recall
the canonical isomorphisms 52, ;>3 ,, # s, 1 H 55)-
Since every N5(A) is unitary, condition (ii) implies that

lla(sa: sA) 13 = lla(o: A)I3.
Hence

49 lal?= 3 { . llato: I3+ a2,
geépm/ay

It is easy to see that L2(G) is a Hilbert space. For feC®(G), define
feL?(G) by

@ H={ s u0dx, o€y, 2eas.

Then f(o, A) can be regarded as an operator on #,. We call the map

f—7 fec26),

the Fourier transform.

The Fourier transform f— f(f € C®(G)) clearly extends uniquely to a map
from L2(G) into L*(G). Now we shall prove the following Plancherel formula
by the same method as in [1].

THEOREM 4.1. (Plancherel formula). The Fourier transform
f—7  fec2©)
extends uniquely to an isometry from I2(G) onto I2(G).

Proof. Fix feC®(G). Define

90)=| FO)GT3)dy,  xe,

then clearly g C®(G) and g(1)=||f||3. If = is an irreducible unitary represen-
tation of G,

w@)={_ SO dynxdx

=§ AT D yx)dydx
GXG
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~({_somnan)({_seoneodx)*

=n(f)n(f)*,
where n(f)* is the adjoint of n(f). Therefore

tra(g)=lln()13 = I/ ()13

Therefore, applying Lemma 4.1 to g(x) we see that

I£ 13 =712

Thus, the map f— f is an isometry.
We have to show that the map is surjective.
Let p be the representation of G x G on L2(G) given by

(p(x, y)a)(o, A)=m, (x)a(a, D, ;(y~1)
for €&y, ASa¥

¥, and (x, Y)eGx G. Then we can see that p is multiplicity
free, and hence the algebra R(p, p) of intertwining operators of p is commutative
(see the proof of Theorem 2 in [1]).

Let p be the two-sided regular representation of G x G on L2(G). Then the
map

f—/F,  fel¥G)

is an intertwining operator between p and p. Thus if Lis the closure of the set
{f: f€L*(G)}, and P is the orthogonal projection of L2(G) onto L, then P is con-
tained in R(p, p). But since R(p, p) is commutative, it is well known that P
is of the form Pg, where E is a Borel subset of S=¢&), x a}* and

Py={acL*(G): a vanishes outside E}.

In order to complete the proof of the surjectivity of the map f— f, we prove that
the complement of E in S is a null set with respect the measure class C on S de-
fined by the discrete measure on &) and the Lebesgue measure on aj*.

Let us assume the contrary. Then there is a =&, and a subset R, of
a}’ of positive Lebesque measure such that for any f e C2(G),

f(a, H)=0 for almost all A€R,.

Choose a 1€ & for which there is a non-zero intertwining operator T between
the restriction of T to M and o. Choose a unit vector £ in the space on which
T acts such that T¢+0. Define '

(k) =T((k"1)¢), keK.
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Then ¢s#,. For any f € C*(G),
(o, Do) =({_feom,0dx-)t)

= SGf(x*I)dj(x)e-e(H(x))dx_

Then
(f (o, H®)(1)

S fn1exp(— H) k=) e+ & (k) dkd Hdn.
KXa‘;XN

Let f(n~t-exp(—H) k™ 1)=y(k)o(H) v(n), where yx(k)=(t(k)¢, £) and v is any

function in C®(N) such that S v(n)dn=1, and o is some function in CP(a}¥)
N

such that S J(H )e+OU dH is not equal to zero for any 4 belonging to a

a
p
subset R, of R; of positive measure. Clearly such an a exists.

For a fixed A,eR,,
(@ 2P =T®|_ aHewsromma.
*p

This is a non-zero vector in the space on which ¢ acts. However, (f(a, )®)(k)
is a continuous function of k, so (f(o, A,)®)(k) is nonzero on a subset of K of
positive measure. Therefore f(a, A,)® is a nonzero vector in 5#,. This means
that the operators f(o, A) do not vanish for any A& R,. We have a contradiction.
The proof of Theorem 4.1 is now complete. Q.E.D.

5. Statement of the main theorem

We shall define the Schwartz space for G according to [6(m)] and state the
main theorem.
For x= G, define

E(x)=g e—eHGRN G,
K
As usual we define a norm on g by

[X|2=_B(X’ BX)s XEg,

where B is the Killing form on g and 6 is the Cartan involution of g. Since
* G=KA4,K there exists a unique function ¢ on G such that
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(i) o(k,xk,)=0(x), k, k, =K and xeG,
(i) o(expH)=|H|, Hea,.
It is clear that

E(x)=E(x),

a(x")=0a(x) x=0G.

(5.1)

It is known that there exist positive numbers ¢, d such that
(5.2) 1L E8(a)e°9%) < ¢(1 + a(a))4, accl(4})
(see [6(h), Theorem 3 and Lemma 36]), and that

(5.3) a(xy)=a(x)+a(y), x, yeG

(see [6(m), Lemma 10]), and also that there exists an r,>0 such that
(5.4) Sas(x)zu +0(x))rodx = N(ro) < + o0

(see [6(m), Lemma 117).

Let B be the universal enveloping algebra of g¢. We can identify B with
the algebra of left invariant differential operators on G. Let ¢ be the canoni-
cal anti-isomorphism of B with the algebra of right invariant differential operators
onG. Ifg,,g,=B and f = C=(G), then the actions of £(g,) and g, on f commute.
We denote the resultant of this action at any x& G by f(g,:x;9g,).

Now for fe C*(G) and g,, g, =B and r R we put

1 s =SUPLF (g1 X3 9B (1 + 0}

Let
¢(@)={feC*(@): | flly1.40r <+, for any g,, g,€B and reR}.

These semi-norms make %(G) into a Fréchet space. The space #(G) is called
the Schwartz space of G.
Clearly

C2(G)c%(G)

and the inclusion is continuous, and it is known that C®(G) is dense in %(G)
([6(m), Theorem 2]). Also from (5.4) we see that there is a continuous inclusion
of #€(G) into I*(G). '
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We wish to define a subspace of L?(G) which will ultimately turn out to be
the image of %(G) under the Fourier transform % : f—f. We shall need to fix an
appropriate basis for the Hilbert space s#, ;. As we remarked earlier, there is
a canonical intertwining operator between the representations =, ;|K and =, of K.
Therefore we shall choose a fixed orthonormal basis for the Hilbert space 5#,.

The multiplicity of 7 in 7, ,|K equals the multiplicity of 7 in n,. But &,
is just the representation ¢ induced to K. Therefore by the Frobenius reciprocity
theorem for compact groups ([9(a), Theorem 8.2]), these multiplicities are just
equal to [7:0], the multiplicity of ¢ in 7|M.

Fixte &g and o0&, acting on the Hilbert spaces V, and V, of dimension
t and s respectively. Let R(z, o) be the set of intertwining operators from V,
to V, for 7|M and ¢. The Hilbert-Schmidt norm makes R(z, ¢) into a Hilbert
space of dimension [7: o].

Now suppose T€R(z,0). Since ¢ is irreducible, we can assume that there
are orthonormal bases {{,, ..., &} and {ny, ..., n,} of V, and V, respectively so
that there is a constant ¢ for which

TéE =cn;, 1<i<s
TéE, =0, s<i<t.
Suppose T has been normalized such that ¢=(t/s)!/2. Then
TE=(t/s)'"?n;, lI<iss,
(5.5)
IT|[=¢1/2.
Fix an element (€ V, of norm 1. Write t*(k) for ©(k™!), ke K. Define
&(k) =T(z*(k)E), keK.
Then it is not difficult to see that

deH,, |®]|=1.

Conversely, let @ be any unit vector in s, so that @ transforms under =,
according to t. Then there exist a unit vector £ € V, and an intertwining operator
T €R(z, o) with ||T||=(dim)'/2 such that

D(k) =T(z*(k)), keK.

For ¢ defined as above and s W, the little Weyl group, the vector N3(1)®
is contained in . Clearly N5(;)® transforms under =, according to t.
Then there exists a unique Ty R(z, so) with ||T,||=(dimt)!/2? such that
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(N:(DP)(k) =T (z*(k)E),  keK.

The map T— T, from R(z, o) into R(z, sa) will be denoted by n$(4). So T,=:
ns(M)T. n3(A) is norm preserving and hence unitary.

Fix an orthonormal base {T i, ..., T,} of R(z, 6) of elements of norm equal
to (dim 7)1/2, For 1<I<r, 1<j<t, and k€K, define

(5.6) ., - 1)t+j(k) = Tt(T*(k)f,)

Then {®,;: 1€, 1<i<[t:0]-dimz} is an orthonormal base for +#,.
Let #(G) denote the set of functions a(a, 1) of &, x a¥ into 5#,(¢) which
satisfy the following conditions (i), (ii) and (iii):
(i) For each €&y, a(o, 2) is a matrix-valued C* function on af.
(i) a(so, si)=Ni(Da(o, A)N5(A)!, 6E8Ey, A€a}, seW.
(iii) For every quartet (py, p,, 41, q2) of polynomials and each d<D(a}),

(5.6)

lla ”(m \P2,41,42,d)

= sup |dy®.,,, a(o, NP, ,;,)|p:1(|aD)p2(1ADg1 (|71 )g2(|72]) < + 0.

Ay0,T1,11,72,i2

Then the above semi-norms define a topology on #(G) so that #(G) is a
Fréchet space. %(G) is contained densely in L2(G).

THEOREM 5.1. The Fourier transform F: f—f is a topological isomor-
phism of €(G) onto %(G).

We shall spend the most of the rest of this paper to prove this theorem.

6. Eisenstein integrals

In this section we shall define t-spherical functions and study the matrix
elements. :

Let t be a unitary double representation of the compact group K on a Hilbert
space V,, that is, V is a left and right unitary K-module and the K-actions from
the left and right commute with each other. We denote both the left and right
K-actions of K by 7.

A function @ from G to V, is said to be t-spherical if

B(kyxk,) =1(k)B(X)1(k,),  ky, k,eK, xEG.

We write the norm of &(x) in V, as |®(x)|.

Let f(x) be a continuous complex valued function on G such that the left
and right translations of f by elements in K span a finite dimensional space of func-
tions on G. Let ¢ be the function from G into L2(K x K) defined by
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O(x)ky, ky) = flk1'xk,), x€G, ki, k,eK.
"‘Define a double representation pu of K on I?(K x K) by
[uk)ul(ky, ko) =u(ki'ky, k),
[up(k2)1(ky, ko) =u(ky, kok3")

for ue L2(K xK), ky, k,, k,, k,€K. Let V,,=sp6{¢(x)}, the finite dimen-
sional subspace of L?(K x K) spanned by {¢(x): ;ee G}. Then it is clear that
f€V, and ¢ is a p-spherical function. ¢ is called the p-spherical function
associated with f.

Notice that if 7 is an irreducible unitary double representation of K on the
finite dimensional Hilbert space V,, then 7 can be regarded as an irreducible
representation 7,&Q71% of KxK on V,®QV%. Here 7, and 7, are irreducible
representations of K on the spaces V; and V,, and 7% is the dual representation
of 7, acting on V%, the dual space of V,. We write 7 as (t,, 7,) and |t as |74| +
|ta]. Let &% be the set of equivalence classes of irreducible unitary double
representations of K.

Suppose that f(x)=(®,, n(x)P,), where = is a unitary representation of G
on a Hilbert space 5#, and for each a =1 or 2, @, is a unit vector in s that trans-
forms under ©|K according to the irreducible unitary representation 1, of K, acting
on the Hilbert space V,. Let t1=(t,, t,)E&% act on the Hilbert space V,=
Vi:®V%. We shall find a formula for the spherical function ¢ associated with f.

Let 7, have dimension t, and let {,,, ..., &, } be an orthonormal basis for
V,, for a=1 or 2. Let V; be the subspace of s# spanned by {n(k)®: ke K]}.
Choose an orthonormal basis {®,,, ..., P, } of V} such that the correspondence

éaiH¢ai’ i=1, 2, ceey ta,

gives an intertwining operator between 7, and n|K acting on the space V.. De-
fine functions e (i=1, 2, ...,¢,," a=1, 2) on K as follows:

e k) =(n(k,)P,, Dy)), k,eK,
e2(ky) =(n(kz1)®,, D)) =(n(k)P,, D2), k€K,
where the bar denotes the complex conjugate. Then
d(X)(ky, ko) = f(k1'xk3 ") =(n(k,)®Py, n(x)n(kz")P2).
This is equal to the expression

Zijeli(kl)er(kZ)(¢1i’ 7r(x)‘pzj)-
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V, is the subspace of I*(K x K) spanned by the functions e,(k,)e,;j(k;). Let
{¢%4, ..., &5,,} be the dual basis in V% of {&,,,...,&,,}. Then for 1<i<t,,
1< j<t,, identify ey (k,)-e,(k;) with (t,1,)71/2¢,,®&%;. This gives an intertwin-
ing operator between the double representations p and t. Therefore, we can
regard ¢ as a t-spherical function from G to V,. We have the formula

6.1) d(x)=(t,t,)" /2 .Z; $u® égj(‘pm ”(x)‘pzj), xeG.

Now suppose n=m, ,(6E8y, A€a}) and recall that R(z,, o) is the space
of intertwining operators between 7, and o. Fix T,eR(z,, o) such that

|| T,||? =dim 7, =t,, a=1, 2.
Suppose that &, €V, &, V, are unit vectors. Let
D (k) =T (t*¥(k)E,), kekK, a=1, 2.
Then clearly, #, and @, are unit vectors in s#,. Define
(k) =T (13(k)¢w), k€K, a=1,2,15ist,.
Then {@,;} is an orthonormal basis of V;. Put
Joi(X) =(@y, 1, 2 (X)P2) =(7, ,(x~ )Py, D).

This is equal to the expression
(6.2) gK(Tl[TT(K(xk)él], T, [T3()E, D)y, e+ OW Gy,

where ( , )y, denotes the inner product on V,, the space on which ¢ -acts.
Combining the formulae (6.1) and (6.2) we obtain the following formula:

(6.3) Py (x)=(t12)7"/ 2§ 61i®§ijK(T1[T’i‘(K(Xk))éu], T[w3(k)E2Dv,
celiA=)H=K)) k.
Let L=L" be the following set of functions on M: {y: M—V,: Yy(mymm,)

=1(mW(m)(m,), m, m, mysM}.
Then L* is a Hilbert space with inner product

W W=, U m), alm)dm = @m0, o)D)
=D, ¥2(L).

If YL, then Yy(1)eV,®V% and it can be regarded as an intertwining operator
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from V, to V; for 7,|]M and 7,|M. Conversely, if S is such an intertwining
operator, then

Y(m)=1,(m)S =S75(m)

is contained in L.

If 68y, let Lt be the set of functions € L* such that y(m) transforms
under left and right translates of M according to the representation ¢ of M.
Then there exists a finite number of representations {o,, ..., 6,} in &,, such that

L=L; ®---DL:,.
For any Yy & L let us extend the domain of  to all of G by defining
VY(kan)=1,(k)y(1), keK, a4, neN.
Let us return to our function ¢(x) above. Define
T%: V,—/V;
as the adjoint of T;. Let
S=T%T,: V,—V,.

Then S is an intertwining operator for 7,|M and t,|M, and can be regarded canoni-
cally as an element in V;®V%, and moreover,

S=(t1t2)_1/2 iZjéli@é?j(élis szj)Vl
=(tyt)"1/2 .Z; E® & (T &y, Ty,

where subscripts V;, V, indecate in what space the inner product is taken. If
we define ¥ by

Y(m)=t,(m)S=St,(m), meM,
then YLt and
117 =D, ¥(1))=(S, S)
=(t;1)7! § I(Ty&1i T2E25)12.

From (5.5), the last expression is equal to (dim o)1,
From (6.3) and (6.4) we obtain the formula

6.5) Dg2(X) =SK¢(xk)T(k— 1)elid-) HER K,



The Fourier Transform of the Schwartz Space on a Semisimple Lie Group 161
For any € L* we write
(6.6) E(W:1:x) =g Y(xk)e(k~1)eli-e)HEO k.,
K

E(: A:x) is called the Eisenstein integral of { and A.
Suppose, conversely, that we were given Y& L such that [|y(|3 =(dimo)~1.
Then we could choose T, R(z,, ¢) with ||T,||>=dim<z, for «=1 or 2 such that

Y(1)=TiT,.
Again we can define &,; by
P,(k)=T(r3(k)¢w),  kEK, a=1,2.
Then @, is a unit vector in #,. Working backwards we can obtain the formula

(6.7) E(:2:x)=(1,1)"1/? § €1i® &3 [(P1ir T, 1(X)P3)).

Now, if (1) =T%*T, as above, and A€ a}’, then n$(A)T,& R(z,, so) and ||T,||?
=t, for a=1 or 2, s€W. Define

(6.3 M) =(ny (D) T)*(n (D) T).

Then MS(A)Y can be regarded as a function in Lf,. It has the same norm as
Y. Therefore, M3(2) is a unitary map of L% onto LI,. We can then define a
unitary linear transformation Ms(A) of L* by defining it to be M5(4) on each of
the orthogonal subspaces L? of L-.

If A€ a}’ we have the equation

(@1, T, 2(X)P2) =(N5 (AP, Ty sa(X)N5(D)P,).
Then from (6.7) we obtain the formula
6.9) E(:A:x)=E(Ms(A):si: x), seW.

This is the functional equation for the Eisenstein integral with respect to the
little Weyl group W.

7. Proof of the injectivity of the map &

Let = be a unitary representation of G on a Hilbert space #. If vis a vector
in 2# such that the map from G to s given by

x—> n(X)v, xegG.

is infinitely differentiable, v is called a differentiable vector. Let s#* be the set
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of differentiable vectors in s#. If vesx#* and Xeg, define
n(X)v=lim % (n(exp tX)v—v).
-0

It can be checked that this gives a representation of the Lie algebra g on the
vector space s#°. It extends to a representation, again denoted by =, of the
universal enveloping algebra B of g°.

Let 3 be the center of B. If the restriction of n to 3 is one dimensional,
we obtain a homomorphism

1. 3—C.

In this case = is said to be quasi-simple, and y is called the infinitesimal character
of m. It is known that any irreducible unitary representation of G is quasi-simple.

Let n be the conjugation of g¢ with respect to the real form g. We define
three involutions on g¢ by

X*=—pX, Xeg°,
Xt=-X, Xege,
X=nX, Xege.
If X, Yeg° and ce(, it is easy to show that
[X, Y1=[X, Y1, (cX)=cX,
[X*, Y*]=—[X, Y]*, (cX)*=cX,,
[X* Y*¥]=—[X, Y]*, (cX)*=cX*

All three involutions extend to involutions of B.
If = is a unitary representation of G, then for g8,

n(g*)=n(g)*,
where n(g)* denotes the adjoint operator of n(g).

LemMA 7.1. Suppose that m is quasi-simple. Assume ®, and ®, are
vectors in s such that the vector spaces

sp{n(k)®,: ke K}, a=1,2,

are both finite dimensional. Then &,, ®, 5. Furthermore if g,, g,€B,
and

h(x) =(®, n(x)®,),
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then
h(g,:x;9,)=@(g1)®1, n()n(g2)P,).

For a proof see [1, Lemma 6].

Let M, A, A, and A be the universal enveloping algebras of me, ag, af
and a° respectively. Let 3, be the center of M. Then MA, is the universal
enveloping algebra of me+ag, and its center is 3y %,.

If ze€3, there exists a unique element yy(z)€3),U, such that

z-742) 3 BX,

([6(e), Lemma 18]).
If z, € 3, there exists a unique element y’(z,)€ AU such that

Z —Yﬁ(zl)eaezp_m&lp/"a

([6(e), Lemma 18]).
If z€ 3, there exists a unique element y’(z) €U such that

z—y'(z)e )} BX,.
aeP
Notice that if z is an element in 3,

z—=71(70(2)) =(z2—70(2)) + (yo(2) = 71 (vo(2))-

The right hand sum is an element in ), BX,. Therefore

aeP
(7.1 Yi°Yo =Y"
Define automorphisms § and f, of A by

P(H)=H + p(H), Heas,

Bi(H)=H + p,(H), Hea-.
Let

y=B"1ey',  yi=Bile¥i.
It is known that the maps

7y 3—Y, 71t IuYU,— Y,

are algebraic isomorphisms onto the subalgabras consisting of the elements in
A which are invariant under W, and W, respectively ([6(¢), Lemma 19]). «
can be regarded as the algebra of polynomial functions from the dual space ac*
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of a¢, into C. If Xeac* denote the evaluation of peS(a) at 1 by <p, A>.
Then for any A in a* define a homomorphism y,: 3 — C by

1u(2)=<wz), A>, z&€J.

Any homomorphism from 3 into C is of this form and y,, =y, if and only if
Ay =54, for some seW,. y; is called the homomorphism corresponding to the
linear function A. Similarly, we can define X} : 3,%, — C by

1z =<yi(z1), 4>, z; €3uY,.
Define an automorphism S, as follows:
Bo(X)=X, Xems,
Bo(H)=H+p(H), Heas.
Bo takes 3, U, onto itself. Put
Yo =B5"*Yo.
By (7.1)
(7.2) Y=Y1°%o-

We can now find the infinitesimal character of n, ;. If c&&, let u be a
real linear function on \/ ‘—1a, associated with . Regard u as a linear function
on \/:—la,+ap by making it equal zero on a,. By looking at a highest weight
vector for o, we can easily check that for any z, €3,

(7.3) o(z)=x(z) = <y:1(z1), p>.
LemMMA 7.2. Fix 0€&y and A€af. Then for any z€ 3,
T 1(2) =X - - i1a(2)-

Proor. It is known that the representation =, , is quasi-simple ([6(a),
pg. 243]). Therefore, there exists a complex linear function v on a¢ such that

na‘,l(z) =Xvs ZEB-
Choose a t€&2 such that Lt+0. Fix ¢ in Lt such that
¥ % =(dimo)~*.

Then by (6.7) (using the notation in that formula) and Lemma 7.1, we obtain
the formula
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LEEW: A: x)

=;j(t1tz)“’ 28183 (P ris T, 2(0)T,,4(2)D2))

=E(y: A: x; z), ze3.
Put

F(x) =y(x)e(t-0ucen,
and define
F(x: k)=F(xk)t((k"'), xeG, kK.

Then by (6.6),

E(Y: A: x)=SKF(x: K)dk.

Let z be an arbitrary element in 3. It can be regarded as a left and right invariant
differential operator, so

F(x; z: k)=F(xk; z)t(k™1).
Therefore
E(lﬁ:l;x;z):S F(x; z: k)dk
K
7.9
=S F(xk; z)ye(k-1)dk.
K
Clearly F(xn)=F(x) for any ne N, so if g=®Bn then
F(x; g)=0.

Therefore

E(: 2: x; z)=SKF(xk; yo(2)e(k~1)dk

= FGeks Baro(@yetk k.
Suppose that
(7.5) 70(2)=Z z;h;, Z,€3um, hEa,.

Then
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Boro(2) =33 zBo(h).

Now
F(yexp H)=F(y)eliA=e)(H) Hea,
so for any he U,
F(y; Bo(M)=F(y)<PBo(h), ir—p>
=F(y)<h, il>.
On the other hand, if me M,
F(ym) =y ym)e(t-0HG)

=, (<)), () (1)etiA-OHOD

=1,((y)) T o(m) TyelH-0wON,
where Y(1)=T%*T, in the notation of Section 5. Therfore, if z,, &3,

F(y; 2y) =7,(k(y)) T10(zp) ToePA~OHGD
(1.7 =T(k(YNT <y1(zp), p> TreA~OHON
=<71(zum), u>F(y).
From (7.4), (7.5), (7.6) and (7.7) we see that
F(y; Bovo(2) =F(y)< 2 v\(z)h;, p+id>
=F(y)<y170(2), p+id>
=F(y)<y(z), p+il>.
So, from (7.4) we have
EW: A: x; z2)=<y(2), u+iA>EQW: A: x), ze 3.
It follows that

1(Z) = <y(2), u+ii>.

It is easy to show that v=—pu—iA. This proves our Lemma 7.2. Q.E.D.

From the above proof we obtain the following corollary.

COROLLARY. Let 1€&% and cE€ &y such that L:#0. Let €Lt such
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that |y} =(dimo)~t. If Aca}, then for any z€3,
EW: A:x; z)=<y(z), u+il>EW: A: x).

Let X,,..., X, be a basis for g° and g,;;=B(X;, X;) (1=i,j=<n). As is
well known the matrix (g;))(<i, j<» iS non-singular. Let (g'/) be the inverse
matrix of the matrix (g;;) and w;=2]g"X;X;. It is known that o, is inde-

. . Lo . . .
pendent of the choice of basis for g° and is contained in 3. w, is called the
Casimir element of B. If v is any linear function on a°,

(78) Xv(wg)zB(v’ V)—-B(p, P)
(see [1, (6.8)]).

Since

B(—p—id, —p—id)=B(u, 1) —B(4, 4),
from Lemma 7.2
(7.9) 7,,()=|0|2 ~ B(2, )~ B(p, p).

In order to prove the injectivity of the Fourier transform &, we use the
following

LEMMA 7.3. Letsup, denote the supremum over all (o, 1), (ty, iy), (15, i5).
Then for non-negative integers m, m;, m, and differential operators d € D(a}),
the semi-norms

N1l ¢mm s m 2,09
=supo|d;[(P.,,i,» a(g, )P, ;. X1 +]o]>—|A2)"][(1+ ]z |?)m
‘(14|75 2)m2, ac%(G),
form a basis for the topology of €(G).

Proor. By Leibnitz’ rule and induction on the degree of d, we can see that
it is enough to prove the lemma for the semi-norms

(7.10) supo|d;[(P.,,i,, a0, N)P.,,i,)]ll(1+]o] —[4]2)™
(+]n ™A +?)m,  ae%(0).

Fix &)y and 1€&y. There is a non-zero vector of the form @ ; in our
basis for 7, if and only if the representation ¢ occurs in /M. Suppose that this
is the case. Then if 7 acts on the finite dimensional vector space V,, ¢ acts on
a subspace of V,. The Cartan subalgebras of m and f are both a,, and we
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have already ordered its dual space. Let v and u be the highest weights of the
representations t and ¢ respectively. Then

|62 =B(u+pus 1+ Py)
ltlz =B(v+pK9 v+pK)’

where p,, and pg are the halves of the sum of positive roots of (¢, af) and
(t¢, af) respectively.

Let ¢ be a highest weight vector in V, for o. V, is a direct sum of weight
spaces for . Examine the action of 7(a,) on ¢. Since a, is a Cartan subalgebra
of ¥, we can regard u as a weight for 7. However

B(u, w''? = B(u+pg, n+px)''? + B(pg, pr)'/?.

Since v is the highest weight for 7, we see by [8, Lemma 3, pg. 248] that

B(u+ pg, 1+ pr) <B(v+pg, v+ pg).
Therefore, we have

o] <B(v+pg, v+px)'/? +B(pk, pi)*'* + Blpa, pa)'/>.

Hence, we can find a constant ¢>0, independent of 7 and o, such that
(7.11) lo| <|t| +c.
From this inequality we obtain the additional formula
(7.12) [A12 <1+ ]0]2 = A2+ (L4 (c+|T])3).

Formulae (7.11) and (7.12) show that any semi-norm of the form (5.6) is domi-
nated by a semi-norm of the form (7.10). Since the semi-norms (5.6) form a basis
for the topology of #(G), our Lemma 7.3 is proved. Q.E.D.

The Lie algebra f is reductive, so f=%f, +f,, where f, is semisimple and
f, is abelian. Let & be the universal enveloping algebra of f¢, and let 3, be
its center. a, is a Cartan subalgebra of f. For linear functions v on af we can
define the homomorphisms

1% Jg—C.

Since the Killing form of g° when restricted to ¥, is K-invariant, this Killing
form is a linear combination of the Killing forms of ¥, ; on f;, where I, ; are
simple ideals of f;. Then it is clear that we can choose an element w,s 3k
such that
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(7.13) - xW(@)=B(v, v)— B(pk, px)
for any linear function v on af.
Notice that

* — P + —
WF=w, O,=0, O;=0,

(7.14)

OFf=w, w;=w;, of=o0,.

LEMMA 7.4. The Fourier transform F: f—f is a continuous map from
#(G) into %(G).

ProOF. Let |||, be an arbitrary continuous semi-norm on %(G). Since
dim o, dim 7, and dim 7, are bounded by polynomials in |a|, |t,| and |7,| respect-
ively, we can use the previous lemma to choose integers m, m;, m, and a differ-
ential operator d€D(a}) such that for any ae %(G)

llallo <supo(dim 6)!/2(dim 7-dim 7,)~1/2|d,[(®,, ;,,a(c, N)P.,:,)"
‘(A +]0]2 =AY 2N + 7y |21 (L+ [z 2)m2.
Define elements g, and g, in B by
g1 =(@¢+B(pg, pg)+ 1),
g2=(@y+B(p, p)+ )" (@ + B(pg, pp)+1)"2.

By (7.13), gt =g, and g,=g. Since & and @,,;, transform under x,,
according to 7, and 7, respectively, we have by (7.9) that

T1,i1

nﬂ,).(gl)¢n,i1 =(1 + |Tl IZ)M1¢1:1,i1’
nd,l(g2)¢tz.iz =(1 + ltllz)mz’(l + IO-IZ - I)’lz)mdjtz,iz'

Therefore, for any f € C*(G) we have from Lemma 7.1 that

17 lo < supo (dima)!12(t112)12 |, (g s x5 92T,
where
t;=dimt, i=1,2,
h(x) =(P.,i,> Mg, a(X)P:,,,)-

Now in order to see that by means of the G-invariance of dx we can transfer the
differentaition of h(x) to the differentiation of f(x) in the above inequality, we
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need a few lemmas,

LemMmA 7.5. If fe%(G), by, b,=B and Q is any compact set in G, then
the integral

[ nGxys b1)fxs blax
converges uniformly with respect to y on Q.

Proor. We have
h(x)=(¢t1,i‘7 na,l(x)¢t2,i2)‘

By Lemma 7.1, for any be®B and xG
h(x; b)=(®P.,,i,, Ty, :(X)7e,1(D)P., ;).
So, it follows that there exists a constant ¢, >0 such that
hxy; byl Se,| eeto™t .
K
On the other hand, it is known that we can choose a constant ¢,>0 such that
e~ e(HO™Ix" 1)) < ¢, gm0 (H(xT1E)

for yeQ (see [6(h), the proof of Lemma 48]). Since fe %(G), Lemma 7.5
follows. Q.E.D.

COROLLARY 1. Let fe¥%(G), by, b,=eB and Q be any compact set in
GxG. Then the integral

[, Inxys b)fGez; by)lax

converges uniformly with respect to (y, z) on Q.

Proor. Without loss of generality we may assume that Q=w; x w, where
w;, w, are compact subsets of G. Let w be the image of Q in G under the mapp-
ing (y, z2)—z~'y. Then w is also compact. For any ¢>0 we can, by the above
lemma, select a compact set Vin G such that

ScVIh(xy; b)f(x; by <e

for yew; where °V denotes the complement of Vin G. Put U=Vw3!. Then
U is also compact and cUzc <V for zew,. Hence if yew, and zew,, it is
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clear that

[ eoys b Gezs baldx={ (hexz1ys b fxs boldx<e

Uz

from the right-invariance of the measure dx. This proves Corollary 1.
‘ Q.E.D.

Let g — g* denote the anti-automorphism of B over R defined by the involu-
tion X — X* of g°.

CoLOLLARY 2. For any geB, f = ¥%(G)
[, 1 7Gx = ne0T G5 g9
G
Proor. We put
F:2)={ henfGaidx, 3, z€6.

Then the above Corollary implies that F is a C*-function and

F(y;9::z; gz)=SGh(xy; 9)f(xz; g,)dx
for b,, b,B. On the other hand

F(y;91:2;9)=F(z7'y;9::1; g5)

by the right-invariance of dx. Hence if we put y=1 and z=exptX (X<g,
t=R) and differentiate with respect to ¢t at t=0, we get

F(1;9,:1; Xgo)=—F(1; Xg,: 1; g5).
From this our Corollary 2 follows. Q.E.D.

By an argument similar to the above, we obtain the following

LemMA 7.6. For any g,, g,€B, f€ %(G)

[ 1013 x: 927GIdx = _neo 7T x5 gByax.
G

Now we return to the proof of Lemma 7.4. By Lemma 7.5 and (7.14),
we have the inequality

171lo <supo (dim o) /2(t, 127472 |4, _h(0 (G155 g)ax|-
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Let © be the double representation (t,, 7,) of K. From (6.7) we obtain the
following estimation.

|[E(Y: A; d: x)| =(tt,)" /2 lz;(fu@ffj)dz(d’m Tty 2(X)P2))
=(t1tz)_1/2(izj|d;.(‘pu, T, 2(X)®5;)|2) /2

= (t,t5)712|d (P, 7y A(X)D2)), I1ist, 15j=t,.

So we can find a y € L;, with ||| =(dimo)~!, so that the last expression in
the above inequality is bounded by

supo(dima)'/2{ |£(g: x3 g2)IIEQW: 45 d: x)ldx.
Now if ke K,
WO =1 (D] = Wl =(dim o)"12.
So, by (6.6)
(dim o) /2| E(Y: 23 d: )|

=(dim g)!/2 | XKW(xk)r(k‘ D [iA(H(xk))]et iAW ) gk

= SKMJ(H(Xk)Ne’i’(H(xk))dk’

where A, S (a}) is the polynomial function corresponding to d. To complete
the proof of our lemma we need the following

LeEMMA 7.6. For every peS(a}) we can select a polynomial p such that
for any xeG

|p(H(x))| = p(a(x)),
where o is the function defined in Section 5.
Proor. Each x& G can be rwitten in the form
x=k’exptH k, k', keK, expHecl(4}), t=0,

where A4} denotes exp a}(a} is the positive Weyl chamber of a,). Then we can
select a t, € R such that

H(x)=H(exptH-k)=tH’, H'ecl(a}).
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Now [6(h), Lemma 35] and [6(h), Lemma 35, Corollary 2] establish precisely
that

- t§ tk é t.
Therefore we can select a polynomial p such that

[P(H(x))| = p(1t]) = p(?) = p(a(x))-
Q.E.D.

Now let us return to the proof of Lemma 7.4. From Lemma 7.7 we can
select a polynomial g which satisfies

(dim o)Y/2|E(Y: 4; d: x))

gg q(o(xk))-e~eH=kNdk
K

=4(o()| eIk =g(o(x)E()

Therefore,

(7.15) IFllo= SGIf(gl ¢ X5 92)lq(o(x))E(x) dx.

Clearly, there exist a positive integer n and ceR (ggO) such that
g(6(x))=c(l+o(x))", x€G.
By (5.3), the right hand side of (7.15) is bounded by

eN(ro) igg{E(x)“-(l +a(x)"*re| f(gy: X3 g2)I}-

We have dominated ||f|l, by a continuous seminorm on f. Since C®(G) is
dense in #(G), this is enough to prove Lemma 7.4. Q.E.D.

8. A sufficient condition for the map &% to be surjective

In this Section we shall find the inversion formula and give a statement about
a sufficient condition for & to be a surjective map from %(G) onto %(G).

Let a be an element in & (L[?(G)), the image of I?(G) by &#. Then there
exists a unique function f € [*(G) such that f=a. fis the unique function in I?(G)
such that for every g € C*(G)

[, 7@0CIax=(a, 9),
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where the latter inner product is that of I2(G). We shall write 3, to denote
the summation over all o, (74, i;) and (t,, i;). Then

Zof @0, DPey iy B )(@e1,s 000, DD, B D2
ap

Zof [ @@ 00,0 0.,0)(@ 01 70, a(0).,,1)B(0: DGCIRAL
*p

Let us assume that the integrals in the last espression are absolutely convergent.
This is true for example if ac % (G). Then we may take the integration of G
outside. Define a function & on G by

B1) 600 =5 Zof (@00, NPt Pt Pt T s (P B0 D
as is easily seen, which is equal to
(8.2) =< ;Sa;tr[na,l(x"l Ya(a, )1B(a: A)d.
Then we have the formula
[ r0geax=( awgtiax,  gecz().
Since the function g is arbitrary we have

f)=d(x) (a.e..

We call the transform (8.2) the Fourier inverse transform.
To prove the surjectivity of the map & in Theorem 5.1, we have to show
that g is in #(G). Put

hepiiain(o: ) =(a(a, DD, Peyi))s
Peiinenin(0: A1 X)=(Dey iy Mg 2(¥) D1y 1,)-
Then, since the sum is absolutely convergent, for any g, and g, in 8 we have
wd(gq: x; g2)

=Tl ersinenis(@ Dbevivenin(@: 4 g1 %5 92)B(0: D
14

=5 B Pentiren a0 Derinen a0 23 9143 %3 92)B(03 V.
p

0 i1,i2
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On the other hand it is clear that

(tltZ)—llzlS hn,il,tz,iz(o-: }’)(pn,il,rz.iz(a: '1: g1 e X5 gZ)ﬁ(a: }')dﬂ'

*
ap
t t2

é(tltz)—ln( Z‘ PN

j1=1j2=1

g hfl)ihfz,iz(a: )“)¢t1,j1,tz,iz(a: A: gieX; gZ).

*
ap

1/2

B(o: Hdi 2)

=[§, Beivenia(0: DEW: 42 g1 %5 g:)B(o: 2.
%p
So,

la(gy: x; g2)|

[ Fewtnenia(o: DEQ: 2: g, %3 9080 D],

*
ap

i1,i2

é(I/C‘))rZC:r(tll‘z)]/2 2

From the dimension formula (Lemma 2.1), ¢, and ¢, are bounded by certain
polynomials of |t,| and |7,| respectively, and (¢,¢,)'/2 is also bounded by a poly-
nomial of |z,| and |r,]. Moreover, since ae #(G), heiiyenni, €L (a}) for each
CES .

Now it is easy to check that, to complete the proof of Theorem 5.1 it is enough
to prove the following

T2,i2

THEOREM 8.1. If o0&y and YLt with |Y|y=1, let EW:Ai:x) be
the Eisenstein integral as in (6.6). Then for each g,, g,€B and s€R, there
exist a finite number of polynomials py, P21 .--» Pan> 4 @nd a finite number of
differential operators d,, ..., dyeD(a}) such that whenever he & (a})

sup|  REW: 1: g, x; g)B(o: DAAEE) (1 +00)
X€ ﬂp

<ploDa(e) X sup pai(ADIAG d).
i=1 €ay

9. Basic estimates for derivatives

We me