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1. Introduction

Let G be a connected semisimple Lie group with finite center and K a maximal
compact subgroup of G. In [6], Harish-Chandra determined the Plancherel
measure for the symmetric space G/K. The spherical Fourier transform may be
regarded as a method of representing a more or less arbitrary spherical function
as a linear combination of elementary spherical functions. On the other hand
Ehrenpreis proved in [3], [4] and [5] that for various spaces W of functions or
distributions on R" (such as the space of solutions of linear constant coefficient
partial differential equations) any Te W admits a representation

T (%) =Sexp i<z, x>du(z)/a(z)

where u is a bounded measure on a “multiplicity variety”, a is an element of an
“‘analytic uniform structure” for W, and where the integral converges in a certain
sense. Now, since elementary spherical functions are eigenfunctions of all in-
variant differential operators on the symmetric space G/K, the above result of
Ehrenpreis suggests an analogous problem of representing an eigenfunction of a
system of invariant differential operators as an integral of those elementary spheri-
cal functions which satisfy the same system of invariant differential equations.
In this paper, we shall give a solution to this problem.

The authors are grateful to Professor L. Ehrenpreis for helpful discussions.
He also raised the problem of extending the result of this paper to K-infinite
eigenfunctions by using matrix coefficients of the principal series representations.
We shall deal with this problem in the forthcoming paper.

2. Notation

We denote by C*(G) the space of all C* functions on G with its usual topology.
Let g be the Lie algebra of all left invariant vector fields on G and let g=f+p
be a Cartan decomposition where f is the Lie algebra of K. If x=kexp X (ke
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K, X e p), we denote by a(x) the norm of X with respect to the Killing form. We
fix a maximal abelian subalgebra a of g such that acp, once for all. Let a*
be the dual space of a and af the complexification of a*. Then the little Weyl
group W acts on a, a* and af, canonically. For any Aea¥ we denote by
||All the norm of A defined by the Killing form. Let U be the universal enveloping
algebra of the complexification of g. For fe C®(G) and Dell we put f(x; D)=
(Df)(x) (x€ G). A continuous linear map f of a topological vector space E into
a topological vector space F is called a homomorphism if it is an open map of E
onto f(E)=Imf.

3. The topology of &

Let & be the set of functions fe C*(G) such that f(k; xk,)=f(x) for any
k,, k,e Kand xe G. Then & is a Fréchet-Montel space for the topology induced
by C*(G). We denote by &’ the strong dual of &. For an Se&”’, the spherical
Fourier transform of S is defined by

(FHN=8M)=S(¢)) (Aea})

where ¢, is the elementary spherical function. By Theorem 3 in [1], the space
&' of spherical Fourier transforms of &’ is given by the set of all entire holo-
morphic functions F on a¥ satisfying the following conditions (a) and (b) viz.:
(a) F(sA)=F(A) for any se W and Aea§. (b) There exist a constant R=0 and
an integer m =0 such that

sup (1+[[A)™™ exp {—R| Im A[}|F(A)| < + o0 .

*
leac

We equip &' with the topology so that the spherical Fourier transform is a topo-
logical isomorphism of &’ onto &'. The crucial point here is that the topology

of &' is given by an ‘‘analytic uniform structure’ defined by Ehrenpreis as follows.
We denote by #(R") the space of all C* functions on R! where I is the rank of
G/K and by &'(R') the strong dual of &(R'). The Paley-Wiener theorem says

that the space é'(R’) of (usual) Fourier transforms of &’'(R') is the set of all
entire holomorphic functions F on C' satisfying the following condition: There
exist a constant R=0 and an integer m 20 such that

sup (1+z[)™ exp (= R| Im z{))| F(z)] < + co.

Let A denote the set of all continuous positive functions a(z) =a,(Re z)a,(Im z)
(z € C"), where a; dominates all polynomials and a, dominates all linear exponen-

tials, For an a € A we denote by U, the set of all elements F e é:'(R’) such that
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|F(z)|=a(z) for all zeC'. We topologize c?’(R’) so that the family {U,},c4
is a fundamental system of neighborhoods of 0 and thus by Theorem 5.19 in [5]

the (usual) Fourier transform is a topological isomorphism of &'(R') onto &
(RY). According to Ehrenpreis we call A an analytic uniform structure for &(R?Y).

Since the dimension of a is I, a} is identified with C'. We remark that &
is regarded as the set of all F e:f’(R’) such that F(si)=F(A) for any se W and
A€ ag.

LEMMA 1. &' is a closed subspace of é:’(R’).

Proor. For each se W we define a linear operator &, on é:’(R’) by

(D F)N)=F(s'2)  (Lead).
Then @, is continuous. In fact, if we put a’(1)=a(sd) for ae A, se Wand Ae
a¥, then it is easy to see that a*e 4 and that the inverse image of U, by &, is
U,. Next we define a continuous linear operator ® on c?’(R’) by &= -[VIV—T x
seW

@, where [W] denotes the order of the Weyl group W. Then it is clear that Ker
(1—®)=¢". Tt follows that & is closed in &'(RY).

LEMMA 2. If B is a bounded subset of & ,then there exists a constant,a>0
such that
sup (1+[Al)7* exp(—al ImA[)|F(A)| = a

Aeaé
for any FeB.

Proor. First we prove that for any neighborhood U of 0 in & there exists
a constant a>0 such that

U= {1+ 1217 exp (—al Im A1) g5 deat)
By the definition of the topology of &, there exist a compact subset Q of G, a
constant b>0 and D,,..., D,,eU such that

U>s{fe€; max max | f(x; D;)| <b}.
1SjSm xeQ

By Lemma 46 in [6] there exist constants ¢;>0 and d;>0 such that
|#:(x5 DI ci(1+ 1A% exp (a(x)|l Im A]))

for any xeQ and Aeag.
Therefore if we set a=max{ max (i"—, d j), sup a(x)}, we have
15jsSm b xef
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max maX—(1+IIMI) “exp (—al ImAi|)|¢,(x; D;)|

1Z5j=m X€.

< 1nslag maX—(l + 1A%~ exp{(o(x) —a)| Im A|} =b
jsSm xeQ
for any 1ea®. Next let B be a bounded subset of &’ and put B, =%"1(B).
Then since & is barrelled the polar B of B, is a neighborhood of 0 in &. It
follows that there exists a constant a>0 such that

B> {-L (14 A1)~ exp (—al Im A1), Zeat.

This implies that

sup (1+[|41)7* exp(—a| Im A F(A) s a

).eac

for any FeB.
The following proposition plays an important role in this paper.

ProrosITION 1. The topology of &' coincides with the relative topology
induced by &'(RY.

PROOF. Let j be the canonical injection of &’ into &'(RY). Since & is a
Fréchet-Montel space, &’ is bornologic according to the Grothendieck theorem
(cf. [11]). By Lemma 5.18 in [5] and Lemma 2, j maps bounded sets into bound-

ed sets. Hence, j is continuous. Now we identify &' and (?’(R’) with &’
and &'(R'), respectively. Since & and &(R') are reflexive, the transpose !j
of j is continuous. By Lemma 1 and the reflexivity of #(R"), Imj is closed in
&'(RY) for the weak topology. Therefore by the Dieudonné-Schwartz theorem
j is a homomorphism since & and &(R') are Fréchet-Montel spaces. This
completes the proof of the proposition.

Let us denote by é the strong dual of é'. For an feé& we put f=tF-1
(f). Then we have f(8)=(F1f)(S)=f(F~18)=f(S) for any fe & and Se¢&’.
Using the Hahn-Banach theorem, from Theorem 1.5 in [5] and Proposition 1
there exist a bounded measure u on a% and an a € A4 such that

7(8)={8dutiyjacsy

- X S(¢ )dp(R)]a(2).

Choosing the Dirac measure placed at the point x € G, we have
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S ={g:(0du/aty.
Thus we obtain the following theorem.

THEOREM 1. For any fe &, we can find a bounded measure y on af and an
a€A such that

15)={s@)duisac

for any Se &', where the integral exists in the sense of Lebesgue-Stieltjes.
In particular, we have

fx) =S¢A(X)du(/1)/ a(4)  (xeG).

4. Integral representation of solutions of invariant differential equations

Fix a finite number of invariant differential operators D,,..., D, on G/K.
We wish to obtain an integral representation of a solution fe & of differential
equations:

D,f=0,..., Df=0.

We put D=(D,,..., D,). For any vector space V we denote by V" the r-fold direct
sum of V with itself. For any fe & we put Df=(D,f,.. , D,f). Then D defines
a continuous linear map of & into &". The transpose ‘D of D is a continuous

linear map of (&%) =(&’)" into &’ and it is clear that Im*D= i}’D,«s”. On
the other hand by [8] (p. 70) there exist polynomials P,,..., P, l::mh that &
(*D;S)=P,#(S) for any Se &’ and that P,(s1)=P,)) for any s€ W and A€ ag.
Thus we have F(Im'D)= i}lPié". We set P=(P,,..., P,), P(€'y= ii:l Pié;’

and P&'(R)y =3, P,é'(RY).
i=1
LEMMA 3. &' n P& (RY =Py .
Proor. Let F,,..., F,eé;'(R’) such that Zr PiFieé'. Then we have
i=1
3 PiFi=®( 3 PiFy)
=3 P(F)ey. P.ié".
i=1 i=1

This shows that &' n PéA"(R’)’c P(é’)’. The converse is obvious.
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By Theorem 6.2 in [5] Pé’(R’)’ is closed in é’(R’) and thus P (é:’)’
is closed in &’ from Proposition 1 and Lemma 3. Therefore the strong dual of
Ker D is identified with &’/Im*D. Furthermore by Lemma 3 there exists a con-

tinuous injective linear map j* of é;’/P(é;’)’ into f’(R’)/Pé’(R’)’ such that
the following diagram is commutative:

& EAN &'(RY

| l

&'|P(&)r I, &'(RY)|PE' (R .
PROPOSITION 2. j* is an injective homomorphism.

Proor. First we remark that the inverse image of P:?’(R’)’ by the map
I-& coincides with &' + P&'(R'y". It follows that Im j* ={&' + P&'(R')"} | P&’

(RYr is a closed subspace of e‘?’(R’)/ Pé (R"". By arguments similar to the proof
of Proposition 1 we see that j* is a homomorphism.

Under these preparations, our problem can be solved as follows. The method
is that, reducing the case of a symmetric space to that of the Euclidean space,
we apply the result of Ehrenpreis in [5].

Let D,,..., D, be a finite number of invariant differential operators on G/K.
We consider the system of differential equations:

D,f=0,..., D,f=0 (fee).
As we remarked above, f is canonically identified with a continuous linear form
on &'/Im*D where D=(D,,..., D,). Therefore, f is regarded as a continuous
linear form on é;’/P(é?’)’. In view of Proposition 2, by the Hahn-Banach

theorem, f can be extended to a continuous linear form on é’(R’)/ Ptf’(R‘)’.
Hence, from Theorems 4.2 and 7.1 in [S] we obtain the following

THEOREM 2. For any f€ & satisfying D f=---=D,f=0, there exist a finite
number of complex algebraic varieties V(1 <j < m), linear partial differential
operators 0; (1=j<m) with polynomial coefficients, bounded measures p;
on V; and a€A such that

1= 3§ @560 (jad)

for any Seé&’.
Furthermore we have

1= 5 @ss00dnlath

Jj=
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for any xeG.

REMARK . As Ehrenpreis stated in [5], the measures u; (1 <j <m) in Theorem
2 are not unique. To obtain the uniqueness, even for the (usual) Laplacian on
R", one must consider certain ‘““functionals” on S" ! which are, in general,
not measures any more (cf. [7], [10]). In case the eigenvalue is equal to zero,
the situation is more complicated (see [12]).
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