An Integral Representation of an Eigenfunction of Invariant Differential Operators on a Symmetric Space

Toru Inoue*, Kiyosato Okamoto**) and Makoto Tanaka**) (Received January 16, 1974)

1. Introduction

Let G be a connected semisimple Lie group with finite center and K a maximal compact subgroup of G. In [6], Harish-Chandra determined the Plancherel measure for the symmetric space G/K. The spherical Fourier transform may be regarded as a method of representing a more or less arbitrary spherical function as a linear combination of elementary spherical functions. On the other hand Ehrenpreis proved in [3], [4] and [5] that for various spaces W of functions or distributions on \mathbb{R}^n (such as the space of solutions of linear constant coefficient partial differential equations) any $T \in W$ admits a representation

$$T(x) = \int \exp i \langle z, x \rangle d\mu(z) / a(z)$$

where μ is a bounded measure on a "multiplicity variety", a is an element of an "analytic uniform structure" for W, and where the integral converges in a certain sense. Now, since elementary spherical functions are eigenfunctions of all invariant differential operators on the symmetric space G/K, the above result of Ehrenpreis suggests an analogous problem of representing an eigenfunction of a system of invariant differential operators as an integral of those elementary spherical functions which satisfy the same system of invariant differential equations. In this paper, we shall give a solution to this problem.

The authors are grateful to Professor L. Ehrenpreis for helpful discussions. He also raised the problem of extending the result of this paper to K-infinite eigenfunctions by using matrix coefficients of the principal series representations. We shall deal with this problem in the forthcoming paper.

2. Notation

We denote by $C^{\infty}(G)$ the space of all C^{∞} functions on G with its usual topology. Let g be the Lie algebra of all left invariant vector fields on G and let g = f + p be a Cartan decomposition where f is the Lie algebra of K. If $x = k \exp X$ ($k \in K$) $K, X \in \mathfrak{p}$), we denote by $\sigma(x)$ the norm of X with respect to the Killing form. We fix a maximal abelian subalgebra \mathfrak{a} of \mathfrak{g} such that $\mathfrak{a} \subset \mathfrak{p}$, once for all. Let \mathfrak{a}^* be the dual space of \mathfrak{a} and \mathfrak{a}_C^* the complexification of \mathfrak{a}^* . Then the little Weyl group W acts on \mathfrak{a} , \mathfrak{a}^* and \mathfrak{a}_C^* , canonically. For any $\lambda \in \mathfrak{a}_C^*$ we denote by $\|\lambda\|$ the norm of λ defined by the Killing form. Let \mathfrak{U} be the universal enveloping algebra of the complexification of \mathfrak{g} . For $f \in C^{\infty}(G)$ and $D \in \mathfrak{U}$ we put f(x; D) = (Df)(x) $(x \in G)$. A continuous linear map f of a topological vector space E into a topological vector space F is called a homomorphism if it is an open map of E onto $f(E) = \operatorname{Im} f$.

3. The topology of $\hat{\mathscr{E}}'$

Let $\mathscr E$ be the set of functions $f\in C^\infty(G)$ such that $f(k_1\ xk_2)=f(x)$ for any $k_1,\,k_2\in K$ and $x\in G$. Then $\mathscr E$ is a Fréchet-Montel space for the topology induced by $C^\infty(G)$. We denote by $\mathscr E'$ the strong dual of $\mathscr E$. For an $S\in \mathscr E'$, the spherical Fourier transform of S is defined by

$$(\mathscr{F}S)(\lambda) = \widehat{S}(\lambda) = S(\phi_{\lambda}) \qquad (\lambda \in \mathfrak{a}_{\mathbf{C}}^{*})$$

where ϕ_{λ} is the elementary spherical function. By Theorem 3 in [1], the space \mathscr{E}' of spherical Fourier transforms of \mathscr{E}' is given by the set of all entire holomorphic functions F on \mathfrak{a}_{C}^{*} satisfying the following conditions (a) and (b) viz.: (a) $F(s\lambda) = F(\lambda)$ for any $s \in W$ and $\lambda \in \mathfrak{a}_{C}^{*}$. (b) There exist a constant $R \ge 0$ and an integer $m \ge 0$ such that

$$\sup_{\lambda \in \mathfrak{a}_{C}^{*}} (1 + \|\lambda\|)^{-m} \exp\left\{-R\|\operatorname{Im}\lambda\|\right\} |F(\lambda)| < +\infty.$$

We equip $\hat{\mathscr{E}}'$ with the topology so that the spherical Fourier transform is a topological isomorphism of \mathscr{E}' onto $\hat{\mathscr{E}}'$. The crucial point here is that the topology of $\hat{\mathscr{E}}'$ is given by an "analytic uniform structure" defined by Ehrenpreis as follows. We denote by $\mathscr{E}(R^l)$ the space of all C^{∞} functions on R^l where l is the rank of G/K and by $\mathscr{E}'(R^l)$ the strong dual of $\mathscr{E}(R^l)$. The Paley-Wiener theorem says that the space $\hat{\mathscr{E}}'(R^l)$ of (usual) Fourier transforms of $\mathscr{E}'(R^l)$ is the set of all entire holomorphic functions F on C^l satisfying the following condition: There exist a constant $R \ge 0$ and an integer $m \ge 0$ such that

$$\sup_{z \in C^1} (1 + ||z||)^{-m} \exp(-R ||\operatorname{Im} z||) |F(z)| < +\infty.$$

Let A denote the set of all continuous positive functions $a(z) = a_1(\operatorname{Re} z)a_2(\operatorname{Im} z)$ $(z \in \mathbb{C}^l)$, where a_1 dominates all polynomials and a_2 dominates all linear exponentials. For an $a \in A$ we denote by U_a the set of all elements $F \in \mathscr{E}'(\mathbb{R}^l)$ such that

 $|F(z)| \le a(z)$ for all $z \in \mathbb{C}^l$. We topologize $\hat{\mathscr{E}}'(\mathbb{R}^l)$ so that the family $\{U_a\}_{a \in A}$ is a fundamental system of neighborhoods of 0 and thus by Theorem 5.19 in [5] the (usual) Fourier transform is a topological isomorphism of $\mathscr{E}'(\mathbb{R}^l)$ onto $\hat{\mathscr{E}}'(\mathbb{R}^l)$. According to Ehrenpreis we call A an analytic uniform structure for $\mathscr{E}(\mathbb{R}^l)$. Since the dimension of α is l, α_C^* is identified with C^l . We remark that $\hat{\mathscr{E}}'$ is regarded as the set of all $F \in \hat{\mathscr{E}}'(\mathbb{R}^l)$ such that $F(s\lambda) = F(\lambda)$ for any $s \in W$ and $\lambda \in \alpha_C^*$.

LEMMA 1. $\hat{\mathscr{E}}'$ is a closed subspace of $\hat{\mathscr{E}}'(\mathbf{R}^l)$.

PROOF. For each $s \in W$ we define a linear operator Φ_s on $\hat{\mathscr{E}}'(\mathbf{R}^l)$ by

$$(\Phi_s F)(\lambda) = F(s^{-1}\lambda) \qquad (\lambda \in \mathfrak{a}_C^*).$$

Then Φ_s is continuous. In fact, if we put $a^s(\lambda) = a(s\lambda)$ for $a \in A$, $s \in W$ and $\lambda \in a_c^*$, then it is easy to see that $a^s \in A$ and that the inverse image of U_a by Φ_s is U_{a^s} . Next we define a continuous linear operator Φ on $\hat{\mathscr{E}}'(R^l)$ by $\Phi = \frac{1}{\lfloor W \rfloor} \sum_{s \in W} \Phi_s$, where $\lfloor W \rfloor$ denotes the order of the Weyl group W. Then it is clear that Ker $(1-\Phi) = \hat{\mathscr{E}}'$. It follows that $\hat{\mathscr{E}}'$ is closed in $\hat{\mathscr{E}}'(R^l)$.

Lemma 2. If B is a bounded subset of \mathscr{E}' , then there exists a constant, a>0 such that

$$\sup_{\lambda \in a_C^*} (1 + \|\lambda\|)^{-a} \exp(-a\|\operatorname{Im} \lambda\|) |F(\lambda)| \leq a$$

for any $F \in B$.

PROOF. First we prove that for any neighborhood U of 0 in $\mathscr E$ there exists a constant a>0 such that

$$U \supset \left\{ \frac{1}{a} (1 + \|\lambda\|)^{-a} \exp\left(-a\|\operatorname{Im}\lambda\|\right) \phi_{\lambda}; \ \lambda \in \mathfrak{a}_{\boldsymbol{C}}^* \right\}.$$

By the definition of the topology of \mathscr{E} , there exist a compact subset Ω of G, a constant b>0 and $D_1,\ldots,D_m\in \mathfrak{U}$ such that

$$U \supset \{ f \in \mathscr{E}; \max_{1 \le j \le m} \max_{x \in \Omega} |f(x; D_j)| \le b \}.$$

By Lemma 46 in [6] there exist constants $c_i > 0$ and $d_i > 0$ such that

$$|\phi_{\lambda}(x; D_i)| \leq c_i (1 + ||\lambda||)^{d_j} \exp(\sigma(x)||\operatorname{Im} \lambda||)$$

for any $x \in \Omega$ and $\lambda \in \mathfrak{a}_{\mathbf{c}}^*$.

Therefore if we set $a = \max \left\{ \max_{1 \le j \le m} \left(\frac{c_j}{b}, d_j \right), \sup_{x \in \Omega} \sigma(x) \right\}$, we have

$$\max_{1 \leq j \leq m} \max_{x \in \Omega} \frac{1}{a} (1 + \|\lambda\|)^{-a} \exp\left(-a\|\operatorname{Im}\lambda\|\right) |\phi_{\lambda}(x; D_{j})|$$

$$\leq \max_{1 \leq j \leq m} \max_{x \in \Omega} \frac{c_{j}}{a} (1 + \|\lambda\|)^{d_{j} - a} \exp\left\{(\sigma(x) - a)\|\operatorname{Im}\lambda\|\right\} \leq b$$

for any $\lambda \in \mathfrak{a}_{\mathcal{C}}^*$. Next let B be a bounded subset of $\hat{\mathscr{E}}'$ and put $B_1 = \mathscr{F}^{-1}(B)$. Then since \mathscr{E} is barrelled the polar B_1^0 of B_1 is a neighborhood of 0 in \mathscr{E} . It follows that there exists a constant a > 0 such that

$$B_1^0 = \left\{ \frac{1}{a} (1 + ||\lambda||)^{-a} \exp(-a||\operatorname{Im} \lambda||) \phi_{\lambda}; \lambda \in \mathfrak{a}_{\boldsymbol{c}}^* \right\}.$$

This implies that

$$\sup_{\lambda \in a_C^*} (1 + \|\lambda\|)^{-a} \exp(-a\|\operatorname{Im} \lambda\|) |F(\lambda)| \le a$$

for any $F \in B$.

The following proposition plays an important role in this paper.

Proposition 1. The topology of $\hat{\mathcal{E}}'$ coincides with the relative topology induced by $\hat{\mathcal{E}}'(\mathbf{R}^l)$.

PROOF. Let j be the canonical injection of $\hat{\mathscr{E}}'$ into $\hat{\mathscr{E}}'(\mathbf{R}^l)$. Since \mathscr{E} is a Fréchet-Montel space, \mathscr{E}' is bornologic according to the Grothendieck theorem (cf. [11]). By Lemma 5.18 in [5] and Lemma 2, j maps bounded sets into bounded sets. Hence, j is continuous. Now we identify $\hat{\mathscr{E}}'$ and $\hat{\mathscr{E}}'(\mathbf{R}^l)$ with \mathscr{E}' and $\mathscr{E}'(\mathbf{R}^l)$, respectively. Since \mathscr{E} and $\mathscr{E}(\mathbf{R}^l)$ are reflexive, the transpose j of j is continuous. By Lemma 1 and the reflexivity of $\mathscr{E}(\mathbf{R}^l)$, Im j is closed in $\mathscr{E}'(\mathbf{R}^l)$ for the weak topology. Therefore by the Dieudonné-Schwartz theorem j is a homomorphism since \mathscr{E} and $\mathscr{E}(\mathbf{R}^l)$ are Fréchet-Montel spaces. This completes the proof of the proposition.

Let us denote by $\hat{\mathscr{E}}$ the strong dual of $\hat{\mathscr{E}}'$. For an $f \in \mathscr{E}$ we put $\hat{f} = {}^t\mathscr{F}^{-1}(f)$. Then we have $\hat{f}(\hat{S}) = ({}^t\mathscr{F}^{-1}f)(\hat{S}) = f(\mathscr{F}^{-1}\hat{S}) = f(S)$ for any $f \in \mathscr{E}$ and $S \in \mathscr{E}'$. Using the Hahn-Banach theorem, from Theorem 1.5 in [5] and Proposition 1 there exist a bounded measure μ on $\alpha_{\mathcal{E}}^*$ and an $a \in A$ such that

$$\hat{f}(\hat{S}) = \int \hat{S}(\lambda) d\mu(\lambda) / a(\lambda)$$
$$= \int S(\phi_{\lambda}) d\mu(\lambda) / a(\lambda) .$$

Choosing the Dirac measure placed at the point $x \in G$, we have

$$f(x) = \int \phi_{\lambda}(x) d\mu(\lambda) / a(\lambda) .$$

Thus we obtain the following theorem.

THEOREM 1. For any $f \in \mathcal{E}$, we can find a bounded measure μ on $\mathfrak{a}_{\mathbf{c}}^*$ and an $a \in A$ such that

$$f(S) = \int S(\phi_{\lambda}) d\mu(\lambda) / a(\lambda)$$

for any $S \in \mathcal{E}'$, where the integral exists in the sense of Lebesgue-Stieltjes. In particular, we have

$$f(x) = \int \phi_{\lambda}(x) d\mu(\lambda) / a(\lambda) \qquad (x \in G).$$

4. Integral representation of solutions of invariant differential equations

Fix a finite number of invariant differential operators $D_1,...,D_r$ on G/K. We wish to obtain an integral representation of a solution $f \in \mathscr{E}$ of differential equations:

$$D_1 f = 0, ..., D_r f = 0$$
.

We put $D=(D_1,\ldots,D_r)$. For any vector space V we denote by V^r the r-fold direct sum of V with itself. For any $f\in\mathscr{E}$ we put $Df=(D_1f,\ldots,D_rf)$. Then D defines a continuous linear map of \mathscr{E} into \mathscr{E}^r . The transpose tD of D is a continuous linear map of $(\mathscr{E}^r)'=(\mathscr{E}')^r$ into \mathscr{E}' and it is clear that $\mathrm{Im}\,{}^tD=\sum_{i=1}^r{}^tD_i\mathscr{E}'$. On the other hand by [8] (p. 70) there exist polynomials P_1,\ldots,P_r such that \mathscr{F} (${}^tD_iS)=P_i\mathscr{F}(S)$ for any $S\in\mathscr{E}'$ and that $P_i(s\lambda)=P_i(\lambda)$ for any $S\in\mathscr{E}$ and $S\in\mathscr{E}'$ and that $S\in\mathscr{E}$ we set $S\in\mathscr{E}$ and $S\in\mathscr{E}'$ and $S\in\mathscr{E$

LEMMA 3. $\hat{\mathscr{E}}' \cap P\hat{\mathscr{E}}' (\mathbf{R}^l)^r = P(\hat{\mathscr{E}}')^r$.

PROOF. Let $F_1, \ldots, F_r \in \hat{\mathscr{E}}'(\mathbf{R}^l)$ such that $\sum_{i=1}^r P_i F_i \in \hat{\mathscr{E}}'$. Then we have

$$\begin{split} \sum_{i=1}^r P_i F_i &= \Phi \big(\sum_{i=1}^r P_i F_i \big) \\ &= \sum_{i=1}^r P_i \Phi (F_i) \! \in \! \sum_{i=1}^r P_i \hat{\mathcal{E}}' \;. \end{split}$$

This shows that $\hat{\mathscr{E}}' \cap P\hat{\mathscr{E}}'(\mathbf{R}^l)^r \subset P(\hat{\mathscr{E}}')^r$. The converse is obvious.

By Theorem 6.2 in [5] $P\hat{\mathcal{E}}'(\mathbf{R}^l)^r$ is closed in $\hat{\mathcal{E}}'(\mathbf{R}^l)$ and thus $P(\hat{\mathcal{E}}')^r$ is closed in $\hat{\mathcal{E}}'$ from Proposition 1 and Lemma 3. Therefore the strong dual of Ker D is identified with $\mathcal{E}'/\text{Im}^t D$. Furthermore by Lemma 3 there exists a continuous injective linear map j^* of $\hat{\mathcal{E}}'/P(\hat{\mathcal{E}}')^r$ into $\hat{\mathcal{E}}'(\mathbf{R}^l)/P\hat{\mathcal{E}}'(\mathbf{R}^l)^r$ such that the following diagram is commutative:

$$\hat{\mathscr{E}}' \xrightarrow{j} \hat{\mathscr{E}}'(\mathbf{R}^{l})
\downarrow \qquad \qquad \downarrow
\hat{\mathscr{E}}'/P(\hat{\mathscr{E}}')^{r} \xrightarrow{j*} \hat{\mathscr{E}}'(\mathbf{R}^{l})/P\hat{\mathscr{E}}'(\mathbf{R}^{l})^{r}$$

PROPOSITION 2. j* is an injective homomorphism.

PROOF. First we remark that the inverse image of $P\hat{\mathscr{E}}'(R^l)^r$ by the map $I-\Phi$ coincides with $\hat{\mathscr{E}}' + P\hat{\mathscr{E}}'(R^l)^r$. It follows that Im $j^* = \{\hat{\mathscr{E}}' + P\hat{\mathscr{E}}'(R^l)^r\} / P\hat{\mathscr{E}}'(R^l)^r$ is a closed subspace of $\hat{\mathscr{E}}'(R^l) / P\hat{\mathscr{E}}'(R^l)^r$. By arguments similar to the proof of Proposition 1 we see that j^* is a homomorphism.

Under these preparations, our problem can be solved as follows. The method is that, reducing the case of a symmetric space to that of the Euclidean space, we apply the result of Ehrenpreis in [5].

Let $D_1, ..., D_r$ be a finite number of invariant differential operators on G/K. We consider the system of differential equations:

$$D_1 f = 0, ..., D_r f = 0$$
 $(f \in \mathscr{E})$.

As we remarked above, f is canonically identified with a continuous linear form on $\mathscr{E}'/\mathrm{Im}\,^t D$ where $D=(D_1,\ldots,D_r)$. Therefore, \hat{f} is regarded as a continuous linear form on $\hat{\mathscr{E}}'/P(\hat{\mathscr{E}}')^r$. In view of Proposition 2, by the Hahn-Banach theorem, \hat{f} can be extended to a continuous linear form on $\hat{\mathscr{E}}'(R^l)/P\hat{\mathscr{E}}'(R^l)^r$. Hence, from Theorems 4.2 and 7.1 in [5] we obtain the following

THEOREM 2. For any $f \in \mathscr{E}$ satisfying $D_1 f = \cdots = D_r f = 0$, there exist a finite number of complex algebraic varieties $V_j (1 \le j \le m)$, linear partial differential operators ∂_j $(1 \le j \le m)$ with polynomial coefficients, bounded measures μ_j on V_j and $a \in A$ such that

$$f(S) = \sum_{j=1}^{m} \int_{V_j} (\partial_j)_{\lambda} S(\phi_{\lambda}) d\mu_j(\lambda) / a(\lambda)$$

for any $S \in \mathcal{E}'$. Furthermore we have

$$f(x) = \sum_{j=1}^{m} \int_{V_j} (\partial_j)_{\lambda} \phi_{\lambda}(x) d\mu_j(\lambda) / a(\lambda)$$

for any $x \in G$.

REMARK. As Ehrenpreis stated in [5], the measures μ_j ($1 \le j \le m$) in Theorem 2 are not unique. To obtain the uniqueness, even for the (usual) Laplacian on \mathbb{R}^n , one must consider certain "functionals" on S^{n-1} which are, in general, not measures any more (cf. [7], [10]). In case the eigenvalue is equal to zero, the situation is more complicated (see [12]).

References

- M. Eguchi, M. Hashizume and K. Okamoto, The Paley-Wiener theorem for distributions on symmetric spaces, Hiroshima Math. J. 3 (1973), 109-120.
- [2] L. Ehrenpreis, Some properties of distributios on Lie groups, Pacific J. Math. 6 (1956), 591-605.
- [3] L. Ehrenpreis, A fundamental principle for systems of linear differential equations with constant coefficients, and some of its applications, Proc. Intern. Symp. on Linear Spaces, Jerusalem, (1961), 161-174.
- [4] L. Ehrenpreis, Analytically uniform spaces and some applications, Trans. Amer. Math. Soc. 101 (1961), 52-74.
- [5] L. Ehrenpreis, Fourier analysis in several complex variables, Wiley-Interscience, New York, 1970.
- [6] Harish-Chandra, Spherical functions on a semisimple Lie group, I, II, Amer. J. Math. 80 (1958), 241-310, 553-613.
- [7] M. Hashizume, A. Kowata, K. Minemura and K. Okamoto, An integral representation of an eigenfunction of the Laplacian on the Euclidean space, Hiroshima Math. J. 2 (1972), 535-545.
- [8] S. Helgason, A duality for symmetric spaces with applications to group representations, Advances in Mathematics 5 (1970), 1-154.
- [9] S. Helgason, The surjectivity of invariant differential operators on symmetric spaces I, Ann. of Math. (to appear).
- [10] S. Helgason, The eigenfunctions of the Laplacian on a two-point homogeneous space, Amer. Math. Soc. Summer Institute Stanford, (1973).
- [11] J. Horváth, Topological vector spaces and distributions, I, Addison-Wesley Publishing Company, 1966.
- [12] A. Kowata and K. Okamoto, Homogeneous harmonic polynomials and the Borel-Weil theorem, Hiroshima Math. J. (to appear).
- [13] L. Schwartz, Théorie des distributions, I, II, Hermann, Paris, 1957.

*) Department of Mathematics, Faculty of Literature and Science, Yamaguchi University and

**) Department of Mathematics, Faculty of Science, Hiroshima University