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1. Introduction

Let G be a connected semisimple Lie group with finite center and K SL maximal
compact subgroup of G. In [6], Harish-Chandra determined the Plancherel
measure for the symmetric space G/K. The spherical Fourier transform may be
regarded as a method of representing a more or less arbitrary spherical function
as a linear combination of elementary spherical functions. On the other hand
Ehrenpreis proved in [3], [4] and [5] that for various spaces W of functions or
distributions on Rn (such as the space of solutions of linear constant coefficient
partial differential equations) any Te W admits a representation

T (x) = \ exp i < z, x > dμ(z)/a(z)

where μ is a bounded measure on a ''multiplicity variety", a is an element of an
"analytic uniform structure" for W, and where the integral converges in a certain
sense. Now, since elementary spherical functions are eigenf unctions of all in-
variant differential operators on the symmetric space G/K, the above result of
Ehrenpreis suggests an analogous problem of representing an eigenfuήction of a
system of invariant differential operators as an integral of those elementary spheri-
cal functions which satisfy the same system of invariant differential equations.
In this paper, we shall give a solution to this problem.

The authors are grateful to Professor L. Ehrenpreis for helpful discussions.
He also raised the problem of extending the result of this paper to K-infinite
eigenfunctions by using matrix coefficients of the principal series representations.
We shall deal with this problem in the forthcoming paper.

2. Notation

We denote by C^G) the space of all C00 functions on G with its usual topology.
Let g be the Lie algebra of all left invariant vector fields on G and let g = ! + p
be a Cartan decomposition where ϊ is the Lie algebra of K. If x = k exp X (ke
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K, X e p), we denote by σ(x) the norm of X with respect to the Killing form. We
fix a maximal abelian subalgebra α of g such that αczp, once for all. Let α*
be the dual space of α and α£ the complexification of α*. Then the little Weyl
group W acts on α, α* and α£, canonically. For any λ e α£ we denote by
|| A|| the norm of λ defined by the Killing form. Let U be the universal enveloping
algebra of the complexification of g. For fe C^G) and Del lwe put f(x D) =
(Df)(x) (xeG). A continuous linear map / of a topological vector space E into
a topological vector space F is called a homomorphism if it is an open map of E
onto/(£)=Im/.

3. The topology of £'

Let £ be the set of functions feC™(G) such that f(k1 xk2)—f(x) for any
kl9k2eK and xeG. Then S is a Frechet-Montel space for the topology induced
by C™(G). We denote by «Γ the strong dual of S'. For an 5 e <f', the spherical
Fourier transform of S is defined by

(λea*)

where φλ is the elementary spherical function. By Theorem 3 in [1], the space

<fr of spherical Fourier transforms of «Γ is given by the set of all entire holo-
morphic functions F on α£ satisfying the following conditions (a) and (b) viz.:
(a) F(sλ)=F(λ)for any seWand λea%. (b) There exist a constant R^O and
an integer m^O such that

We equip £' with the topology so that the spherical Fourier transform is a topo-

logical isomorphism of <f' onto £". The crucial point here is that the topology

of £' is given by an "analytic uniform structure" defined by Ehrenpreis as follows.
We denote by &{Rι) the space of all C00 functions on Rι where / is the rank of
G/K and by £'(Rι) the strong dual of £(Rι). The Paley-Wiener theorem says

that the space &'{Rι) of (usual) Fourier transforms of &'(Rι) is the set of all
entire holomorphic functions F on Cι satisfying the following condition: There
exist a constant R^.0 and an integer m^O such that

sup(l + ||z||)-*exp(-Λ||Imz||)|F(z)|< + oo.
zeC1

Let A denote the set of all continuous positive functions α(z)=α1(Rez)α2(Imz)

(z e Cι), where ax dominates all polynomials and a2 dominates all linear exponen-

tials. For a n α e i w e denote by Ua the set of all elements Fe &\Rι) such that
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\F(z)\£a(z) for all zeC1. We topologize f'(Rι) so that the family {Ua}aeΛ

is a fundamental system of neighborhoods of 0 and thus by Theorem 5.19 in [5]

the (usual) Fourier transform is a topological isomorphism of &'(Rι) onto g'

(Rι). According to Ehrenpreis we call A an analytic uniform structure for #(Rι).

Since the dimension of α is /, α£ is identified with Cι. We remark that g'

is regarded as the set of all Fe£'(Rι) such that F(sλ)=F(λ) for any seW and

λea*.

LEMMA 1. &' is a closed subspace of £'(Rι).

PROOF. For each s e W we define a linear operator Φs on £'(Rι) by

Then Φs is continuous. In fact, if we put as(λ)=a(sλ) for aeA, se W and λe

α£, then it is easy to see that as e A and that the inverse image of Ua by Φs is

Uas. Next we define a continuous linear operator Φ on &'(Rι) by Φ= Γ Ί Σ

Φs, where [W~\ denotes the order of the Weyl group W. Then it is clear that Ker

(1 ~ φ) = <f. it follows that / ' is closed in / ' (« ' ) .

LEMMA 2. //B is α bounded subset of£" 9then there exists a constant', α > 0

such that

sup (1 + ||A||)- exp(-α| | Im A||)|F(λ)| ̂  α

for any F eB.

PROOF. First we prove that for any neighborhood U of 0 in cf there exists

a constant a > 0 such that

By the definition of the topology of <f, there exist a compact subset Ω of G, a

constant ί?>0 and D 1,...,Dmelί such that

(73 {/e<f max max Z>.) | ̂

By Lemma 46 in [6] there exist constants Cj > 0 and dj > 0 such that

\φλ(x; Dj)\^cj(l + \\λ\\yjcxp(σ(x)\\ Imλ||)

for any x e Ω and Aeo^.

Therefore if we set α = m a x ^ m a x ( - ^ - , d,), supσ(x)>, we have
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max max-l-O + I|A||)—exp ( - α | | Imλ||) |φ λ (x; Dj) |

^ max
l^j^m xeΩ

for any λea%. Next let B be a bounded subset of £' and put Bί=&r~ί(B).
Then since & is barrelled the polar B\ of Bx is a neighborhood of 0 in <f. It
follows that there exists a constant α>0 such that

This implies that

A e α c

for any FeB.
The following proposition plays an important role in this paper.

PROPOSITION 1. The topology of £' coincides with the relative topology

induced by £\R%

PROOF. Let j be the canonical injection of £' into £'(Rι). Since & is a
Frechet-Montel space, £' is bornologic according to the Grothendieck theorem
(cf. [11]). By Lemma 5.18 in [5] and Lemma 2, j maps bounded sets into bound-
ed sets. Hence, j is continuous. Now we identify S' and S\Rι) with &'
and #'(Rι), respectively. Since S and #(Rι) are reflexive, the transpose 7
of j is continuous. By Lemma 1 and the reflexivity of £(Rι), Imj is closed in
&'(Rι) for the weak topology. Therefore by the Dieudonne-Schwartz theorem
j is a homomorphism since S and &(Rι) are Frechet-Montel spaces. This
completes the proof of the proposition.

A . >S. A

Let us denote by £ the strong dual of «f'. For an /e*f we put / = ί

(/). Then we have f(S) = (t#r-1f)(S)=f(&r-1S)=f(S) for any/e^ and
Using the Hahn-Banach theorem, from Theorem 1.5 in [5] and Proposition 1
there exist a bounded measure μ on α£ and an a e A such that

Choosing the Diraς measure placed at the point x e G, we have
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f(x)^φλ(x)dμ(λ)la(λ).

Thus we obtain the following theorem.

THEOREM 1. For any fe <?, we can find a bounded measure μ on a% and an

aeA such that

for any Se<?\ where the integral exists in the sense of Lebesgue-Stieltjes.

In particular, we have

f(x) = [φλ(x)dμ(λ)la(λ) (xeG).

4. Integral representation of solutions of invariant differential equations

Fix a finite number of invariant differential operators Dί9...9 Dr on G/K.

We wish to obtain an integral representation of a solution feSoϊ differential

equations:

/ V = 0 , . . . , D r / = 0 .

We put D=(Dl9...9 Dr). For any vector space Kwe denote by Vr the r-fold direct

sum of Kwith itself. For any fetf we put D/=(D1/,.. , Drf). Then D defines

a continuous linear map of £ into # Γ . The transpose *D of D is a continuous

linear map of («fr)/=(<OΓ into £' and it is clear that I m Φ = Σ Φ / ' . On

the other hand by [8] (p. 70) there exist polynomials P l 5 . . . , P r such that J5"

{tDiS)=Pi&
r{S) f o r a n y Se£' a n d t h a t Pi(sλ)=Pi(λ) f o r a n y s e W a n d λec%.

Thus we have ^ ( I m Φ ) = £ Pt*'. We set P=(P l 9 . . . , Pr), P(£j= £ ?><?'
i= 1 i= 1

and p£'(Rι)r=Σ ^ ( )

LEMMA 3. £' n PS' (Rl)r = P(£')r.

PROOF. Let F l 5 . . . , Fre£\Rι) such that Σ Λ ^ e < f ' . Then we have

= Σ i ( i ) Σ
i= 1 i = 1

This shows that <f' n Ptf'(Rι)rcP(£'y. The converse is obvious.
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By Theorem 6.2 in [5] p£'(Rιy is closed in £'{Rι) and thus P (£')r

is closed in £' from Proposition 1 and Lemma 3. Therefore the strong dual of

Ker D is identified with &'\\m Φ. Furthermore by Lemma 3 there exists a con-

tinuous injective linear map j * of £'IP{£')r into £'(R1)/ p£'(Rι)r such that

the following diagram is commutative:

PROPOSITION 2. j * is an injective homomorphism.

PROOF. First we remark that the inverse image of p£'{Rι)r by the map

\-Φ coincides with £' + p£'(Rι)r. It follows that Im y* = {£' + p£'(Rιy}/p£'

(RιY is a closed subspace of#'(Rι)lP<g"(Rι)r. By arguments similar to the proof
of Proposition 1 we see that j * is a homomorphism.

Under these preparations, our problem can be solved as follows. The method
is that, reducing the case of a symmetric space to that of the Euclidean space,
we apply the result of Ehrenpreis in [5].

Let />!,.., Dr be a finite number of invariant differential operators on GjK.
We consider the system of differential equations:

As we remarked above, / is canonically identified with a continuous linear form
on β'llmΉ where D—(Dί,...,Dr). Therefore, / is regarded as a continuous

linear form on £'\P{£')\ In view of Proposition 2, by the Hahn-Banach

theorem,/can be extended to a continuous linear form on g'(Rι)\P&'(Rιy'.
Hence, from Theorems 4.2 and 7.1 in [5] we obtain the following

THEOREM 2. For any fe^ satisfying DJ-" =Z)r/=0, there exist a finite
number of complex algebraic varieties Vj(l ^j ^ m), linear partial differential
operators dj ( l ^ j ^ m ) with polynomial coefficients, bounded measures μj
on Vj and as A such that

for any Se&'.
Furthermore we have

m r

/(S)=Σ
j= 1 J \

m r

/(*) = .Σ ) v(dj)λφλ(x)dμj(λ)la(λ)
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for any xeG.

REMARK . As Ehrenpreis stated in [5], the measures μj (1 ̂  j ^ m) in Theorem
2 are not unique. To obtain the uniqueness, even for the (usual) Laplacian on
Rn, one must consider certain "functional" on S""1 which are, in general,
not measures any more (cf. [7], [10]). In case the eigenvalue is equal to zero,
the situation is more complicated (see [12]).
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