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Introduction

Let G, denote the k-th stable homotopy group Dir lim 7y, (SV) of spheres.
J.F. Adams [0] and H. Toda [9] discovered a family {«,€G,_-;,t21}, g=
2(p—1), of elements of order p, for every odd prime p, and later on L. Smith [6]
and H. Toda [11] discovered another family {f, € G(,,+,-1)q—2, =1} of elements
of order p, for every prime p=5. Our main results concern the second family.

THEOREM A. For every prime p=5 and t=1, there exist p—1 elements

Pir € G(tp2+(t—1)p+r)q—2’ r= 1’ 29"" p_lr

of order p such that

)ot,r-fse <pt,r’ D, as> for r+s é p'—l

and that the last element p, ,_, coincides with the element B,, of L. Smith [6]
and H. Toda [11]. Here, q=2(p—1) and { ,, > denotes the stable Toda
bracket.

For t=1, this family {p,,} coincides with the family {e,€ G(,24p4-2, 1=
r< p—1} constructed in [3].

Let M be a Moore space S* U ,e? and denote by .«7,(M) the limit group Dir
lim [SN*kM, SNM]. Let i: S'—>M and n: M—S? be the natural maps and con-
sider the induced homomorphism 7,i*: o (M)—G,_;.

There exists uniquely an element a € .« (M), ¢=2(p—1), such that m,i*a=
a,, and also there exists a family {f) € & (p+s—1)q—1, t2 1} of (M) which satis-
fies afyy=Pfux=0 and B, elPy-1) % PBuy> [11] (cf. [4]). This family is
closely connected with the family {f,} via the equality n,i*f,,=pf,, and our next
results are related to the a-divisibility of the elements f,, t=1.

We constructed in [4] the element & of 27,2 1), (M), which is a generator
of the ring «#,(M). The element 7,i*e generates the p-component of G,241),—2
and there is a relation ex?~2=ar~2¢=p . Also we defined in [4] a differential
D on & (M) of degree +1, originally due to P. Hoffman. D is a derivation and
the subring Ker D is commutative in graded sense. Our elements a, f,, and &
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belong to this kernel and are commutative to each other.

THEOREM B. Let p be a prime =5 and set q=2(p—1). Then there
exist non zero elements

P(t) € A (1p2 4 (t—1)p+ 1)g—1(M), t=1,2,-,

satisfying the following relations:
(i) p(1) =e,
(ii) p(Oar=2 = aP~2p(t) = Py,
(i) p()ar~! =arlp(t) =0,
@iv) p(t+u)ep(D),ar™1, pu)),
(V) mei*p(D) = pp,1»
(vi) D(p(®) =0,

where p, ; is the element in Theorem A.

Let X(r)=S2M U CS™1*2M, q=2(p—1), be a mapping cone of an element
which represents the element o” € o7,,(M), and set o7 (X(r))=Dirlim [SN*¥X(r),
S¥X(r)]. Let j,: S2M—X(r) be the inclusion, k,: X(r)—S"*3M be tke projec-
tion, and A: S2X(r)—»X(r+1) and B: X(r+1)- X(r) be the maps naturally de-
fined from a.

There exists uniquely an element € o/, ,),(X(1)) such that k,,j{B=pf,
([6] and [11]), and this defines the family {f,} by the rule , =k;4jip*. Then,
the following result enables us to construct our elements p,, and p(?).

THEOREM C. Let p be a prime =5 and q=2(p—1). Then there exist
uniquely the elements

R(r)EM(pZ-Fp)q(X(r))’ r= Is 25"'3 P“l,

satisfying the following conditions:

(@) R(1)=p"

(b) AR(r—1) = R(r)4;

(c) R(r—1)B = BR(r);

(d) O(R(r)) = 0;

(€) ke JFR(r) = ex?™'77;
where 0 is a differential on o ,(X(r)) introduced by H. Toda [11] (for the defini-
tion, see §1).

Then, the elements p,, and p(t) in Theorems A and B are defined by the
compositions:

p(t): SN+at+2 pr Jp-1 SN+atX(p__1) R(p—l)i

.. R(p—1) SNX(p—1) kp-1 , §N+(p—1)g+3pf
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pm:SN+a:+3 i, GN+at+2 ) f Jp-r SN+atX(p__r) R(p=r), ...
... R(p—=r) SNX(p—r) kp-r SN+(p—r)q+3M n SN+(p—r)q+5,

where a=(p? + p)q.
The following result is useful to prove the non-triviality of our elements.

THEOREM D. The complex bordism module QU(Z(r)) of the mapping cone
Z(r) of R(r): S¥*eX(r)—>SNX(r), a=(p? + p)q, is isomorphic, as an QY-module, to

/(p, [CP(p— )], [V +[M,]){(r), deg{(r) = N+3,
for some [Mr] G(Pa [CP(p_ 1)]) n Qg’
where [V]€ QY (,2-1) is the class of the Milnor manifold for the prime p.

This result is closely related to a problem on the realization of Q¥-modules
proposed by L. Smith [7].

Our elements in Theorems A-C are constructed starting from the element S.
We can also consider a similar procedure of constructing elements with the initial
element R(p—1). We obtain the following deeper results than the previous
theorems with t=0mod p.

THEOREM A’. For every prime p=5 and t=1, there exist elements
Pipr € Ceps +1p2-2p+r+1)g-25 l=sr=2p-2,
of order p such that
Pip,r+s€Pip,r D Us) for r+s=<2p-2,
Pivr = Prpr-p+1 for p<r<2p-2,
Pip,2p—2 = Bip2-
THEOREM B’. For every prime p=5 and t =1, there exist non zero elements
P'(tP) € A (13 41p2 — 2p+2)g - 1(M)
such that
p'(tp)ar=t = a?=1p'(tp) = p(tp),
p'(tp)a??=3 = a2P73p'(1p) = Bspy,
p'(tp+up) €<p'(tp), «*?=2, p'(up)) .
THEOREM C'. There exist elements

R(r)€ o p34p2)(X(r)) for psr=2p-2
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such that
AR'(r—1)=R'(r)A  for p+1=r=<2p-2,
AR(p—1)» = R'(p)4.
Tueorem D’. Let Z'(r) be the mapping cone of R(r)? for 1<r<p—1 and
of R'(r) for p<rZ2p—2. Then, as an QY-module,
QYz'(r) =~ Q/(p, [CP(p— 1T, [VI**+[M,])
for some [M,] e(p, [CP(p—1)]) of dimension (p3+ p?)q.

Our argument of the non-triviality of the elements p,,, p;p,, p(t), p'(tp) is a
modification of the technique of B,#0 employed by L. Smith [6]. We are
concerned with the Hurewicz homomorphism

h: QLY (r)) — QYUY (r))

for the subcomplex Y(r) of X(r) obtained by removing the top cell of X(r). For
r=1, Y(1) is the complex V(1/2) considered in [6] and the fact that the image of
h for V(1/2) is trivial played an important role in Smith’s method. In our proof,
a similar fact for r=2 will lead us to the non-triviality.

In §1 we shall construct the complexes X(r), and in §2 we shall construct
the elements R(r) and prove Theorem C. In §3, the QY-module structures of
X(7), Y(r) and R(r) will be studied and Theorem D will be proved. Theorems A
and B will be proved in §4, and the proofs of the lemmas in §2 will be given in
§5. In §6, Theorems A'-D’ will be proved, and several relations in (M)
involving the elements B, and p(z) will be obtained in §7.

§1. Z p-Spaces X r)

In this paper, p denotes always a fixed prime integer > 5 and we set g=2(p—1).
For any finite CW-complexes X and Y, we denote by

{X, Y}, = Dirlim[SN+'X, SVY]
the t-th stable track group, and set
#(X) = {X, X},

where S"X is the n-fold suspension of X and [X, Y] is the set of homotopy classes
of maps from X to Y.
Let

M = S! U e
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be a Moore space of type (Z,, 1), and
i:St— M and n: M — S2

be the natural maps. The group &7 (M) and the ring &7, (M)=2Z, (M) are
studied in [12], [11] and [4], and the notations and the results of these works
are used in this paper. Let

ae‘dq(M)’:Zp’ q=2(p_1)’
be the generator detected by the P! operation. The element
oy =nai€ G,y

is the first element of order p in G,.

We consider the unstable version of these elements. Let S©: [SN**X, SNY]—
{X, Y}, denote the natural homomorphism. By a well known result of J.-P.
Serre, there exists an element «,(3) € 7, ,(S3) of order p such that S*a,(3)=a,
and a,(3) ¢ St ;(S?). Then we can construct an element

ae[S172M, S2M]
of order p satisfying
S*a=a and a¢S[SM,SM]
(cf. [10; pp. 112-113]).

DEeFINITION 1.1. Let r=1. We put aV=a and a=aoSgo---0Sr—14q
(composition of r elements) for r=2, and we define complexes X(r) by

X(r) = S*M U ;»CSr1*2M
the mapping cone of the element a™ e [S"9t2M, S2M].

The element a‘” above represents the power «” € o, (M) of «, and we have a
sequence of cofiberings:

(1.2) Srat2pf &, S2M v, X(r) Ko, Srat3pf,

CoNvENTION. We do not distinguish between a map and its stable class,
unless otherwise specified.

We then receive the elements
ie{SOsM}D nE{M,SO}—Z,
j,.G{M, X(r)}z, kre{X(r)’ M}—rq—3‘

By (1.2), we have the following exact sequences for any finite CW-complex K:
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(1.3) "'_’{K’ M}t—rq—Z_ar—“’{K’ M}, 22— Irs {K X(r)}t e {K M}t-rq 37>
(1.3)* —’{M K) 13— {M K1t+rq+3_—’{X(r)’ K}t I {M K}t+2"’
By definition, we can construct the elements
Ae{X(r), X(r+1)}, and Be{X(r+1),X()}o

such that

Ajr =jr+1a’ kr = kr+1A’
(1.4)

Jr = Bjrsy, k.B = ak,,,.

LEMMA 1.5. Letr21 and s21, and set
4, (= 4) = jsk, e {X(r), X()}-rg-1 -
Then the following is homotopy equivalent to a sequence of cofiberings:
Ss4X(r) 45 X(r+s) 25 X(s) 4 St X(r) .

PROOF. Put M,=S2?M, M,=S5+2M, M,=S0+)a+2]M, f=a®): M,—M,
and g=8%a™: My —> M,. Then, S*¢X(r), X(r+s) and X(s) are the mapping
cones of g, fg and f, respectively, and A5 and B are given by A5(m,)=f(m,)eM,,
A5((t, m3))=(t, m3)e CM; and B(m,)=m;eM,, B((t, m3))=(t, g(m3)) € CM,,
where m;e M; and 0=<t=<1 with the identifications (0, m;)=g(m3) in Ss1X(r),
(0,m3)=fg(m3) in X(r+s), (0, m,)=f(m,) in X(s), and (1, m;)==* for all cases.
Define a homotopy H,: Ss1X(r)— X(s) between Ho=B'As and H,=% by the
rule

Hy(my)=(0, m3)  Ho((t, m3)) = (max {6, t}, g(m5)).

Then H, defines an extension E: X'(s)— X(s) of B, where X'(s) is the mapping
cone of As. Apparently we can regard X(s) as a subcomplex of X’'(s). We see
easily that E is a deformation retract and that the composition of the natural
shrinking map X'(s)-X'(s)/X(r+s)=S"1*1X(r) with the inclusion X(s)=X'(s)
coincides with 4. Q.E.D.

From the lemma, we have the following exact sequences for any finite CW-
complex K:

(1.6) = {K, X(N},_ 25 {K, X(r+ D} B (K, X(1)}, 22K, X(P)}1_qo1 =
(1.6)* -+ {X(1), K} B {X(r+ 1), K} A5 {X(r), K} 25 {X(1), K },_ g =5

where
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(]7) Ar= Al,r=jrkIE{X(1),X(r)}—q—l
and this satisfies
1.7y BsA,.,=4, for r,s=1.

CoNVENTION. We define an n-fold suspension S"X of a based space X by
a smash product S" A X, not by X AS*, and also S”f by 1 Af, 1=the identity
map of S*, for a based map f.

Following H. Toda [11; p. 207], we introduce the following

DEFINITION. A space X is called a Z,-space, if there exist two elements
uxe{MAX,X}_, and pxe{X, M A X}, satisfying the equalities

Pxbx =0, ux(inly) =1y, (mAly)dx = 1y,
(A1 ux+dx(mAlx) = Ipyax.

This condition is equivalent to ply=0 in &74(X) ([11; Lemma 1.2]) and
S"X is a Z,-space if and only if X is a Z,-space.
H. Toda then defined an operation

(1.8) 0:{X,Y}, —{X, Y}y by 0(0)=py(ly A 1)ox
for Z,-spaces X and Y, and proved the following results:

ProprosiTION 1.9 ([11; Prop. 2.1, Th. 2.2 and Lemma 2.3]). Let W, X and
Y be Z,-spaces, and ye{X, Y}, and y' e {W, X}, be elements. Then

(i) 0 is a derivation: 0(yy")=60(y)y' +(—1)"0(y’).

(ii) If Z(X)=A)(X)=L(Y)=u,(Y)=0, then 0 is a differential:
00(y)=0.

(iii) Let Z=S"YU ;CS"*'X be a mapping cone of a representative fe
[S"**X,S"Y] of y. Then Z is a Z,-space if 0(y)=0, and conversely 0(y)=0 if
Z is a Z,-space and {Y, X}_,= o (X)=o,(Y)=0.

Also he defined
(1.10) Ax: (M) — (X)) by Ax(§) = ux(€ A 1x)dx
for a Z,-space X, and proved the following
ProrosiTION 1.11 ([11; Cor. 2.5]). Let X and Y be Z,-spaces. Then

Ay(Q)y = (=D DHA(E)
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for any ¢ e o/ (M) and ye {X, Y}, with 0(y)=0.

Now we have defined in the previous paper [4; (1.6)] an operation
(1.10y D: (M) — o, (M).
This is a special case of (1.10) by the following

ProrosITION 1.12 (cf. [11; Th. 2.6, Cor. 2.7 and (3.7)]). The Moore space
M is a Z,-space and Ay=D. For X=Y=M, the operation 0 of (1.8) coincides
with —D of (1.10). The element 6=ine &/ _ (M) satisfies D(6)=1,,, and the
element a satisfies D(a)=0.

From the above results, we obtain easily the following

PropPoSITION 1.13.  Let r, s<2p. Then X(r) is a Z,-space with o (X(r))=
& ,(X(r))=0, and 0(j,)=0(k,)=0(A)=0(B)=0. The operations 0 on < .(M),
{M, X(")}s, {X(r), M}y and {X(r), X(s)}x are differentials. For any finite
CW-complex K, the following groups are linear spaces over Z,:

{K,M},, {M,K}, {K,X(n)}, {X(r),K}.

Proor. Since X(r) is a mapping cone of a map which represents o', and
since 6(a") =0 by Propositions 1.9 (i) and 1.12, it follows from Proposition 1.9 (iii)
that X(r) is a Z,-space.

Now we have from [12]

A (M)=0 for i<q-2,i# —1,0,
L(M)=Z{ar}  for i=rq,0=r<2p,
L(M)=0 for i=rq+1,rq+2,rq+3,0=r <2p.

Then by an easy calculation using (1.3) and (1.3)*, we see & {(X(7r)) =7 ,(X(r))=0.
Hence the operations 6 above are differentials by Proposition 1.9 (ii)). By (1.2),
Sra+3M is a mapping cone of j,, and so 6(j,)=0 by Proposition 1.9 (iii). In the
same way, we have 0(k,)=0 and also 0(4)=60(B)=0 from Lemma 1.5. For any
Z,-space X, the groups {K, X}, and {X, K}, are linear spaces over Z,, and in
particular the last assertion follows. Q.E.D.

§2. Construction of the elements R(r) of <, (X(r))

L. Smith [6] and H. Toda [11] considered the spectra ¥(k)(k=0, 1, 2) which
satisfy QUV(k)~QY/(p, [Vl [Vi]) as an QY-module, or equivalently,
H*(V(k); Z,)~E(Qo,***, Q) as a module over the Steenrod algebra, where V;



A New Family in the Stable Homotopy Groups of Spheres 95

is the Milnor manifold of dimension 2(p’/—1) for the prime p, and Q; is Milnor’s
element of degree 2p/ —1 in the Steenrod algebra mod p.

By definitions and [11; p. 217], the spaces S"M and S"X(1) are the (n+ 1)-th
and the (n+3)-th components of the spectra ¥(0) and ¥(1), respectively, and
there exists

@.1) B: SN+e+DaX (1) —» S¥X(1)

for a sufficiently large N such that the mapping cone of f is the (N + 3)-th com-
ponent of the spectrum ¥(2). For this element f e .9/, 1),(X(1)), the elements
By € # (sp+s-1ya—1(M) and B€ G(sp15_ 1), in [4] and [11] are defined by

By = kiB%i1, B* = B---B (s-times composition),

ﬂs = 7tﬂ(s)i *

The non-triviality of these elements is proved by L. Smith [6].
We define an element R(1) € &7 ,(X(1)) by

(2.3) R(1) = BP € o (24 o X(1)).

Then kR(1)j; =B, by (2.2). For this element B,y we proved in [4; Prop. 5.2
and 6.2, Remark at the end of §6] the following result.

2.2)

PROPOSITION 2.4. There exists the indecomposable element e € o (24 1y4—1
(M) satisfying the following conditions.

(i) &, =mei generates the p-primary component of Gp241yg-2-
(ii) D(e)=0 for the differential D of (1.10)'.

(iii) klR(l)jl = ﬁ(P) = 80(1"2 = ot”_zs.

(iv) ear~l =qr~le=0.

ReEMARK. This element ¢ is a non zero multiple of that of [4]. The
element ¢ in [4] satisfies B,y =xex?~2 for some x#0eZ,, and in this paper, we
replace & so that B, =ear~2,

The following lemma is easy. We denote by C, the mapping cone YU ,CX
of f: X—Y. Here we identify (0, x) with f(x), and (1, x) with the base point, for
any xe X.

LemMma 2.5. (i) Let f: X>Y, f': X'->Y',a: X—>X’' and b: Y=Y’ be maps
such that bf is homotopic to f'a. For any homotopy A,: X—Y' between A,=bf
and A,=f"a, we define a map
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e=¢e(4,):C,— Cp

by e(y)=b(y), e(t,x)=A,(x) for 0=t<1/2, and =(2t—1,a(x)) for 1/25t<1,
where yeYc Cp, (t,x)eCX<C,. Then we have a homotopy commutative
diagram of cofiberings

X L.y — C, — SX
ja Jb le lSa
X'LY'—»C,»——*S’X'.

(ii) Further let g: Y-Z2,9': Y'>Z' and c: Z—Z' be maps such that cg
is homotopic to g'b with homotopy B,: Y-Z', By=cg, By=g'b. Let F:C,;—
C, be the map defined by F(z)=ze€Z, and F(t,x)=(t, f(x))eCY, (t,x) e CX,
and F': C; ;. —C, be the map defined in the same way. Then, we have a ho-
motopy commutative diagram

F
Cgf E— Ca
Je(A,oBt) le(m)

P
Cg'f’ — Cg, y

where the homotopy A,0B,: X —Z’' between cgf and g'f'a denotes the ‘‘composition
of two homotopies” B, and. A,, and is given by B,,f for 0<t<1/2 and g'A,,_,
for 112<t<1.

PROOF. (i) is obvious. Define a homotopy H,: C,;—C, by
Hy(z) = c(z), Hyt, x) = B, f(x) for 0=t = 1/2,
9" Aar-2(x) for 12=<t=<(2+0)/4,
Hy(t, x) =
((4t-2-0)[2—06), Ay(x)) for 2+60)/4=<t=1.
Then, Hy=e(B,)F and H,=F'C for some C homotopic to e(4,°B,). Q.E.D.
The rest of this section is devoted to prove Theorem C.
ProoF oF THEOREM C (FIrsT STEP). The condition (c) implies
(e B~!R(r) = R()B1,

and we first prove the theorem for r < p—2 under the conditions (a), (b), (c)’, (d)
and (e).

LEMMA 2.6. (i) {X(1), X(")}4—2,-1 = 0 for 1 <r < p—4,a=(p*+p)q.

(1) o*: o (p24i)g-1, (M) = (2414 1)g-1(M) is isomorphic for 2<i < p—2.
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This lemma will be proved in § 5.
Now, suppose inductively that there are R(s), s<r, satisfying (b) and (c)’,
for some r. Then, by Lemmas 1.5 and 2.5(i), we have the relation

(*),-1 R(r—14,-, = 4,_,R(1) (4,-1 =Jr-1ky) -
Since B~14,=4, by (1.7)', we have
By (R(r)4,— 4,R(1)) = R(1)4, — 4,R(1).

According to [11], our X(1) coincides with V(1) in [11] and our element
A,=jk,isequaltod, in[11; p.219]. By[11; (4.5)(i)] there is a relation 24, —
2B4,8+A4,8%=0, which implies f?4,=4,8°. Hence we have By '(R(r)4,—
A,R(1))=0 by (2.3). Applying Lemma 2.6(i) to the exact sequence (1.6) for K=
X(1), we obtain the relation (x),: R(r)4,=4,R(1), if r<p—3. Again by Lemmas
1.5 and 2.5(i), we get an element R(r+ 1) satisfying (b) and (c)’, if r<p—3. Since
k,R(r)j,ar~t=k,R(1)j, =exP~2 by (1.4) and Proposition 2.4 (iii), it follows from
Lemma 2.6 (ii) that these elements R(r) satisfy (¢). Thus we have

(2.7) There exist R(r)e L (X(r)), r<p—2, a=(p%+p)q, satisfying (a),
(b), (c)’ and (e).

ReEMARK. Since Lemma 2.6(i) is not valid for r=p—3, the above argu-
ment does not hold for r=p—1.

Following [4], we define some elements of o7 ,(M). Let
é=ines_(M).
This is a generator of &/ _;(M)=Z, with D(6)=—0(5)=1,. We put
B; = (B1)0)P "*B(s) € ¥ (p2 + 5~ 2)g+ 25— 3(M) for 1=<s<p,

tﬁ(,)éBs for 1<s<p

€ (2 - —s(M)
(p2+p+s—2)g+2s—5 ’
ﬂ(z)éﬁ(p—l) fOI‘ s = p

B = B1y0B1 € # (p242p-1)9-5(M),

Cy = adB € A (2 45-1)g+ 25— 2(M) for 1=<s<p (C,=0),

Ci=adBe A p24pis-1)q+25-6(M) for 1<s=<p (Cy=0).
Except B,_ these elements belong to KerD=Kerf. We also denote by

Z{V15ee0> Vn}

the linear space over the field Z, with basis y,,..., 7,.
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LemmaA 2.8. Let a=(p?+p)q and R(r) be the elements of (2.7).

(i) The groups o (X(r)), 1<r=<p-—2, are equal to

Z,{R(1), j, B3k} for r=1,

Z,{R(2), j 0Bk} for r=2,

Z,{R(3), j3C46ks, j30C4ks} forr=3,p217,
Z,{R(3), j3C46ks, j30C4 k3, j30B0k;} for r=3,p=5,
Z,{R(r)} for 4sr=p-2,p=T.

(ii) ,4,(X(M)nKerOnKerk,,j* nKerdA*=0 for 2<r < p-2.
(i) &,(X(™) n Ker® n Kerk,,j* n Ker4*=0 for r=2,3.
This lemma will be proved in §5.

Proor or THEOREM C (SEconD STEP). By [11; (3.7)], the element B of
(2.1) satisfies 6(8)=0, and hence we have

O(R(1)) = 0

by Proposition 1.9(i)) and (2.3). If the element R(r—1) of (2.7) satisfies (d):
O(R(r—1))=0, r< p—2, then for the element R(r) of (2.7) the element &=60(R(r))
satisfies 6(¢)=0, k,&j,= —0(k,R(r)j,)=D(ea?~1"7)=0, and £4A=0(R(r)A)=6(AR(r
~1))=0 by Propositions 1.9, 1.12-1.13 and 2.4(ii)). Hence (=0 by Lemma
2.8(ii). Therefore by the induction we see that the element R(r) of (2.7) satisfies
the condition (d).

Next we prove the uniqueness. If an R'(2)e &/ (X(2)) satisfies (b), (c)’,
(d) and (e), then the difference {=R(2)—R’(2) satisfies 0(¢)=0, k,&j,=0 and
EA=0. So £=0 and R’(2)=R(2) by Lemma 2.8 (iii). In the same way, R(3)
is unique. The uniqueness of R(r), 4<r=<p-—2, follows immediately from the
last of Lemma 2.8 (). Thus we have obtained

(2.9) There exist uniquely the elements R(r), r<p—2, satisfying the
conditions (a), (b), (c)’, (d) and (e).

LemMA 2.10. Let a=(p?+p)q.
(i) ,4+1(X(2) n Kerf n KerB* =0.
(i) X2 n Kerf = Z,{R(2)} for the element R(2) of (2.9).

The proof of this lemma will be given in §5.
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ProoF or THEOREM C (THIRD STEP). We consider the condition (c) for r=3.
From the condition (b) we have R(r) A" 1=A""1R(1). From Lemmas 1.5 and
2.5 (i), it follows that there exists R'(r—1) € &, (X(r—1)) such that R'(r—1)B=
BR(r). We compare this with R(r—1). The element R'(r—1) also satisfies (e),
since k,_R'(r—1)j,-,=k,_R'(r—1)Bj,=k,_BR(r)j,=ak,R(r)j,=ex?~". Hence,
by Lemma 2.8 (i) we have R'(r—1)=R(r—1) for 5=r=<p-2, p27, R'(3)=R(3)
mod Z,{j3C40ks, j30C4ks} (+Z,{j;0B6ks} if p=5) and R'(2Q)=R(2)modZ,
{j.0B46k,}. By [4;(5.8),(5.13)], C4da=6Cya=0and B}da=0, and so C,6k;B=
0C4k3B=0B{0k;B=0 by (1.4). Therefore R(3)B=R’(3)B=BR(4), p=7. By
Lemma 2.10(i), we see that 8(R'(2))=0, and hence R'(2)=R(2) by Lemma 2.10
(ii). Thus we have proved

(2.11) The elements R(r), r<p—2, of (2.9) satisfy the condition (e).
Finally we consider the element R(p—1).

LEMMA 2.12. Let a=(p%+p)q.

(1) kp_yujp-1: A (X(p—1)) > A 24 1yg-1(M) is monomorphic, and its
image is the subgroup Z,{e, C,6, 6C,}.

(i) #,+1(X(p—1)) n Kerf n Kerk,_14j3-1 =0.

(i) Kkys: {X(p—1, X1)}, — {X(p—1), M},_,-3 is monomorphic and
{X(p—1),M},_,_5 n Kerjz_; n Kerf =0.

(IV) ]T' {X(l), X(p"'l)}a+(p—2)q — {M’ X(p_l)}a+(p—2)q+2 is monomor-
phic and {M, X(p—1)},4(p-2)g+2 N Kerk,_,4n Ker@ = 0.

This Lemma will be proved in §5.

Proor oF THEOREM C (LAsT STEP). By Lemma 2.12 (i), there exists an ele-
ment R(p—1) e o, (X(p—1)) such that k,_;R(p—1)j,-,=¢, and this element is
unique. By Lemma 2.12 (i), 8(R(p—1))=0 since O(R(p—1)) belongs to the left
side of Lemma 2.12(ii). Consider the elements {=BP~2R(p—1)—R(1)B?~2¢
{X(p—1), X(1)}, and n=R(p—1)47"2— AP"2R(1) € {X(1), X2~ D}at (p- 20"
Then ky&j,— =022k, R(p—1)j,- 1 —k;R(1)j; =a?"2e—ea?"2=0 and O(k.{)=
0. So we have (=0 by Lemma 2.12(iii). By a similar way using Lemma 2.12
(iv) instead of (iii), we also have n=0. Thus, we obtain

(*) BP"2R(p—1) = R(1)B*"2,
(*) R(p—1)4?P~2 = AP=2R(1).

Applying Lemma 2.5(i) to the cofibering in Lemma 1.5, we can construct
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an element R'(p—2)e o, (X(p—2)) with R(p—1)A=AR'(p—2) from (*). This
element satisfies k,_,R'(p—2)j,_,=¢x, and hence R'(p—2)=R(p—2) for p=7
and R'(3)=R(3)mod Q=2Z,{j;C40ks, j;0C,ks, j30B;0k;} for p=5 by Lemma
2.8(1). We therefore have R(p—1)A=AR'(p—2)=AR(p—2) because A,0=0.
In the same way, (x)’ leads to BR(p—1)=R(p—2)B. Thus, we have obtained

(2.13) There exists uniquely the element R(p—1) satisfying the conditions
(b)-(©).

By (2.9), (2.11) and (2.13), we complete the proof of Theorem C.  Q.E.D.

ReEMARK. Theorem C does not hold for r=p. There exists no R(p)e
& (p2+pg(X(p)), since the existence of an R(p) yields the decomposition &=
(k,R(p)j,) while ¢ is indecomposable.

REMARK 2.14. Let n, and 5, be the elements of 7, (X(p—1)) such that
ky_im1jp-1=C,0 and k,_,n,j,-1=06C,. By Lemma 2.12(i), these are unique
and we have

(2.15) L (X(p—1)) = Z,{R(p—1), 01,12} .

According to [4], the conditions (i)—(iv) of Proposition 2.4 do not uniquely de-
termine the element e. It is determined up to the subgroup Z,{C,6—6C,}. The
element R(p— 1) satisfying (b)—-(d) of Theorem C is determined up to the subgroup
Z,{n;—n,}, and any different choices of R(p—1) and & are related with each other
by the equality

kp—1(R(P_1)+x(’11_ﬂz))jp—l = &+x(C,0—0C,), xEZp'

§3. Complex bordism modules

The complex bordism ring QY consists of all bordism classes of stably almost
complex manifolds. It is a polynomial ring over Z having one polynomial-
generator x; € QY; for each even degree 2i>0. If i+ 1=p* for a prime p, then one
may choose x; such that all integral Chern numbers of x; are divisible by p, and a
manifold M?2! representing such x; is called a Milnor manifold (for the prime p).
The complex projective space P=CP(p—1) is a Milnor manifold of dimension
2(p—1), and we denote by V a Milnor manifold of dimension 2(p2—1) for the
prime p. (Cf. [8; pp. 128-130] and [6]).

For a finite CW-complex X, the reduced complex bordism module of X is
denoted by QY(X). It is a module over the ring QY, and the functor QY(-) forms
a reduced homology theory. Denote by S: QY(X)—QY, ,(SX) the suspension
isomorphism.
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For X=M, we see easily that
QM) = QY/(pyp,  peQY(M),

as an QY-module, where (p) stands for the ideal generated by pe Q§=Z. L. Smith
[6; Th. 1.5] has proved the following result.

LEmMMA 3.1. The Q¥-homomorphism
ay: QYSIt2 M) — GY(S2M)
is given by a,(ST*2u)=[P]S2p, [P1=[CP(p—1)].

Then (a7), sends S™*2yu to [P]"S2u, and it is a monomorphism since [P]”
is not a zero divisor in QY/(p). So we obtain the following result.

ProPOSITION 3.2. QUX(r)=9QY/(p, [PT)-&(r) as an QY-module, where
E(r)=J,+(S2w) € BY(X(r)) and (p, [P]") stands for the ideal generated by p and
[PT.

. Now our element f of (2.1) coincides with the element } constructed by
L. Smith [6; Th. 4.10]. He also has proved in [6; Prop. 4.11] the following
result.

LeEmMMA 3.3. The QY-homomorphism
B QYSN+ DX (1)) — QYSNX(1))

is given by By(S N*+tDeE(1))=[V]SVE(1) where [V] is the class represented by
the Milnor manifold V of dimension (p+1)q.

PrOPOSITION 3.4. Let 1=Sr<p—1 and set a=(p*+p)q. Then the QY-
homomorphism

R(r)5: QY(SV+X (1)) — QYSVX(r)
satisfies R(r)(SV+*¢(r))=([V1? +[M,DSE(r) for some [M,] e (p, [P]) n Q7.
Proor. Consider the Qf-homomorphism
Ax: QYSIX(r) — QYX(r+1)).

Then A,(S1¢(r))=A4j,+(S1"2u) by Proposition 3.2, and A, j,+(ST2u)=7j,+ 1%
(S9*2u)=[P]j,+ 1x(S2w)=[PJé(r+1) by (1.4) and Lemma 3.1. Hence we have

(3.5 Ax(S9¢(r)) = [PIE(r+1).
By Lemma 3.3 and (2.3), the proposition holds obviously for r=1. If the
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proposition holds for some r—1, then we have
[PIR(r)«(SN*2¢(r) = R(n«([PISN**¢(r))
= R(r)xAx(SV+**2¢(r—1)) by (3.5)
= A R(r—1),(SV+a*4¢(r—1)) by Theorem C(b)
= Au([VIP+[M,_ DS*(r—1)
= [PX[VI?+[M,-])SVE(r) by (3.5).
By Proposition 3.2, the kernel of the left translation
[P1-: QY(X(r)) — QYUX ()
is the submodule generated by [P]"~1&(r), and hence
R(r)«(SY*2E(r)) = (V1P +[M, - ]+ [NI[PT~1)SVE(r)

for some [N]eQY. By putting [M,]=[M,_,]1+[N]J[P]!, the proposition
holds for r. Q.E.D.

Proor oF THEOREM D. The theorem is a direct consequence of Proposi-
tion 3.4. Q.E.D.

We consider the Hurewicz homomorphism
h: {S° X}x = Q"(X) — GY(X),

which is induced by the inclusion S« MU of spectra. We are concerned with
the image of h for the (rq +4)-skeleton

Y(r) = S3 U pe4 ] arerq+4

of X(r). Let
3.6) Y(r) L X(r) Ztr, Srats
3.7 S2M iry Y(r) K, Srata

be the cofiberings, where I, and j, are the inclusions. Denote the boundary
homomorphisms for (3.6) and (3.7) by

0: O, (Sra*3) — GY(Y(r)),
&': QY (Sra+4) — (Y(S2M).

Then, applying 3Y( ) to (3.6)~«3.7) and using Lemma 3.1 and Proposition 3.2,
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we obtain easily the following

PROPOSITION 3.8. Let n(r)=jx(S?1) € Q4(Y(r)) and t(r)=00,4+5€ QY14
(Y(r)), where a;€ QV(S?) is the canonical generator. Then we have the direct
sum decomposition

QYUY () = /(p, [PT)n(r)+Q4-2(r).
Also the following relations hold:
Lan(r) = &),  (mk)*&(r) =0,
kpx®(r) = po,gs4,  0'0rg00a = [PTS?p.

Now let y be any element of {S°, Y(r)},. We consider its image h(y)e
QY(Y(r)) by h. If n is even, then h(y) lies in QYz(r) and its k.,-image lies in the
image of h: G4—QY, which is trivial for *#0 and is isomorphic for *=0 [8;
p. 133]. Since k., is monomorphic for even n by Proposition 3.8, it follows
that h(y)=0if n#rq+4 and h(y) is an integer multiple of 7(r) if n=rq+4. Next,
if n is odd and n<rq+4, ji.: {S° M},_,—{S° Y(r)}, is epimorphic. Also
Ji: QU_o(M)—>QY(Y(r)) is epimorphic by Proposition 3.8. Using the known
results [1; Th. 3.1 and Cor. 3.3] for the image of h: {S°, M},—QY(M), we see
that h(y)=0 if n# 3 mod g and h(y) is a multiple of [P]/n(r) if n=jqg+3. Finally,
if n is odd and n=rq+4, then h(y)=0 is proved as follows. Let K=S"Y(r)U,
eNtntl be the mapping cone of . Consider the annihilator ideal

AK) = {xeQ¥|xk =0 in QYK)}

of the canonical class k € O, ;(K), which is the h-image of the inclusion SN*3 <
K. By Proposition 3.8 and an easy calculation, we have

A(x) = (p, [PT", [M]),

for [M]eQY_; determined by h(y)=[M1In(r). We apply the discussion in the
proof of Theorem 4.3 of [2] to our K*). We consider the case X(g,f)=K,
t=1, [V,1=[P], e=0 and [V]=[M] in the proof of this theorem. Then, the
proof implies that [M] lies in (p, [P]"). Hence we have h(y) e (p, [P1)n(r)=0
by Proposition 3.8.

From the above discussions, we have proved

PrROPOSITION 3.9. The image of the Hurewicz homomorphism

h: {S°, Y(r)}» — QYU(Y(r))

*) The author is indebted to Prof. Larry Smith for this discussion.
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is additively generated by the following elements:

[PPn(ry  O=j<r), ).

§4. Proof of Theorems A and B

DEerFINITION 4.1. Let t=1 and 1=Zr=<p—1. Then we define p(t,r)=
kp—rR(p-r)tjp—re'M(tp2+(t—1)p+r)q—I(M)'

For t=1 and for r=p—1, we see immediately
4.2) p(l,r) = gap~ 177,
4.3) p(t, p—1) = Bupy»

by (e) of Theorem C and by (2.2)-(2.3), respectively. By (1.4) and (b) of Theorem
C,

p(t,r—Da =k, R(p—r+1)'4j,-,
= kp—rs1AR(P—1)"j -, = p(t, 1),
and in the same way ap(t, r—1)=p(t, r) by (c) of Theorem C.
(4.4 p(t,r) =oap(t,r—1) = p(t,r—1)ax.
4.4y p(t,r) = a~1p(t, 1) = p(t, D"t
We have also
4.5) o Tp(t,r) = p(t, )r" =0,

since af~"k,_,=j,_,0?7"=0. Then, the stable Toda bracket {p(t,r),aP™",
p(s, r)) is well defined, while p(t+s, r) belongs to this bracket because p(t+s, r)
= (kp—rR(p_ r)t)(R(p— r)sjp—r) andj:—r(kp—rR(P_ r)t) = p(ta r)9 kp—r*(R(p - r)sjp—r)
=p(s,r). Thus, we obtain

(4.6) p(t+s,r)elp(t, r),aP™", p(s, 1)) .

We have proved 0(j,-,)=0(k,_,)=0 in Proposition 1.13 and 8(R(p—r))=0
in Theorem C(d). Hence we have

(47) D(p(ts r)) = Oa
by repeating Proposition 1.9 (i) and by Proposition 1.12.

DEerFINITION 4.8. Let t=1 and 1=r<p—1. Then we define
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p(t) = p(t, 1) € & (1p2 41— 1)p+ 1)g-1(M) 5
Pty = Ttp(t, r)l € G(tp2+(t- 1)p+r)g—2-

PrOOF oF THEOREM A. Obviously pp,,=0. By (4.4), p,,+, is equal to
np(t, r)asi, which lies in {p,,, p, o> because i*(np(t, r))=p,, and 7w, (a5i)=oa,.
By (4.3) and (2.2), we have p, ,_ 1 =B,

Consider the element

7 =R(Pp—1)j,- i€ {S%, X(p—")}u+3s a=(p>+Dp)q,

and the commutative triangle:
SN+at+3 ASzN’ YAh SNX(p—r) /\MU(NI)

Jp-ri\h R(p—r)tA1L

SN*tatX(p—r) AMU(N'),

where h: S2¥" =« MU(N’) is the inclusion, which defines the Hurewicz homomor-
phism h: 34r()->QY(-). Then, yAh represents the Hurewicz-image h(y)e
QY aee3(SVX(p—71)) of y, and j,_,i A h represents the element S¥é(p—r)e 0¥, 5
(S¥X(p—r)) in Proposition 3.2. We have therefore by Proposition 3.4

h(y) = (V1P +[M,_,D)'S"E(p—r)
= [V]*'S¥(p—r)  mod(p, [PDS¥é(p—1).

Now, assume that p,,=nk,_,y=0. Then by using (3.7), there exists an
element y' € {S% Y(p—r)},+s such that [,_,.(y")=y. By Proposition 3.9, we
have h(y')=0. Thus, h(y)=I,_,4h(y")=0. This is a contradiction. Therefore
p:»#0 and the proof is complete. Q.E.D.

Proor orF THEOREM B. (i) is obvious. (ii) follows immediately from (4.3)
and (4.4)’. (iii) and (iv) are restatements of (4.5) and (4.6), respectively. (V)
follows immediately from Definition 4.8. Since p,; #0 by Theorem A, p(t) is
non zero. (vi) is a restatement of (4.7) for r=1. Q.E.D.

REMARK. We have noticed in Remark 2.14 that the element R=R(p—1)
is determined modulo n=#n, —#, if we do not fix ¢ of Proposition 2.4. By the
definition of n and by the results on & ,(X(1)) of [11], we have n=A?r~2¢Br~2
for the element &=(f2a"—a"B?)f'P~2 e of (X(1)), where a” e/, ,(X(1)) and
B € o, (X(1)) are the generators of the ring o/,(X(1)) given in [11]. We
also have &pr=pré=(f'r+2q" —a"Bt?+2)f’P=2 by using the results of [11].
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Hence, 1?>=0, R'n=nR* and k,_ R'nj,_=0a0(B(1)0)"~ B p+2)—0(B1,0)?~2
Bep+2y0, While the last element is trivial by [5; Corollary 2]. Thus, we see that
any choice of ¢ does not change the elements p(t) and p,, (except the initial ele-
ments p(1)=¢ and p, ,; =¢).

§5. Auxiliary calculations

In this section, we shall prove Lemmas 2.6, 2.8, 2.10 and 2.12 in §2. The
calculations in this section are based on the results in [4; Th. 0.1] for the ring

o (M).
Let &7} (M) be the subgroup of «,(M) generated by the following elements
of degree k:
°B.6° of degree (p2+s—2)q+2s—3—a—b, 2<s<p,
6°C 00 of degree (p?+s—1)q+2s—4—a—b, 2<s<p,
09B.ob of degree (p?2+p+s—2)q+2s—5—a—b, 1<s=Zp,
04C.o° of degree (p?2+p+s—1)q+2s—6—a—b, 2=<s=<p,
0°B'] 6® of degree (p?+2p—1)q—5—a—b,
0%(P1)0) €6 of degree (p?+rp+1)q—2r—2—a—>b, r=0,1,
0%atoP of degree (p2+i+1)q—1—a—b, 0<i<p-2,
d%atdadd of degree (p2+i+2)gq—2—a—b, 0<igp—4,

eaP~2500° of degree (p2+p)gq—2—a,
@o° of degree (p?+p)gq—3—a.

Here a, b=0 or 1 and we use the notations of elements appeared ahead of Lemma

2.8.

Also let A(e, 6) be the subring of o7 ,(M) generated by the elements « and 9,
and let 4,(a, 0)=A(x, 6) N 7, (M). Then by [4; Th. 0.1], we have the direct sum
decomposition:

L (M) = (M) + Ax,0)  for (p?>—1)q £ k= (p*+2p)g—4.

By [4; Th. 4.1], the homomorphisms a*: A,(a, 6)— Ay, (2, 6) and o, : Ay, 5)—
Ay (2, 0) are isomorphic if k=0. Hence, by (1.3)-(1.3)* for K=M, we obtain
the following

LEmMA 5.1. (i) For (p?+r—1)q+2=<k=(p2+2p)q—2, the following se-
quence is exact:

A jrg-2(M) 2 Ly (M) 222 (M, X(1)} i 225 A yq3 (M) 222 )3 (M).
(ii) For (p?—1)q—2=k=(p2+2p—r)q—7, the following is exact:

L ir3(M) 2 L ypgi3(M) 25 kL {X(r), MYy 25 oty (M) 22 A jrrgr2(M).
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Also, there exist the following exact sequences:
(5.2) = {X(r), M}yogq—2 =5 {X(r), My 22 {X(r), X(5)}4
S {X(r), M } ooz
(5.2)* “""{M, X(S)}k+3 -2, {M, X(s)}k+rq+3

K2 (X(r), X(5)} 225 { M, X(8)} ez —
In the following, we put

a=(p>+p)q
and Z,{y,,..., 7, stands for the linear space over Z, with basis y,..., ¥,.

PROOF OF LEMMA 2.6. (i) Since o,_,(M)=0, &},_,,_(M)=Z {ea?~3} and
A yg-1(M)=Z,{ear~2}, it follows from Lemma 5.1(ii) that {X(1), M}, ;3=
0. We have &, (41)g-1(M)=Z {eaP™ 2"} =a* | _(,12y,-1(M) for OSr=<p-3.
Also oy (,_2y4-2(M) N Kera*=0for 1<r<p—4. Hence, {X(1), M},_(;+2)0-4=
0 for 1<r<p—4 by using Lemma 5.1(ii). From these results on {X(1), M},,
we obtain {X(1), X(r)},-2,-1=0 for 1<r<p—4 by using (5.2).
(i) This is obvious, since W{,24;),-1(M)=Z,{ea’"'} for 2<i<p-—1.
Q.E.D.

Proor oF LEMMA 2.8. (i) Since &Z,_,,_(M)=Z {eap~ 17"} =Kera™* for 1 <
r<p—2and &,(M)=0, we have {X(r), M},_,,_3=Z,, generated by an element
&, satisfying j*¢,=eaP~ 17", by using Lemma 5.1(ii). The element R(r) of (2.7)
satisfies k,R(r)j,=gx?~17", and hence we can take &,=k,R(r) and so k,y: & (X(7))
—{X(r), M},_,,—3 is epimorphic. Since «,,;(M)=0 and &, (M)=0, k}:
A girg+ 1(M)={X(r), M},_, is isomorphic by Lemma 5.1(ii). Hence we have
{X(r), M},_,=Z,{Bsk,} for r=1, =Z,{0B,6k,} for r=2, =Z,{Cydks, 6Cyk;}
(+Z,{0B'|6k,} if p=35) for r=3, and =0 for 4<r=<p-—1, from the results of
da+rq+ I(M)

Since 7,4 (M)=0 and &,_,,(M) is equal to 0 for 1Sr<p-3 and to Z,
{0C30} =Kera} for r=p—2, the group {X(r), M},_,,_, is equal to 0 for 1=r=
p—3 and to Z,{{} for r=p—2 by Lemma 5.1(ii), where ¢ satisfies j5_,£=6C;0.
Then the element a~2¢ belongs to k}_,{aP~2, C;6, a»"2) by the definition of
the Toda bracket. As <{a?~2, 6C;30, aP~2) ={aP~3, adC;30, aP~2)=<{ar~3, 0,
a?~2)=0mod zero, we see af 2¢(=0. Therefore, af 2{X(r), M},_,,—,=0 for
1<r<p-2. Thus, the desired results follow from (5.2).

(ii) Inthe same way as (i), we can calculate the group <7, {(X(r)) as follows:
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(5.3) Ly (X()) = Z,{j,B46k,,j,0BLk,} for r=2,
Z,{j3Ci4ks} forr=3,p=17,
Z,{j3C4ks, j3B10ks, j36B1ks, &} for r=3,p=>5,
0 fordsrsp-2,p=217,

where & satisfies k3&j3=0C;0.
We have also

54 Lo o(XO) 0 I kY = Z,{j,Bik,} for r=2,
Zp{jSBlik39j36B;16k3} for r= 3: b= 5 ’
0 for 3sr=<p-2,p=17.

Apparently, all elements in (5.3) except £ lie in the kernel of k%j,,. Since
D(B4)=D(C4)=D(B})=0, we have the following values of 0: .7, (X(r))—
& .+ (X(r)) by Propositions 1.9, 1.12 and 1.13:

0(j,B4dky) = joBiky, 0(j20B4k,) = —j,Byk,,
0(j3Ciks) = 0, 6(j3B16k3) =j3B1ks, 0(j30B1k;) = —j3Biks.
Therefore by (5.4), we see that

Z,{j(B46+0By)k,} for r =2,
A o1(X(r) n Ker0 n Kerk,yj¥ = Z,{j3(B16+0B})k;} for r=3,p=35,
0 for 3sr=<p-2,p=T.

By (1.4), A*j,(B40+0By)k, =j,(B40+0By)k,; and A¥j;(B16+0B1)k;=
Jj3(B16+0B7)k,, which are non zero since kX ;ju: gipqe2(M)—{X(r—1),
X(r)}a+4+1 is monomorphic for r=2, 3. Thus, (ii) is obtained.

(iii) This is proved similarly as (ii) by using (i) and (5.3) instead of (5.3) and
(5.4). Q.E.D.

Proor oF LEMMA 2.10. (i) Asis seen in the proof of Lemma 2.8 (ii), &7,
(X@)nKer0=Z,{j,(B4,6+0By)k,}. By (1.4), B*(j,0Byk,)=j,0B,0k;=0 and
B*(j,B46k,)=j,B4dak,=j,C4ks, which is non zero. This shows (i).

(i) By Lemma 2.8(i), this follows from the relations 6(R(2))=0 and
0(j,0B40k,)= —j,B46k,—j,0Bk,# 0. Q.E.D.

ProoF oF LEMMA 2.12. (i) Since &, (M)=0 and &, p-1)+1(M)=0,
{X(p—1),M},_,=0 by Lemma 5.1(ii). By a similar calculation, we see that
Jp-1:{X(P—=1), M}4_ (p—1)g-3=> F 4 (p-1)g-1(M)=Z,{¢, C;0, 6C,} is isomorphic.
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Also, k,_j4: A(X(p—1)—>{X(p—1), M},_(,—1)4-3 is isomorphic, and (i) is
proved.
(ii) Similarly as Lemma 2.8 (ii), we obtain

z{8 for p=1,

Z {8, jp—10Cy0k,_4} for p=5,

where ¢ satisfies k,_;&j,-1=C,. Also, 0(j,—10C,0k,_1)=—j,-1Cpdk,_1+
Jp-10Cpk,_1#0. This shows (ii).

(iii) Asisseenin (i), {X(p—1), M},_,=0. So, k,, is monomorphic by (5.2).
Since )y (,-2)f(M)=Z,{0C},6}=Cokerar~'*, we see from Lemma 5.1 (ii) that

o, +1(X(p—1) ={

{X(p_l)a M}a—q-—3 n Kerj:—l = Zp{(scitékp—l}

Since 6(6C40k,_ ;)= —C4dk,_,+6C4k,_,#0, we obtain (iii).
(iv) This is proved in the same way as (iii). Q.E.D.

At the end of this section, we prepare some lemmas which are applied in the
next two sections. These lemmas are proved by an argument similar to the previ-
ous calculations, and the proof is omitted.

LEMMA 5.5. Let b=(p*+p—1)g—1(=a—q—1).
(i) The image of

ky—2sj3-20 LY X(P—2)) — & (p241)q-2(M)
is the subgroup Z ,{€—ed—de, 6C,0}.
(ii) 4 1(X(p—2)) N Kerk,_,4j5-2 N Ker6 =0.
(i) Kk, 24J%: {X(1), X(P=2}p+ (p-3)yg — Fp—q-1(M) is monomorphic.

LeMMA 5.6. Let R=R(p—1) and A=4,_, ,_1=j,-1k,~,. Letn, andn,
be the elements of (2.15). Then we have

d(p2+1)q—1(X(p_ 1)) = Zp{RA’ AR’ 'hA, Ar’l’ ’12A3 Ar’Z} s
M(pz—p+2)q—2(X(p_ 1) n Im k:—ljp— 1% = Zp{ARA9 4n 4, An, 4},
and hence

d(p2+1)q—l(X(p—1)) n KCI'A* n KCI‘A* = 0.

§6. Proof of Theorems A’—D’

From now on we denote simply by
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R and 4
the elements R(p—1) and 4,_; ,_;=j,-1k,-; of «(X(p—1)), respectively.
LEMMA 6.1. ﬂ.x(p_l)(sa) = RA‘—AR .

Proofr. Put &=14(ed)—RA+ AR, X=X(p—1), and denote simply by j=
Jp-1and k=k,_,. Then, 42=jkjk=0 by kj=0 and 4ARA4 = jek by Theorem C(e).
So we have

A = Ax(ed) jk+jek
= jAp(ed)k+jek by 6(j)=0 and Proposition 1.11
= jD(ed)k +jek by Proposition 1.12
= —jek+jek=0 by Propositions 1.12 and 2.4.

Similarly we have 4¢=0.
Therefore ¢ lies in the group &2, 1),-1(X) N Kerd4, n Ker4*, which is
trivial by Lemma 5.6. Thus ¢é=0. Q.E.D.

THEOREM 6.2. For R=R(p—1) and A=j,_,k,_,, the following formula
holds in o/ «(X(p—1)):

R?24—-2RAR+4R? = 0.

Proor. By Proposition 1.12, the element Ay,_,)(¢§) commutes with any
element in &, (X(p—1))n Ker, i.e.,

(6.3) (RA4—AR)E =(—1)39¢,(RA—AR) for any Ee o (X(p—1)) n Kerf.
Then the theorem is a restatement of (6.3) for ¢=R. Q.E.D.

Repeating Theorem 6.2 and the relation 42=0, we obtain

COROLLARY 6.4. The following relations hold.

(i) R'4Rs = sR™s"1AR+(1—s)R™s4

= rRAR™s~1 +(1—r)4AR"™*s.

(ii) R'4R34 = ARSAR" = sR™"14RA = sARAR™s~1,

(iii) Any monomial on R and A involving three or more A’s is zero.

Proor oF THEOREM C’. By Corollary 6.4 (i) and Theorem C(b), we have

(*) RPA = ARP and R(p—r)?A = AR(p—r—1)?, 1=<r=p—-2,R=R(p-1).
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For each element in (*), we take a map representing it and denote this map by the
same letter. So, we interpret that the symbol=in (*) means ‘‘is homotopic to”.
And we choose a homotopy for each equality in (*). Then we obtain the follow-
ing homotopy commutative diagrams:

SN+a—(p-r—l)q—1X(p__r__ 1) Sa4 SN+a~(p—r)q~1X(p__r)S“(AA"' 1) SN+aX(P_ 1)
(D,) lR(p—r—l > lR(p-r)P lR”

SN--r-Da-1x(p—r—1) 4, SN~ Ne~1x(p—r) 447! ,GNX(p—1)
for r=1, 2,--, p—2, a=(p3+p?)q and a large N such that the homotopy of the
right square of (D, , ) is obtained by composing two homotopies of (D,).

Applying Lemma 2.5(i)-(ii) to (D,), we obtain elements R'(2p—r), r=2,
3,---, p, such that the following diagrams (E,) for 1<r=<p-—2 and (F,) for 1Zr=
p—1 are homotopy commutative:
SaCAAr ﬂ) SaCAAr— 1

(Er) 1R‘(2p—r—2) lR'(Zp—-r—l)

CAAr-—A—) CAAr—l Py

SN+¢X(p— 1) Sai, SaCAAr_1 Saj, SN+a—(p—r)qX(p_r)
(F,) lRp IR'(ZP"'I) lR(p—r)P
S¥X(p—1)—i > Cyyr-1 —L— SN-G~DaX(p—r).

By Lemma 1.5, we may replace, up to homotopy, C 4 Cysr-1, 4, i and j
by SN-(p-r-1axX(2p—r—2), SN-e™maX(2p—r—1), A, A" and BP~!, respec-
tively. Thus, we obtain the elements R'(r), p<r<2p—2, satisfying AR'(r—1)=
R'(r)A for p+1=r=2p—2, AR(p—1)»=R'(p)A and the following relations

(6.5) Br~1R'(r) = R(r—p+1)PBr~1 for p=r=<2p-2.
Q.E.D.
ProoF oF THEOREM D’.  We consider
R(*: QYUSYaX(r) —> GYSYX(), 1<r<2p-2,

where R'(r)=R(r)? for 1=r<p—1, a=(p3+p?)q. By using (3.5) and Theorem
C’, we can prove inductively that

(6.6) R'(n«(S¥*2&(r)) = ([V1?* +[M,])¢(r)

in the same way as Proposition 3.4. This shows the theorem. Q.E.D.
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Proor oF THEOREMS A’-B’.  Similarly as Definition 4.8, we define p;}, , and
p'(tp) by
’ mkyp—r—1R'Qp—r—1)jzpp—yi for 1=r=p-1
Frpr = { nkyp—r— 1 RRp—r—1)"Pj,y,_,_4i for p=r<2p-2,
p'(tp) = kyp_2R'2p—2)"j2p—> -

Then, a similar discussion to Theorem A using (6.6) instead of Proposition 3.4
leads to p;, ,#0, and hence p'(tp)#0. Also it is easy to see from Theorem C’
and (6.5) that these elements satisfy the desired relations. Q.E.D.

§7. Some relations in <7, (M)
ProposITION 7.1. The following relations hold.
(i) p(H)pw) =0 if t+u#0modp.
i) (t+WPDBsrupy = 1P+
Proor. (i) By Corollary 6.4,

(t+u)R'AR* = tR"™“A+udR'".

Since kd=A4j=0, we have (t+u)p(t)p(u)=0.
(i) Since 4A4P~2=jk, and (t+u)kR*AR*=tkR'**A, we have

(t+wp()B(s+upy = (t+u)kR'jk R(1)“B5j, by Theorem C(a)
= (t+u)kR*AR*AP~2f5], by Theorem C(b)
= tkR" ™ AAP~2B5j; = tp(t+u)fy - Q.E.D.

REMARK 7.2. By using the recent results [S; Corollary 2], we can further
discuss the triviality of the product p(t)f,. In fact, p(t)B=1tp(1)B(s+ip-p bY
Proposition 7.1(i). By Proposition 6.9 of [4], p(1)B, is a multiple of ad(B;,0)?~*
B(s+1) Which is trivial if s= p.

In the following proposition, we say that the element & is divisible by n, if
there are elements { and {’ such that é=n{={"y. Further if {={’, we say that ¢
is strictly divisible by n.

PRrOPOSITION 7.3. (i) The element B, is strictly divisible by «?~2, and
the element B2, is strictly divisible by a??~3.
(ii) The element p(tp) is strictly divisible by a1, and the element p(r)p(s)
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is divisible by aP~1.
(iii) The element B\, is strictly divisible by aP~3.

REMARK. By Proposition 7.1(i), the second statement of (ii) is efficient for
r+s=0modp. Also, by [11; Th. 5.1], so is the statement (iii). The statement
(i) may be considered as a result corresponding to the following fact on the p-
divisibility of the a-family {«,} in G, [0] (cf. [4; §4]).

The element a,,€ G,,,_, is divisible by p, and the element a,,:€G,
is divisible by p2.

rp2q—1

ProoOF OF PrOPOSITION 7.3. (i) and the first of (ii) are easy consequences of
Theorems B and B’. Since j,p(r)p(s)=A4R"4R*j=R34AR"Aj=0 by Corollary 6.4,
it follows from (1.3) that p(r)p(s)=oaP~1¢ for some &. Similarly k*p(r)p(s)=0
and p(r)p(s)=&'aP~1, and the second half of (ii) is proved.

By [11; (5.1)(iv) and (5.4)(i)], it suffices to show (iii) for the case r=1, s=
tp—1. For t=1, we have proved in [4; (6.11)] that B,f,-1)=no?"3=a?"3y
for some non zero multiple n of the element é—&d—de € & (p241),-2(M). Then
by Lemma 5.5 we obtain the following result similarly as Theorem C.

(7.4) There exists an element

Se M(p2+p—l)q—l(X(p_2))

satisfying the relations SAP~3 = —AP=3(pr=14,p), 6(S)=0 and k,_,Sj,-,=1,
where A, =j k.
We put

o(t) = ky—R(p—2)""1Sj, .
Then, by (1.4), (7.4), Theorem C and (2.2)-(2.3), we have
D(a()) = —0(a(1)) =0,

o()o?™3 = —Bp-1)B1)-
The subring Ker D of «&7,(M) is commutative [4; (1.11)]. Hence f,Bup-1)=
a(t)aP~3 =aP~30(t) as desired. Q.E.D.

PROPOSITION 7.5. 00,0 = 6adf,  for t=1.

Proor. To prove the proposition, we in troduce an element a” € &7, _ ,(X(1))
due to H. Toda [11]. This is a generator of «/,_,(X(1))=Z, and satisfies a"j; =
—ji000 and k,a" = —dadk, [11; Lemma 3.1, Th. 3.5, (5.6)]. He also has proved
the relation fra”fs=sp+ts~la"f+(1—s)p " [11; Prop. 4.7]. Thus, we have
Bra” =a"p? and so adP 0 =P ,y000 =k p?j000 = —k,p'Pa"j, =k,a"p?j, =
0adk; P j, =066 ). Q.E.D.
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COROLLARY 7.6. The element a,f,,=up, ,_, € Gy is divisible by p.

Note. L. Smith has obtained independently the same results as our Theo-
rems A and D. His results will be appeared in a paper entitled ‘‘On realizing
complex bordism modules IV. Applications to the stable homotopy groups of

spheres”.
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