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Introduction

Let Gk denote the /c-th stable homotopy group Dir limπjv+^S^) of spheres.
J.F.Adams [0] and H. Toda [9] discovered a family {ccteGtq-l9 ί^l}, q =
2(p — 1), of elements of order p, for every odd prime p, and later on L. Smith [6]
and H. Toda [11] discovered another family {j5 (eG ( ί p + ί_1 ) ί_2,ί^l} of elements
of order p, for every prime p ^ 5 . Our main results concern the second family.

THEOREM A. For every prime p^5 and ί^l, there exist p—ί elements

Pt,r e ^ ( ί p 2 + ( ί - l)p + r)q-2> Γ = 1, 2, , p— 1 ,

of order p such that

Pt,r+se<Pt,r>P,<xs> for

and that the last element pt,p-\ coincides with the element βtp of L. Smith [6]
and H. Toda [11]. Here, q = 2(p-l) and < , , > denotes the stable Toda
bracket.

For ί = l , this family {p1)Γ} coincides with the family {εrEG(p2+r)q-2Λύ
r^p—1} constructed in [3].

Let M be a Moore space S1 U pe
2 and denote by s/k{M) the limit group Dir

lim [SN+kM, SNM]. Let i: S ^ M and π: M-*S2 be the natural maps and con-
sider the induced homomorphism π*i*: s/k(M)-+Gk_ί.

There exists uniquely an element α e ^ ( M ) , q — 2(p — ΐ), such that πHcΐ*α =
α l 5 and also there exists a family {β(t) e sf ( ί p + f_ 1 ) β _ l 5 1 ^ 1} of s&*(M) which satis-
fies ocβ(t) = β(t)a = O and βit)e<βιt-i)> <*> β(i)> [ H ] (cf. [4]). This family is

closely connected with the family {βt} via the equality τι^i*β(t) = βt9 and our next
results are related to the a-diυisibilίty of the elements β(tp), ίΞ>l.

We constructed in [4] the element ε of j/ ( p2 + 1 ) g_1(M), which is a generator
of the ring s/*(M). The element π*/*^ generates the p-component of G(p2 + 1)q-2

and there is a relation ε<xp~2=ocp~2ε = β(py Also we defined in [4] a differential
D on s/JJM) of degree + 1 , originally due to P. Hoffman. D is a derivation and
the subring KerD is commutative in graded sense. Our elements α, β(f) and ε
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belong to this kernel and are commutative to each other.

THEOREM B. Let p be a prime ^ 5 and set q = 2(p-l). Then there

exist non zero elements

() t = 1, 2,.. ,

satisfying the following relations:

( i )
(ii)

(iii) p(t)aP-χ = α^VCO = 0,

(iv)

(v)

(vi)

w/iere p u is ί/ie element in Theorem A.

Let X(r) = S2M U CSrq+2M9 q = 2(p-l), be a mapping cone of an element

which represents the element α rej/P ί(M), and set s/k(X(r)) = Dirlim[SN+kX(r)9

S ^ r ) ] . Let jr: S2M-+X(r) be the inclusion, kr: X(r)-+Sr«+3M be the projec-

tion, and A: SqX(r)^>X(r + l) and B: X(r+l)->X(r) be the maps naturally de-

fined from α.

There exists uniquely an element βe j/(p+ί)q(X(l)) such that fcls|j'ί/? = /?(1)

([6] and [11]), and this defines the family {βit)} by the rule )8(ί) = fc11|Ij?i8r. Then,

the following result enables us to construct our elements ptr and p{t).

THEOREM C. Let p be a prime ^ 5 and q — 2{p—\). Then there exist

uniquely the elements

R(r)es/{p2+p)q(X(r)), r = 1, 2 , - , p - 1 ,

satisfying the following conditions:

(a) R(l) = βp;

(b) AR(r-ΐ) = R(r)A;

(c) Λ(r-l)B = BR(r);

(d) θ(R(r)) = 0;

(e) fcrHίj*^W = ε α ^ " 1 - ;

where θ is a differential on s#*(X(r)) introduced by H. Toda [11] {for the defini-

tion, see § 1).

Then, the elements ptr and p(t) in Theorems A and B are defined by the

compositions:

ρ(t): SN+at+2M jp~' > SN+atX(p-l)
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pty. SN+at+3 -i-> SN+at+2M Jp'r > SN+atX(p-r) ME=ΣL> ...

... R(p-r)> S
NX(p-r) kp~r ) SN+ip~r)q+3M π > sN+(p~r)q+5,

where a = (p2+p)q.

The following result is useful to prove the non-triviality of our elements.

THEOREM D. The complex bordism module Ω%(Z{r)) of the mapping cone
Z(r) ofR(r): SN+aX(r)->SNX(r), a = (p2+p)q, is isomorphic, as an Ω%-module, to

-1)]', [ F p + [Mr]K(r), degζ(r) =

for some [Mr] e (p, ίCP(p -1)]) n Ω^,

where [K]eΩ^(P2_i) is ί/?e c/αss o/ί/ιe Mίlnor manifold for the prime p.

This result is closely related to a problem on the realization of (^-modules
proposed by L. Smith [7].

Our elements in Theorems A-C are constructed starting from the element β.
We can also consider a similar procedure of constructing elements with the initial
element R(p— 1). We obtain the following deeper results than the previous
theorems with t = 0modp.

THEOREM A'. For every prime p^.5 and t^l, there exist elements

Ptp,r£

of order p such that

P'tp,r+s€<P'tP>r,P><Xs> for

Ptp,r = Ptp,r-p+ί for p^r ^2p-29

Ptp,2p-2 = βtp2'

THEOREM B'. For every prime ρ^5 and ί^l, there exist non zero elements

p'

such that

p'(tp + up) e <p'(tp), a2?-2, p'(up)>.

THEOREM C. There exist elements

R'(r) e jtf(p3+p2)q(X(r)) for p^r<2p-
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such that

AR'(r-\) = R\r)A for p+ί ^ r ^ 2p-2,

THEOREM D'. Let Z'(r) be the mapping cone of R(r)p for l^r^p-1 and
ofR'(r)for p^r^2p-2. Then, as an Ω%-module9

Ω%{Z\r)) » Ω%l(p9 [CP(p-l)] ',

for some [Mr] e(p, [CP(p— 1)]) of dimension (p3+p2)q.

Our argument of the non-triviality of the elements pί>r, p'tPtr, p(t), p'{tp) is a
modification of the technique of βtφΰ employed by L. Smith [6]. We are
concerned with the Hurewicz homomorphism

for the subcomplex Y(r) of X(r) obtained by removing the top cell of X(r). For
r = l , 7(1) is the complex K(l/2) considered in [6] and the fact that the image of
h for F(l/2) is trivial played an important role in Smith's method. In our proof,
a similar fact for r ^ 2 will lead us to the non-triviality.

In § 1 we shall construct the complexes X(r), and in § 2 we shall construct
the elements R(r) and prove Theorem C. In § 3, the ί2£-module structures of
X(r), Y(r) and R(r) will be studied and Theorem D will be proved. Theorems A
and B will be proved in § 4, and the proofs of the lemmas in § 2 will be given in
§ 5. In § 6, Theorems A'-D' will be proved, and several relations in s/%(M)
involving the elements β(t) and ρ(t) will be obtained in §7.

§ 1. Zp-spaces X(r)

In this paper, p denotes always a fixed prime integer ^ 5 and we set q = 2(p — 1).
For any finite CJf-complexes X and Y, we denote by

{X, Y}t =

the ί-th stable track group, and set

where SnX is the n-fold suspension of X and [X, Y] is the set of homotopy classes
of maps from X to 7.

Let

M = S1 U pe
2
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be a Moore space of type (Zp, 1), and

i S1 >M and π: M > S2

be the natural maps. The group s/k(M) and the ring jtf*(M) = Σksfk(M) are

studied in [12], [11] and [4], and the notations and the results of these works

are used in this paper. Let

be the generator detected by the P 1 operation. The element

is the first element of order p in G#.

We consider the unstable version of these elements. Let S0 0: [SN+tX, SN Y] ->

{X, Y}t denote the natural homomorphism. By a well known result of J.-P.

Serre, there exists an element ocί(3)eπq+2(S3) of order p such that 5ooα1(3) = α1

and αx(3) φ Sπq+ i(S 2). Then we can construct an element

of order p satisfying

S°°α = α and α^5[5« + 1 M, SM]

(cf. [10; pp. 112-113]).

DEFINITION 1.1. Let r ^ l . We put a^ = a and a^ = ao

(composition of r elements) for r^.2, and we define complexes X(r) by

X(r) = S2M U air)

the mapping cone of the element α ( r ) e [5 r f l + 2 M, 5 2 M ] .

The element α ( r ) above represents the power αr e s/rq(M) of α, and we have a

sequence of cofiberings:

(1.2) Sr«+2M -^-^ S2M -i-> X(r) J±-+ Sr«+3M.

CONVENTION. We do not distinguish between a map and its stable class,

unless otherwise specified.

We then receive the elements

ie{S<>,M}u π e { M , S ° } _ 2 ,

Λ e {M, X(f)}29 K e {X(r), M } _ Γ ί _ 3 .

By (1.2), we have the following exact sequences for any finite CJF-complex K:
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( 1 . 3 ) - ^ { K q

(1.3)* --+{M, K)t+3^{M, K}t+rq+3^{X

By definition, we can construct the elements

Ae{X(r),X(r+l)}q and

such that

Ajr =jr+ίcc, kr = kr+ίA
(1.4)

j r = Bjr+u krB = otkr+1.

LEMMA 1.5. Let r ^ l and s^l, and set

AriS(=A)=jskre{X(r)9X(s)}__rq-ί.

Then the following is homotopy equivalent to a sequence of cofiberings:

Ss«X(r) -*U X(r + s) -»U X(s) -^-> S8*+1X(r) .

PROOF. Put M1 = 52M, M2 = 5S«+2M, M3 = S^r+s^+2M, / = α ^ : M2->Mί

and g = Ssqa(r^:M3^M2. Then, SsqX(r), X(r + s) and X(s) are the mapping
cones of g, fg and /, respectively, and As and Br are given by ̂ s(m2) =f{m2) e M l 5

i s((ί,m3)) = (ί,m3)eCM3 and
where m^Mi and O^ί^ l with the identifications (0, m3) = g(m3) in
(0,m3)=fg(m3) in A^r + s), (0,m2)=f(m2) in ^(s), and (l,m i) = * for all cases.
Define a homotopy //θ: 5

s«X(r)-^Z(s) between H0 = BrAs and # ! = * by the
rule

HΘ(m2) = (θ, m2) //0((ί, m3)) = (max {0, *}, ^(m3)).

Then Hθ defines an extension E: X'(s)^>X(s) of Br, where X'(s) is the mapping
cone of As. Apparently we can regard X(s) as a subcomplex of X'(s). We see
easily that £ is a deformation retract and that the composition of the natural
shrinking map X'(s)-+X'(s)IX(r + s) = Sr<i+1X(r) with the inclusion I ( s ) c l ' ( s )
coincides with A. Q. E. D.

From the lemma, we have the following exact sequences for any finite CW-
complex K:

(1.6) — ^

(1.6)* -

where
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(1.7) Δr = ^ 1 ) r = J A e { I ( l ) J ( r ) } _ r l

and this satisfies

(1.7)' BsAr+s = Ar for r, s ^ 1.

CONVENTION. We define an rc-fold suspension SnX of a based space X by

a smash product Sn /\X, not by X AS", and also Snf by 1 Λ/, l = t h e identity

map of Sn, for a based map /.

Following H. Toda [11; p. 207], we introduce the following

DEFINITION. A space X is called a Zp-space9 if there exist two elements

μxe{MAX,X}-ι and φxe{X,M AX}2 satisfying the equalities

μxΦx = 0, μx(i A lx) = lx, (π Λ lx)φx = lx,

(i Λ lχ)μx + φx(π A lx) = lMAχ -

This condition is equivalent to plx = 0 in s/0(X) ([11; Lemma 1.2]) and

S"X is a Zp-space if and only if X is a Zp-sρace.

H. Toda then defined an operation

(1.8) θ:{X,Y}t—*{X9Y}t+1 by θ(y) = μγ(lM A y)φx

for Zp-spaces X and Y, and proved the following results:

PROPOSITION 1.9 ([11; Prop. 2.1, Th. 2.2 and Lemma 2.3]). Let W, X and

Y be Zp-spaces9 and γ e {X, Y}t and γ' e{W9 X}s be elements. Then

( i ) θ is a derivation: θ(yy') = θ(γ)y' + (-

(ii) // i j f f l = s/2(X) = sZX(Y) = s/2{Y) = 0, then θ is a differential:

(iii) Let Z = SnY\J fCSn+tX be a mapping cone of a representative fe

[Sn+tX,SnY~\ of y. Then Z is a Zp-space if θ(y) = O, and conversely % ) = 0 if

Z is a Zp-space and {Y,X}.t =

Also he defined

(1.10) λx: ^t{M) > stt+ X(X) by λx{ξ) = μx(ξ A lx)φx

for a Zp-sρace X, and proved the following

PROPOSITION 1.11 ([11; Cor. 2.5]). Let X and Y be Zp-spaces. Then
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for any ξ e sέs(M) and γ e {X, Y}t with 0(y) = O.

Now we have defined in the previous paper [4; (1.6)] an operation

(1.10)' D:^t(M) ><*t+1(M).

This is a special case of (1.10) by the following

PROPOSITION 1.12 (cf. [11; Th. 2.6, Cor. 2.7 and (3.7)]). The Moore space

M is a Zp-space and λM = D. For X=Y=M, the operation θ of (1.8) coincides

with -D of (LIU)'. The element δ = iπest-X(M) satisfies D(δ)=lM9 and the

element oc satisfies D(α) = 0.

From the above results, we obtain easily the following

PROPOSITION 1.13. Let r, s<2p. Then X(r) is a Zp-space with s/ι(X(r)) =

s/2(X(ry) = 0, and θ(jr) = θ(kr) = θ(Λ) = θ(B) = O. The operations θ on s/*(M\

{M,X(r)}*,{X(r),M}* and {X(r)9X(s)U are differentials. For any finite

CW-complex K, the following groups are linear spaces over Zp:

{K,M}t, {M,K}t, {K,X(r)}t9 {X(r),K}t.

PROOF. Since X(r) is a mapping cone of a map which represents αr, and

since 0(αr) = O by Propositions 1.9 (i) and 1.12, it follows from Proposition 1.9 (iii)

that X(r) is a Zp-space.

Now we have from [12]

0 for i < q-2, i Φ - 1 , 0,

Zp{a'} for i = rq,0Sr<2p,

sf.(M) = 0 for i = rq + 1, rq + 2, rq + 3, 0^r<2p.

Then by an easy calculation using (1.3) and (1.3)*, we see <s/1(X(r)) = j

Hence the operations θ above are differentials by Proposition 1.9 (ii). By (1.2),

Srq+3M is a mapping cone of j r , and so θ(jr) = O by Proposition 1.9 (iii). In the

same way, we have θ(kr) = O and also Θ(A) = Θ(B) = 0 from Lemma 1.5. For any

Zp-space X, the groups {K, X}t and {X, K}t are linear spaces over Zp9 and in

particular the last assertion follows. Q. E. D.

§ 2. Construction of the elements R(r) of s/*(X(r))

L. Smith [6] and H. Toda [11] considered the spectra V(k)(k = 091,2) which

satisfy Ω%(V(k))&Ω%l(p, [ F J , — , [Fk]) as an Ωg-module, or equivalently,

H*(V(k); Z p ) » £ ( β 0 , , Qk) as a module over the Steenrod algebra, where Vj
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is the Milnor manifold of dimension 2(pj — 1) for the prime p, and Qj is Milnor's

element of degree 2pj — 1 in the Steenrod algebra mod p.

By definitions and [11 p. 217], the spaces SnM and SnX(l) are the (n + l)-th

and the (n + 3)-th components of the spectra F(0) and F(l), respectively, and

there exists

(2.1) β: SN+^+1^X(l) > SNX(1)

for a sufficiently large N such that the mapping cone of β is the (iV + 3)-th com-

ponent of the spectrum V(2). For this element βe jtf(p+ί)q(X(l))9 the elements

0(β)ej* ( S J > + β-i ) β_i(Af) and j ϊ s e G ( s j , + β _ 1 ) β _ 2 in [4] and [11] are defined by

β(S)
 = ^ iWb βs = β"mβ (s-times composition),

(2.2)

βs = πβ(s)i>

The non-triviality of these elements is proved by L. Smith [6].

We define an element R(l) e J*+(X(Ϊ)) by

(2.3) R(l) = βPe*?ip2+p)q(X(l)).

Then k1R(ί)j1=βip) by (2.2). For this element βip) we proved in [4; Prop. 5.2

and 6.2, Remark at the end of §6] the following result.

PROPOSITION 2.4. There exists the indecomposable element εe*sf(P2 + ι)q-1

(M) satisfying the following conditions.

( i ) εΐ=πεi generates the p-primary component of G(p2 + ί)q-2-

(ii) D(ε) = 0 for the differential D of (1.10)'.

(iii) fc^l)/! = βip) = εα^"2 = α ^ 2 ε .

(iv) εα*"1 = a p - ^ = 0.

REMARK. This element ε is a non zero multiple of that of [4]. The

element ε in [4] satisfies β(p) = xεocp~2 for some xΦ0eZp, and in this paper, we

replace ε so that β(p) = εocp~2.

The following lemma is easy. We denote by Cf the mapping cone YU fCX

off: X-+Y. Here we identify (0, x) with/(x), and (1, x) with the base point, for

any x e X.

LEMMA 2.5. (i) Let f: X-> Y, / ' : * ' - > Y', a: X-+X' and b:Y-+Y' be maps

such that bfis homotopic to fa. For any homotopy At: X-+Y' between A0 = bf

and Ax =f'a9 we define a map
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= e(At):Cf > Cr

by e(y) = b(y)9 e(t9x) = A2t(x) for 0^ί^l/2, and = ( 2 ί - l , a(x)) for 1/2^*^1,
where yeYczCf9(t9x)eCXaCf. Then we have a homotopy commutative
diagram of cofiberings

•y f -y ynr C*V"

\a \b \e \sa

γ-f f ' γr ynr CV

(ii) Further let g: Y-+Z9 g'': Yf-*Zf and c.Z^Z' be maps such that eg
is homotopic to g'b with homotopy Bt: Y^Z'9 B0 = cg9 B1=g'b. Let F: Cgf^>
Cg be the map defined by F(z) = zeZ9 and F(t9x) = (tJ(x))eCY9 (t9x)eCX9

and F': Cg,f.-*Cg. be the map defined in the same way. Then, we have a ho-
motopy commutative diagram

C F > Q

I e(AtoBt) I e(Bt)

where the homotopy AtoBt: X-*Z' between cgfand g'f'a denotes the "composition
of two homotopies" Bt and At9 and is given by B2tf for 0 ^ ί ^ l / 2 and g'A2t_1

PROOF, (i) is obvious. Define a homotopy Hθ: Cgf-+Cg> by

Hθ(z) = c(z), Hθ(t9x) = B2tf(x) for 0 ^ t ^1/2,

( g'AM_2(x) for 1/2 ^ t ^ (2 + fl)/4,

{ ((4f-2-0)/(2-0), Aθ(x)) for (2 + θ)/4 ^ t ^ 1.

Then, H0 = e(Bt)F and Hί=FfC for some C homotopic to e(AtoBt). Q.E.D.

The rest of this section is devoted to prove Theorem C.

PROOF OF THEOREM C (FIRST STEP). The condition (c) implies

(c)' B'-1R(r)

and we first prove the theorem for r^p — 2 under the conditions (a), (b), (c)', (d)
and (e).

LEMMA 2.6. (i) {X(l\ X(r)}a.2q.x = 0 for 1 ̂  r ^ p-49 a = (p2 + p)q.

(ii) α*:j/ ( l,2+ j ) β-1,(M) •^(p2+f+i)β-i(M) is isomorphicfor 2^i<^p-2.
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This lemma will be proved in § 5.

Now, suppose inductively that there are R(s), s^r, satisfying (b) and (c)',

for some r. Then, by Lemmas 1.5 and 2.5 (i), we have the relation

Since Br~ίAr = A1 by (1.7)', we have

According to [11], our X(l) coincides with V{\) in [11] and our element

Λί=jίkί is equal to δx in [11 p. 219]. By [11 (4.5) (i)] there is a relation β2Ax -

2fiAJ + A^2=0, which implies βpΔ1=Δίβ
p. Hence we have B^^R^A,-

ArR(l)) = 0 by (2.3). Applying Lemma 2.6 (i) to the exact sequence (1.6) for K =

X(l), we obtain the relation (*) r: R(r)Δr = ΔrR(\)9 if r^p — 3. Again by Lemmas

1.5 and 2.5(i), we get an element R(r+1) satisfying (b) and (c)', if r^p — 3. Since

krR(r)jr0Lr'1 =kίR(l)jί=εoίP-2 by (1.4) and Proposition 2.4(iii), it follows from

Lemma 2.6 (ii) that these elements R(r) satisfy (e). Thus we have

(2.7) There exist R(r)es/a(X(r)\ r^p-2, a = (p2+p)q, satisfying (a),
(b), (c)' and (e).

REMARK. Since Lemma 2.6 (i) is not valid for r = p — 3, the above argu-

ment does not hold for r = p— 1.

Following [4], we define some elements of s/*(M). Let

δ = ίπe sZ-^M).

This is a generator of sέ_1(M) = Zp with D(δ)= -θ(δ) = lM. We put

Bs = (βii)δy-sβis)es/(p2+s_2)q+2s_3(M) for 1 ^ s < p,

\β(ί)δBs for
B's = i

[β(2)δβ(p-l) fOΓ

B\ - βwδB\ es/(p2 + 2p-ί)q

Cs = aδBses/(p2+s-ι)q+2s_4(M) for l^s<p (C x = 0),

C; = <xδB'ses/ip2+p+s-1)q+2s.6(M) for 1 ^ s ^ ^ ( Q = 0) .

Except Bp-i these elements belong to KerD=Ker^. We also denote by

zP{yiv..,yM}

the linear space over the field Zp with basis y1?..., yn.
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LEMMA 2.8. Let a = (p2+p)q and R(r) be the elements of (2.7).

( i ) The groups sfa(X(r)), l^r^p — 2, are equal to

ZJRVlhB'M for r = l,

Zp{R(2),j2δB'4δk2} for r = 2,

Zp{R(3)9j3C'4δk3J3δC'4k3} for r = 39p^Ί9

Zp{R(3),j3C'4δk39j3δC'4k3,j3δB'ίδk3} for r = 3, p = 5,

Zp{R(r)} for 4 ^ r ^ p - 2 , p ^ 7.

(ii) j/ e + 1(Z(r))nKer0nKerfc r s j s;*nKer^* = O for 2^r^p-2.

(iii) j/β(X(r)) Π Kerθ n Kerfcrs|J* n Ker^* = 0 /or r = 2,3.

This lemma will be proved in § 5.

PROOF OF THEOREM C (SECOND STEP). By [11; (3.7)], the element β of
(2.1) satisfies θ(β) = O9 and hence we have

0(R(1)) = 0

by Proposition 1.9 (i) and (2.3). If the element R(r-1) of (2.7) satisfies (d):
θ(R(r-l)) = 0, r ^ p - 2 , then for the element R(r) of (2.7) the element ξ = θ(R(r))
satisfies θ(ξ) = O, krξjr= -θ(/cΓΛ(r)jr) = D(εα^-1-0 = 0, and ξA = θ(R(r)A) = θ(AR(r
- l ) ) = 0 by Propositions 1.9, 1.12-1.13 and 2.4 (ii). Hence ξ = 0 by Lemma
2.8 (ii). Therefore by the induction we see that the element R(r) of (2.7) satisfies
the condition (d).

Next we prove the uniqueness. If an R'(2) e s/a(X(2)) satisfies (b), (c)',
(d) and (e), then the difference ξ = R(2)-Rf(2) satisfies θ(ξ) = O, k2ξj2 = 0 and
ξA=0. So ξ = 0 and Rχ2) = R(2) by Lemma 2.8 (iii). In the same way, JR(3)
is unique. The uniqueness of R(r), 4^r^p — 2, follows immediately from the
last of Lemma 2.8 (i). Thus we have obtained

(2.9) There exist uniquely the elements R(r)9 r ^ p —2, satisfying the
conditions (a), (b), (c)', (d) and (e).

LEMMA 2.10. Let a=(p2+p)q.

(i) jtfa+ι(X(2)) n Ker0 n KerB* = 0.

(ii) s/a(X(2)) n Kerθ = Zp{R(2)} for the element R(2) of (2.9).

The proof of this lemma will be given in § 5.
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PROOF OF THEOREM C (THIRD STEP). We consider the condition (c) for r ̂  3.

From the condition (b) we have R(r)Ar~x =Ar~1R(X). From Lemmas 1.5 and
2.5 (i), it follows that there exists R'(r-l)esta(X{r-l)) such that R'(r-1)B =
BR(r). We compare this with R(r-1). The element R'(r-1) also satisfies (e),
since fcr_ xR'(r- l)jΓ_ x = fcΓ_ ̂ ' ( r - l)Bjr=kr_ ιBR(r)jr=<xkrR(f)jr=z(xP'r. Hence,

by Lemma 2.8 (i) we have R'(r-l) = R(r-l) for 5^r^/?-2, p^7, « ' ( 3 ) Ξ Λ ( 3 )
ίfe3,j35Cifc3}( + ZpO 35Bϊafc3} if j> = 5) and R'(2)sR(2)modZ,

}. By [4; (5.8), (5.13)], Qδα = 5Ciα=0andJB?5α = 0, and so C%δk3B =
δC^k3B = δB\δk3B = 0 by (1.4). Therefore £(3)£ = £'(3)J3=£K(4), p^7. By
Lemma 2.10(i), we see that 0(JR'(2))=O, and hence R'(2)=R(2) by Lemma 2.10
(ii). Thus we have proved

(2.11) The elements R(r), r g p - 2 , of (2.9) satisfy the condition (e).

Finally we consider the element R(p — 1).

LEMMA 2.12. Let a = (p2 + p)q.

( 0 k p - i H J ^ i : ^ β ( * ( p - l ) ) ^ ^ ( p 2 + i)s-iCM) w monomorphic, and its
image is the subgroup Zp{ε, C2δ, δC2}.

(ii) sfβ+1(X(p-i)) Π Kerθ n KerΛ^!*;•-! = 0.

(iii) kls|ί: {X(p~l), Z(l)}α—-> {Z(p- l ) , M } β _ € _ 3 is monomorphic and
{X(p-Ϊ)> M } β _ , _ 3 n Ker/*.! n Ker0 = 0.

(iv) JΪ:{-Y(l),-ϊCp-l)}β+(j,-2)β >{M9X(p-ϊ)}a+ip-2)q+2 is monomor-
phic and {M9X(p-l)}a+(p-2)q+2 n Ker/cp^l5ίί n Kerθ = 0.

This Lemma will be proved in § 5.

PROOF OF THEOREM C (LAST STEP). By Lemma 2.12 (i), there exists an ele-

ment R(p — l)es/a(X(p—1)) such that kp-1R(p — ϊ)jp-1 = ε9 and this element is
unique. By Lemma 2.12 (ii), θ(R(p-ϊ))=0 since θ(R(p-l)) belongs to the left
side of Lemma 2.12(ii). Consider the elements ξ=BP-2R(p-ϊ)-R(l)BP~2 e
{X(p-ϊ)9X0)}Λ and η = R(p-l)A*>-2-AP-2R(l)e{X(l),X(p-l)}a+ip_2)q.
Then k1ξjp_ί = aP-2kp.ίR<<p-l)jp.ί-k1R(l)jί=^2ε-ε^'-2=O and θ(k±ξ) =
0. So we have ξ=0 by Lemma 2.12 (iii). By a similar way using Lemma 2.12
(iv) instead of (iii), we also have η = 0. Thus, we obtain

(*) BP~2R(p-1) = R(1)BP~2 ,

(*)' R(p - 1)AP~2 = AP-2R(Ϊ) .

Applying Lemma 2.5 (i) to the cofibering in Lemma 1.5, we can construct
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an element R'(p-2)ejtfa(X(p-2)) with R(p-l)A = ARf(p-2) from (*). This

element satisfies kp_2R'(p-2)jp_2 = εoί9 and hence R'(p-2) = R(p-2) for p^Ί

and R'(3) = R(3)moάQ = Zp{j3C'4δk3, j3δC'4k3, j3δB'[δk3} for p = 5 by Lemma

2.8(i). We therefore have R(p-l)A=AR'(p-2)=AR(p-2) because A*Q = 0.

In the same way, (*)' leads to BR(p — l) = R(p — 2)B. Thus, we have obtained

(2.13) There exists uniquely the element R(p — 1) satisfying the conditions

(b)-(e).

By (2.9), (2.11) and (2.13), we complete the proof of Theorem C. Q. E. D.

REMARK. Theorem C does not hold for r = p. There exists no R(p)e

^(P2+p)q(X(p)), since the existence of an R(p) yields the decomposition ε =

(kpR(p)jp)oί while ε is indecomposable.

REMARK 2.14. Let ηx and η2 be the elements of s/a(X(p — 1)) such that

kp-1η1jp-ί = C2δ and kp_ίη2jp_ί=δC2. By Lemma 2.12(i), these are unique

and we have

(2.15) ^a(X(P~ 1)) = Zp{R(p-l), ηί9 η2} .

According to [4], the conditions (i)-(iv) of Proposition 2.4 do not uniquely de-

termine the element ε. It is determined up to the subgroup Zp{C2δ — δC2}. The

element R(p— 1) satisfying (b)-(d) of Theorem C is determined up to the subgroup

Zp{ηί — η2}9 and any different choices of R(p— 1) and ε are related with each other

by the equality

-i = e + x(C2δ-δC2), xeZp-

% 3. Complex bordism modules

The complex bordism ring Ω% consists of all bordism classes of stably almost

complex manifolds. It is a polynomial ring over Z having one polynomial-

generator Xι e Ω^i for each even degree 2i > 0. If i + 1 = ps for a prime p, then one

may choose xt such that all integral Chern numbers of xt are divisible by p, and a

manifold M2i representing such xt is called a Milnor manifold (for the prime p).

The complex protective space P = CP(p — 1) is a Milnor manifold of dimension

2(jp—1), and we denote by F a Milnor manifold of dimension 2(p2 — l) for the

prime p. (Cf. [8; pp. 128-130] and [6]).

For a finite CW-complex X, the reduced complex bordism module of X is

denoted by Ω%(X). It is a module over the ring Ω%, and the functor Ω%{-) forms

a reduced homology theory. Denote by S: Ωf(X)-+Ω1jJ

+1(SX) the suspension

isomorphism.
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For X = M, we see easily that

βg(M) = Ω$l(p)'μ, μeflftΛί),

as an Ω^-module, where (p) stands for the ideal generated by p e Ω% = Z. L. Smith
[6; Th. 1.5] has proved the following result.

LEMMA 3.1. The Ω%-homomorphism

α*: Ω%(S*+2M) •—> Ω%(S2M)

is given by α*(S*+2μ) = [P]S2μ, [P] = [CP(p-l)]

Then (αr)* sends Srq+2μ to [P]r52μ, and it is a monomorphism since [P] r

is not a zero divisor in Ω%j{p). So we obtain the following result.

PROPOSITION 3.2. Ω%(X(r)) = Ωξ/(p, [P] Γ K0) as an Ω%-module, where
ξ(r)=jr*(S2μ)eΩϊi(X(r)) and (p, [P]r) stands for the ideal generated by p and
[pγ.

Now our element β of (2.1) coincides with the element ψ constructed by
L. Smith [6; Th. 4.10]. He also has proved in [6; Prop. 4.11] the following
result.

LEMMA 3.3. The Ωξ-homomorphism

> Ω%(SNX(l))

is given by β*(S Λr+^+1>«ξ(l)) = [F]SΛ^(l) where [F] is the class represented by
the Milnor manifold V of dimension (p+l)q.

PROPOSITION 3.4. Let l^r^p-1 and set a = (p2+p)q. Then the Ω%-
homomorphism

Λ(r)#: Ω"(SN+°X(r)) —* Ω"(SNX(r))

satisfies Λ(r)*(Sw+β«r)) = ( [ ^ + [Mr])S^(r)7or some [Mr] e(p, [P]) n ΩΌ

a.

PROOF. Consider the Ω^-homomorphism

Then A*{S*ξ{r)) = A*jr*(S«+2μ) by Proposition 3.2, and AJr*(S4+2μ)=jr+i*oc*
= [P]j r + l ί ί ί(S2μ) = [P]ζ(r + l) by (1.4) and Lemma 3.1. Hence we have

(3.5) ^ ϊK(S^(r))

By Lemma 3.3 and (2.3), the proposition holds obviously for r = l . If the
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proposition holds for some r— 1, then we have

by (3.5)

by Theorem C(b)

ί])SNξ(r) by (3.5).

By Proposition 3.2, the kernel of the left translation

is the submodule generated by [P] 1 "" 1 ^) , and hence

for some [JVjeOJ. By putting [M r] = [ M r _ 1 ] + [ΛQ[P]Γ-1, the proposition

holds for r. Q.E.D.

PROOF OF THEOREM D. The theorem is a direct consequence of Proposi-

tion 3.4. Q.E.D.

We consider the Hurewicz homomorphism

which is induced by the inclusion ScΛfU of spectra. We are concerned with

the image of h for the (rq + 4)-skeleton

ofX(r). Let

(3.6) Y(r) - ^ X(r) ^-> S*«-

(3.7) S2M^Y(r)J±+S'*

be the cofiberings, where lr and 7'; are the inclusions. Denote the boundary

homomorphisms for (3.6) and (3.7) by

δ': ΩF+1(S'«+4) > Uf(S2M).

Then, applying ύ%( ) to (3.6)-(3.7) and using Lemma 3.1 and Proposition 3.2,
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we obtain easily the following

PROPOSITION 3.8. Let η(r)=j'r*(S2μ)eΩ%(Y(r)) and τ(r) = dσrq+5eΩυ

rq+4r

(Ύ(r)), where GIEQ^S1) is the canonical generator. Then we have the direct

sum decomposition

Ωl{Y{r)) = βg/(p, lPΎ) η(r) + ΩV τ(r).

Also the following relations hold:

h*η(r) = ξ(r), (π/cr)*ξ(r) = 0,

Now let y be any element of {S°9Y(r)}n. We consider its image h(y)e

Ωy(Y(r)) by ft. If n is even, then h(y) lies in Ω%τ(r) and its fe^-image lies in the

image of h: G*-*Ω%9 which is trivial for * ^ 0 and is isomorphic for * = 0 [8;

p. 133]. Since k'r* is monomorphic for even n by Proposition 3.8, it follows

that h(y) = 0ifnφrq + 4 and h(γ) is an integer multiple of τ(r) if n = rq + 4. Next,

if n is odd and rc<r<? + 4, j ' r ^ \ {S0,M}Π_2->{S0, Y(r)}n is epimorphic. Also

j ' r * \ ί2^_2(M)^Ω^(y(r)) is epimorphic by Proposition 3.8. Using the known

results [1 ; Th. 3.1 and Cor. 3.3] for the image of h: {S°, M}*-*Ω%(M), we see

that h(y) = 0 if n ψ 3 mod q and h(y) is a multiple of [P] jη(r) if n =jq + 3. Finally,

if n is odd and n^.rq-\-49 then h(γ) = O is proved as follows. Let K = SNY(r) U y

eN+n+ι b e the mapping cone of y. Consider the annihilator ideal

A(κ) = {x e Ω% \xκ = 0 in U%(K)}

of the canonical class K E Ω%+3(K)9 which is the /i-image of the inclusion SN+3 c

K. By Proposition 3.8 and an easy calculation, we have

for [M]eΩjf_3 determined by h(y) = [M]η(r). We apply the discussion in the

proof of Theorem 4.3 of [2] to our K*K We consider the case X(g9f) = K9

t = U lVg~\ = [Py9 ε = 0 and [ F ] = [M] in the proof of this theorem. Then, the

proof implies that [M] lies in (p, [P] r) Hence we have h(y)e(p9[PY)η(r)=0

by Proposition 3.8.

From the above discussions, we have proved

PROPOSITION 3.9. The image of the Hurewicz homomorphίsm

*) The author is indebted to Prof. Larry Smith for this discussion.
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is additively generated by the following elements:

(β£j<r), τ(r).

§ 4. Proof of Theorems A and B

DEFINITION 4.1. Let t^l and l^r^p—1. Then we define p(t,r) =

For ί = l and for r = p — 1, we see immediately

(4.2) p(l9r) = εa'-1-'9

(4.3) P(t,p-l) = β(tp),

by (e) of Theorem C and by (2.2)-(2.3), respectively. By (1.4) and (b) of Theorem

C,

p(t,r-l)oc = kp_r+

= kp-r+1AR(p-r)fjp_r = pit, r),

and in the same way ap(t, r—ϊ) = p(t, r) by (c) of Theorem C.

(4.4) p(t, r) = ocp(t, r - 1 ) = p(t, r - l)α.

(4.4)' pit, r) = of- ̂ (t, 1) = pit, l ) ^ " 1 .

We have also

(4.5) aP'rpit,r) = pit,r)ocP-r = O,

since (χp-rkp-r=jp-.rotp-r = θ. Then, the stable Toda bracket <p(ί, r), α^"r,

pis, r)> is well defined, while pit + s, r) belongs to this bracket because pit + s, r)

= pis, r). Thus, we obtain

(4.6) pit + s,r)e (pit, r), α*"', pis, r)> .

We have proved Θijp.r) = θikp_r) = O in Proposition 1.13 and θiRip-r)) =

in Theorem C(d). Hence we have

(4.7) £>(p(ί,r)) = 0,

by repeating Proposition 1.9 (i) and by Proposition 1.12.

DEFINITION 4.8. Let t^l and l ^ r g p - 1 . Then we define
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p{t) = p(t9

Pt,r = πp

PROOF OF THEOREM A. Obviously pρtir=0. By (4.4)', p ί j Γ + s is equal to

πp(ί, r)αsί, which lies in <p ί)Γ,p, αs> because ϊ*(πp(ί, r)) = ptr and π*(α s0 = αs.

By (4.3) and (2.2), we have ρt,p-x=βtr

Consider the element

7 = R(p-ryjp_rie{S°9X(p-r)}at+3, a =

and the commutative triangle:

SN+at+3AS2N> VΛh ) SNX( p-r) A MU(N')

where ft: S2N' cMU(N') is the inclusion, which defines the Hurewicz homomor-

phism ft: Ω{r( )->β*(*) Then, yAh represents the Hurewicz-image h(y) e

&N+at+3(SNX(p-r)) of y, 3inάjp_rίAh represents the element SNξ(p-r)eU%+3

(SNX(p — r)) in Proposition 3.2. We have therefore by Proposition 3.4

- r) mod (p, [P])S"«p - r ) .

Now, assume that p ί j Γ = π/cp_ry = 0. Then by using (3.7), there exists an

element y'e{S°, Y(p — r)}at+3 such that /p-Γ*(/) = y. By Proposition 3.9, we

have ft(/) = 0. Thus, h(y) = lp_r*h(y') = O. This is a contradiction. Therefore

p ίΓ7^0 and the proof is complete. Q.E.D.

PROOF OF THEOREM B. (i) is obvious, (ii) follows immediately from (4.3)

and (4.4)'. (iii) and (iv) are restatements of (4.5) and (4.6), respectively, (v)

follows immediately from Definition 4.8. Since ρtΛφ0 by Theorem A, ρ(t) is

non zero, (vi) is a restatement of (4.7) for r = 1. Q. E. D.

REMARK. We have noticed in Remark 2.14 that the element R = R(p-l)

is determined modulo η = rji—rj2 if we do not fix ε of Proposition 2.4. By the

definition of η and by the results on s/*(X(l)) of [11], we have η = Λp~2ξBp~2

for the element ξ = (β2a"-<x"β2)β'p-2 e ^ , ( I ( l ) ) , where a"es/q_2(X(Vj) and

β' e£/pq-2(XQ)) are the generators of the ring sέ*(X(\)) given in [11]. We

also have ξβtP=βtPξ = (βtP+2a"-oί"βtP+2)β'p-2 by using the results of [11].



106 Shichirό OKA

Hence, η2=O9R
tη = ηRt and kp_1R

tηjp-1=δθLδ(β(ί)δy-2β(tp+2)-aδ(βil)δy-2'

β(tP+2)δ> while the last element is trivial by [5; Corollary 2], Thus, we see that

any choice of ε does not change the elements p(t) and ptr (except the initial ele-

ments p(l) = ε and pίiί=εί).

§ 5. Auxiliary calculations

In this section, we shall prove Lemmas 2.6, 2.8, 2.10 and 2.12 in §2. The

calculations in this section are based on the results in [4; Th. 0.1] for the ring

Let s/k(M) be the subgroup of stfk(M) generated by the following elements

of degree k:

δaBsδ
b of degree (p2 + s-2)q + 2s-3-a-b9 2^s<p9

δaCsδ
b of degree (p2 + s-l)q + 2s-4-a-b9 2^s<p,

δaB'sδ
b of degree (p2 + p + s-2)q + 2s-5-a-b9 l ^ s ^ p ,

δaθsδ
b of degree (p2+p + s-l)q + 2s-6-a-b9 2^s^p9

δaB'[δb of degree (p2 +2p- \)q-5-a-b,

δa(β(ί)δ)rεδb of degree (p2 + rp + \)q - 2r - 2 - a - b9 r = 0, 1,

(5aea^ft of degree (p2 + i + l)q-l-a-b9 0^ϊ^p-2,

δaεoLiδaδb of degree (p2 + i + 2)q-2-a-b9 O^i^p-4,

εap~2δocδa of degree (p2 + p)q-2-a,

ψδa of degree (p2 + p)q-3-a.

Here a, b = 0 or 1 and we use the notations of elements appeared ahead of Lemma

2.8.

Also let A(cc, δ) be the subring of s/*(M) generated by the elements α and <5,

and let Ak(cc, δ) = A(oc, δ) Π s/k(M). Then by [4; Th. 0.1], we have the direct sum

decomposition:

s/k(M) = Λt'k(M) + Ak((x9 δ) for (p2 -I)q^k^(p2+ 2p)q - 4.

By [4; Th. 4.1], the homomorphisms α*: Ak(oc9 δ)-+Ak+q(oc, δ) and α*: Ak(oc9 δ)^>

Ak+q(a9δ) are isomorphic if fc^O. Hence, by (1.3)—(1.3)* for K = M9 we obtain

the following

LEMMA 5.1. (i) For (p2 + r-l)q + 2^k^(p2+2p)q-29 the following se-

quence is exact:

-±* {M9 X(r)}k -*-> j / ί _ r β

(ii) For (p2 - \)q — 2 ̂  k ̂  (p2 + 2p — r)q - 7, the following is exact:

f'k+rq+3(M) -^ {χ(r), M}k J£* j*'k+2(Af)-£U j*'h+rq
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Also, there exist the following exact sequences:

(5.2) ..->{*(/•), M}k_sq_2 -£*+ {X(r)9 M}k_2 J*> {X(r)9 X(s)}k

(5.2)* -. — {il/, X(s)}k+3 -^> {M, X(s)}k+rq+3

-±1+ {χ(r)9 X(s)}k - ϋ *

In the following, we put

a = (p2+p)q

and Z p {y l v . . , yn} stands for the linear space over Zp with basis γi9...9 yn.

PROOF OF LEMMA 2.6. (i) Since jaf;_€(λf) = O, j*r

a-2q-i(M)=Zp{&*p~3} and
j/;_g_1(M) = Zp{εα*-2}, it follows from Lemma5.1(ii) that {X(l),M}fl_2(Z_3 =
0. We have ^- ( r + i ) < ? - i (M) = Zp{εα^2-} = α*^;_ ( r + 2 ) ,_ 1 (M) for O^r g p - 3 .
Alsoj/;_(r_2)e_2(M) Π Kerα* = 0for l g r g p - 4 . Hence, {X(l),M}α_(r+2),_4 =
0 for l ^ r ^ p —4 by using Lemma 5.1 (ii). From these results on {X(l)9 M}*,
we obtain {X(l), J ^ r ) } , ^ . ^ ! ) for l^r^p-4 by using (5.2).

(ii) This is obvious, since £/[p2+i)q_ί(M) = Zp{soίi~ί} for 2^i^p— 1.
Q.E.D.

PROOF OF LEMMA 2.8. (i) Since ^ _ Γ ί _ 1 ( M ) = ZjP{εα^-1-r} = Kerαr* for 1 ^
— 2 and j3/i(M) = 0, we have {Z(r), M}α_ r β_3=Zp, generated by an element

ξr satisfying jfξr = εccp~i~r

9 by using Lemma 5.1 (ii). The element R(r) of (2.7)
satisfies krR(r)jr = εocp~1~r, and hence we can take ξr = krR(r) and so fcrHί: jtfa(X(r))
-+{X(r),M}a_rq_3 is epimorphic. Since sfa+ί(M) = 0 and J ^ ; ( M ) = 0,/c*:

), M}α_2 is isomorphic by Lemma 5.1 (ii). Hence we have

p c 1 } for r=l , =Z p {^δ/c 2 } for r = 2, =Zp{O4δk39δC^k3}
( + Zp{δB'[δk3} if p = 5) for r = 3, and =0 for 4<Ξr<^-l, from the results of

Since J3fα+1(M) = O and s/'a-rq(M) is equal to 0 for l ^ r g p - 3 and to Zp

{<5C3<5} = Kerα* for r = p-2, the group {Z(r),M}α_r^_2 is equal to 0 for l ^ r ^
p —3 and to Zp{ξ} for r=;? —2 by Lemma 5.1 (ii), where ξ satisfies j*_2ξ = 5C3δ.
Then the element ocl~2ξ belongs to /c*_2<α^"2, δC3δ, α^~2> by the definition of
the Toda bracket. As <α^ 2 , δC3δ, α^-2>c<αP-3, α5C3δ, α*-2> = <α*-3, 0,
αP~2>=0 mod zero, we see ocPΓ2ξ = O. Therefore, aζ-2{X(r)9 M}α_ r €_2 = 0 for
1 ύ r ̂ p - 2. Thus, the desired results follow from (5.2).

(ii) In the same way as (i), we can calculate the group s/a+x(X(r)) as follows:
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(5.3) j * a + fflr)) = Zp{j2B'tδk29j2δB'Ak2} for r = 2,

ZpO'aQfca} /or r = 3 , p ^ 7 ,

Zp{j3C\k3J3B'[δk3J3δB'[k3, ξ} for r = 3, p = 5,

0 /or 4 ^ r^p-2, p ^ 7,

satisfies k3ξj3=δC3δ.
We have also

(5.4) *?a+2(X(r)) Π Imfc Λ, = Zp{j2B%k2} for r = 2 ,

Zp{j3B>[k3J3δB>pδk3} forr = 3,p = 5,

0 /or 3 ^ r ^ p - 2 , p^Ί.

Apparently, all elements in (5.3) except ξ lie in the kernel of fcSJr* Since
D(B'4) = D(C'4) = D(B"1) = 0, we have the following values of θ: #?a

i f l + 2 ( I ( r ) ) by Propositions 1.9, 1.12 and 1.13:

θ(j2B>4δk2) = ./2Bife2, θ(j2δB'4k2) = - j 2

θ(J3Cίk3) = 0, θ(j3B'ίδk3)=j3B>ίk3, θ(j3δB\k3) = -j3B'[k3.

Therefore by (5.4), we see that

p{j2(Bϊδ + δB'A)k2} forr = 2,

Π Kerθ n Kerfcrφj = Zp{73(β^ + ̂ ί)/c3} for r = 3, p = 5,

θ /or 3^r^p-2, p^7.

By (1.4), Aη^B'tδ + δB'^^j^B'tδ + δB'J^ and
73(J5'ί5 + δβ'ί)/c2, which are non zero since kf-1jr4t: £/a+rq+2(M)-> {X(r—Ϊ),
X(r)}a+q+ί is monomorphic for r = 2, 3. Thus, (ii) is obtained.

(iii) This is proved similarly as (ii) by using (i) and (5.3) instead of (5.3) and
(5.4). Q.E.D.

PROOF OF LEMMA 2.10. (i) As is seen in the proof of Lemma 2.8 (ii), s/a+1

(X(2)) n Kerθ = Zp{j2(B'4δ + δB'4)k2}. By (1.4), B*(j2δB^k2)=j2δB^ock3 = 0 and
B*(j2B'4.δk2)=j2B'4.δcck3=j2C'4.k3, which is non zero. This shows (i).

(ii) By Lemma 2.8 (i), this follows from the relations θ(R(2)) = 0 and
θ(j2δB'tδk2) = -j2B'4δk2-j2δB'4k2# 0. Q.E.D.

PROOF OF LEMMA 2.12. (i) Since s/'a(M) = 0 and j / f l + ( p _ 1 ) 9 + 1 (M) = 0,
{X(p— 1), M}α_2 = 0 by Lemma 5.1 (ii). By a similar calculation, we see that

Zp{ε,C2δ,δC2} is isomorphic.
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Also, fcp_l5|c: Aa(X(p-l))^{X(p-l), M} f l_ ( p_1 ) 9_3 is isomorphic, and (i) is
proved.

(ii) Similarly as Lemma 2.8 (ii), we obtain

Zp{ξ} for p^Ί,

ZtfJr-JCtfk,^} for p = 59

where ξ satisfies kp_ίξjp..1 = C2. Also, θ(jp_1δC'pδkp_1) = -jp-1C'pδkp-1 +
jp- ιδC'pkp_ t Φ0. This shows (ii).

(iii) As is seen in (i), {X(p — 1), M} f l_ 2 = 0. So, fclJjc is monomorphic by (5.2).
Since £f'a+(p_2)q(M) = Zp{δC'4rδ} = Cokeroίp~1*, we see from Lemma 5.1 (ii) that

{X(p-l),M}a_q_3 ίl Kerj -! = Zp{<5Q<5/cp_i}

Since θ(δQέ/cp_1)= - C i ^ . i + SCifep-^O, we obtain (iii).
(iv) This is proved in the same way as (iii). Q.E.D.

At the end of this section, we prepare some lemmas which are applied in the
next two sections. These lemmas are proved by an argument similar to the previ-
ous calculations, and the proof is omitted.

LEMMA 5.5. Let b = (p2 + p-l)q-l ( = a-q-l).
( i ) The image of

is the subgroup Zp{έ — εδ — δε,δC2δ}.

(ii) ^b+1(X(p-2)) n Kerfcp-2»y*-2 n Ker0 = 0.

(iii) /cp_2*j?: {Z(l),X(p-2)}b+(p_3)q > s/b.q.x{M) is monomorphic.

LEMMA 5.6. Let R = R(p-l) and Δ=Ap_ltP_1=jp_ίkp-.ί. Letη1 andη2

be the elements of (2.15). Then we have

= Zp{RA, ΔR, ηxΛ9 Δηl9 η2A, Aη2},

-l)) Π Im/c*_Jp_l5jc = Zp{ARA,AηιA,Aη2A},

and hence

-l)) Π KerA* n Kerzl* = 0.

§6. Proof of Theorems A ' - D'

From now on we denote simply by
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R and A

the elements R(p — 1) and Ap_lp_1=jp-ίkp_ί of s/*(X(p — 1)), respectively.

LEMMA 6.1. λX ( p _ ί }(ε(5) = # J - A R.

PROOF. Put ζ = λx(εδ)-RA+AR, X = X(p-l), and denote simply by j =

j p _ ! and /c = fcp_!. Then, Λ 2 = /fc/fc = 0 by kj = 0 and ARA =jεk by Theorem C(e).

So we have

{J = λx(εδ)jk+jεk

— jλM(εδ)k+jεk by θ(j) = O and Proposition 1.11

= jD(εδ)k+jεk by Proposition 1.12

= —jεk+jεk = O by Propositions 1.12 and 2.4.

Similarly we have J ξ = O.

Therefore ξ lies in the group s/{p2 + 1)q-γ{X) Π Ker J * Π Ker^j*, which is

trivial by Lemma 5.6. Thus ξ = 0. Q. E. D.

THEOREM 6.2. For R = R(p-l) and A=jp_1kp_ί, the following formula

holds in rf*(X(p-l)):

R2A-2RAR + AR2 = 0 .

PROOF. By Proposition 1.12, the element Λ,χ(p-i)(ε<5) commutes with any

element in s/*(X(p -1)) Π Ker θ, i.e.,

(6.3) (RA-AR)ξ = (-l)d*9ξξ(RA-AR) for any ξ esf *(X(p- ϊ)) Π Keτθ.

Then the theorem is a restatement of (6.3) for ξ = R. Q.E.D.

Repeating Theorem 6.2 and the relation A2=09 we obtain

COROLLARY 6.4. The following relations hold.

( i ) RrARs = sRr+a'1AR + (ί-s)Rr+ΛΔ

= rRARr+s~ί 4- (1 - r)ARr+s.

(ii) RΆRSA = AR'AR' = s^ r + s -M^J = sJRJΛ ϊ + s - 1 .

(iii) v4ny monomial on R and A involving three or more A9s is zero.

PROOF OF THEOREM C . By Corollary 6.4 (i) and Theorem C(b), we have

(*) RPA = ARP and R(p-r)PΛ = AR(p-r-iy, 1 ^ r ^ p-2, Λ = Λ(p-1).
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For each element in (*), we take a map representing it and denote this map by the

same letter. So, we interpret that the symbol = in (*) means "is homotopic to".

And we choose a homotopy for each equality in (*). Then we obtain the follow-

ing homotopy commutative diagrams:

(Dr) \R(p-r-ί)P \R(p-r)P \RP

r) ΔAr" *SNX(p-l)

for r = l , 2, , p — 2, a = (p3 + p2)q and a large JV such that the homotopy of the

right square of (D r + 1 ) is obtained by composing two homotopies of (Dr).

Applying Lemma 2.5 (i)-(ii) to (DΓ), we obtain elements R'(2p — r), r = 2,

3, , p, such that the following diagrams (Er) for l^r^p— 2 and (Fr) for l ^ r ^

p— 1 are homotopy commutative:

ΔA

|R'(2p-r-2)

C A v Z
01

U SaCΛAr-i Sl

SNX(p-l)—i—>CAAr-i — J—> SN-to

By Lemma 1.5, we may replace, up to homotopy, C j ^ , CΔAr-ι, A, i and j

by SJ V-^-'-1>«X(2p-r-2), S i V-<p- r)«Z(2p-r-l), y4, ̂ " r and JJ*-1, respec-

tively. Thus, we obtain the elements R'(r\ p<Lr^2p-2, satisfying AR'(r-l) =

R'(r)A for p+l<*r^2p-2, AR(p-\y = R'(p)A and the following relations

(6.5) BP-ιR'(r) = R(r-p+iyBP-1 for p^r^2p-2.

Q.E.D.

PROOF OF THEOREM D'. We consider

R'(r)*: U%(SN+aX(r)) > Ω%(SNX(r)), 1 ̂  r ̂  2p - 2,

where #'(>) = ,R(r)p for 1 ̂  r ̂  p -1, α = (p 3 + p 2)^. By using (3.5) and Theorem

C, we can prove inductively that

(6.6) R'(rUS»

in the same way as Proposition 3.4. This shows the theorem. Q.E.D.
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PROOF OF THEOREMS A'-B'. Similarly as Definition 4.8, we define ρ'tptr and

p'(tp) by

ίπ/c2p_r_1^(2p-r-l)V2p-,-iϊ for l£r£p-l
P'tp.r =

{πk2p_r_ίR(2p-r-iypj2p.r.ίi for p^r^2p-29

Then, a similar discussion to Theorem A using (6.6) instead of Proposition 3.4

leads to p'tpirΦ§, and hence p'(tp)Φ§. Also it is easy to see from Theorem C

and (6.5) that these elements satisfy the desired relations. Q.E.D.

§7. Some relations in

PROPOSITION 7.1. The following relations hold.

(i) p(t)p(u) = 0 if t + u ψ Omodp.

(ii) (t + u)p(t)β(s+up) = tp(t + u)β(s).

PROOF, (i) By Corollary 6.4,

u)RtARu = tRt+uA+uARt+u.

Since kA=Aj = O, we have (t + u)p(t)ρ(u) = 0.
(ii) Since AAP~2=jkί and (t + u)kRΆRu = tkRt+uA, we have

(t + u)p(t)β(s+up) = {t + u)kRtjkιR{\yβsj1 by Theorem C(a)

= (t + u)kRtARuAP-2βsj1 by Theorem C(b)

= tkRt+uAAP-2βsjί = tp(t + ύ)βis). Q.E.D.

REMARK 7.2. By using the recent results [5; Corollary 2], we can further

discuss the triviality of the product p(t)βis). In fact, p(t)β(s) = tρ(l)β(s+tp-p) by

Proposition 7.1 (i). By Proposition 6.9 of [4], p(l)/?(s) is a multiple of aδiβ^δy'1

β(s+i)> which is trivial if s^.p.

In the following proposition, we say that the element ξ is divisible by η, if

there are elements ζ and ζ' such that ξ = ηζ = ζ'η. Further if £ = £', we say that ξ

is strictly divisible by η.

PROPOSITION 7.3. (i) The element β(tp) is strictly divisible by ap~2, and

the element )S(ίp2) is strictly divisible by α 2 p " 3 .

(ii) The element p(tp) is strictly divisible by α p - 1 , and the element p(r)p(s)
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is divisible by <xp~ι.

(iii) The element β(r)β(S) is strictly divisible by ap~3.

REMARK. By Proposition 7.1 (i), the second statement of (ii) is efficient for

r-fs = 0modp. Also, by [11; Th. 5.1], so is the statement (iii). The statement

(i) may be considered as a result corresponding to the following fact on the in-

divisibility of the α-family {αΓ} in G*[0] (cf. [4; §4]).

The element oirp

e^rpq-i I S divisible by p, and the element 0ίrp2eGrp2q-1

is divisible by p2.

PROOF OF PROPOSITION 7.3. (i) and the first of (ii) are easy consequences of

Theorems B and B'. Since j*p(r)p(s) = ARrARsj = RsARrAj = O by Corollary 6.4,

it follows from (1.3) that ρ(r)ρ(s) = (xp~ίξ for some ξ. Similarly fc*p(r)p(s) = 0

and p(r)p(s) = ξ'ccp~ί, and the second half of (ii) is proved.

By [11; (5.1)(iv) and (5.4)(i)], it suffices to show (iii) for the case r = l , s =

tp-l. For f = l, we have proved in [4; (6.11)] that βiί)β(p-ί)=ηoip~3 =ocp~3η

for some non zero multiple η of the element έ — εδ — δεe s/^p2 + ί)q-2(M). Then

by Lemma 5.5 we obtain the following result similarly as Theorem C.

(7.4) There exists an element

satisfying the relations SAP~3 = -AP-3(βp~1Aίβ), Θ(S)=O and kp-2Sjp-2=η,

where A1=jiki.

We put

Then, by (1.4), (7.4), Theorem C and (2.2)-(2.3), we have

The subring KerD of sf*(M) is commutative [4; (1.11)]. Hence β^β^p-ί)^

σ{t)0LP~3 =(χp-3σ(t) as desired. Q.E.D.

PROPOSITION 7.5. ccδβ{tp)δ = δaδβ(tp) for t ^ 1.

PROOF. TO prove the proposition, we in troduce an element α" e sfq-2(X(l))

due to H. Toda [11]. This is a generator of s/q-2(X(l))=Zp and satisfies α'7i =

—j\<5α5 and kιoc/f = —δccδkί [11; Lemma 3.1, Th. 3.5, (5.6)]. He also has proved

the relation βr<x"βs=sβr+s-1oι"β + (l-s)βr+soc" [11; Prop. 4.7]. Thus, we have

and so aδβ(tp)δ=β(tp)δocδ=kίβ
tPjίδ(xδ = -kJtPθL"jί=kίoi"^

y Q.E.D.
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COROLLARY 7.6. The element oL1βtp = oc1pttP_ίeG* is divisible by p.

NOTE. L. Smith has obtained independently the same results as our Theo-
rems A and D. His results will be appeared in a paper entitled "On realizing
complex bordism modules IV. Applications to the stable homotopy groups of
spheres".
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