A Note on G(a)-Domains and Hilbert Rings

Kazunori Fujita

(Received September 4, 1974)

In a recent paper [1], we defined the property $J(\Lambda)$ for an integral domain R, which is useful to prove a generalized Hilbert Nullstellensatz. At that time, we restricted ourselves to prime ideals of height one. However, we can readily see that Lemma 1, Lemma 2 and Proposition 1 in Section 1 of [1] are valid, if we replace the set $Ht_1(R)$ of prime ideals of height one (resp. $H_R(D)$) by the set P(R) of non zero prime ideals (resp. $H_R^*(D)$ (see the definition below)). So, in this paper, we define the property $J^*(\mathfrak{a})$ for a cardinal number \mathfrak{a} in place of the property $J(\mathfrak{a})$; here the cardinal number \mathfrak{a} will always be assumed not less than \aleph_0 , because if \mathfrak{a} is finite, then it is clear that an integral domain R has the property $J^*(\mathfrak{a})$ if and only if R is not a G-domain (see the definition in [4]). Also, by taking account of the fact mentioned above, we define $G(\mathfrak{a})$ -domain as a concept against the property $J^*(\mathfrak{a})$, and furthermore by introducing the notion of $G(\mathfrak{a})$ -ideal and $H(\mathfrak{a})$ -ring similar to G-ideal and Hilbert ring in [4], we can obtain some results generalizing those in [3] and [4].

The author wishes to express his thanks to Professor M. Nishi for his valuable advice and his comments in writing this paper.

1. $G(\mathfrak{a})$ -domains

All rings considered are commutative with identity. Let \mathfrak{a} be a cardinal number not less than \aleph_0 . We say that a polynomial ring over R is an \mathfrak{a} -polynomial ring over R if the cardinality of the set of its variables is \mathfrak{a} , and we say that an R-algebra A is \mathfrak{a} -generated over R if A is an R-homomorphic image of the \mathfrak{a} -polynomial ring over R. Call a subset D of an integral domain R a $J(\mathfrak{a})$ -subset if D does not contain zero element and if the cardinality of D is not greater than \mathfrak{a} . A bit of notation: For an integral domain R, we denote by P(R) the set of non zero prime ideals in R, $Ht_1(R)$ the set of prime ideals of height one, and for a given subset E of R we denote by $H_R^*(E)$ the set of non zero prime ideals in R which contains at least one element of E, $H_R(E)$ the set of prime ideals of height one in R which contains at least one element of E.

DEFINITION. Let R be an integral domain. When $H_R(D)$ is properly contained in $Ht_1(R)$ for any $J(\mathfrak{a})$ -subset D of R, then we say that the ring R has the property $J(\mathfrak{a})$. When $H_R^*(D)$ is properly contained in P(R) for any $J(\mathfrak{a})$ -subset D of R, then we say that the ring R has the property $J^*(\mathfrak{a})$.

DEFINITION. For an integral domain R, we say that R is a $G(\mathfrak{a})$ -domain if and only if R has not the property $J^*(\mathfrak{a})$, namely there exists a $J(\mathfrak{a})$ -subset D such that $\mathfrak{p} \cap D \neq \phi$ for any non zero prime ideal \mathfrak{p} in R.

The following propositions follow immediately from definitions.

PROPOSITION 1. Let R be an integral domain. If any non zero prime ideal in R contains at least a prime ideal of height one, then R has the property $J^*(a)$ if and only if R has the property J(a).

PROPOSITION 2. Let K be the quotient field of R. Then the following statements are equivalent:

- (a) R is a $G(\mathfrak{a})$ -domain.
- (b) For some $J(\mathfrak{a})$ -subset D of R, we have $K = R[..., 1/a,...], a \in D$.
- (c) For some multiplicatively closed subset S of R such that $card(S) \le a$, we have $K = S^{-1}R$.
 - (d) K is a-generated over R.

COROLLARY. If R is a $G(\mathfrak{a})$ -domain, then every overring of R is also a $G(\mathfrak{a})$ -domain.

PROPOSITION 3. If R has the property $J^*(a)$, then any polynomial ring over R has the property $J^*(a)$.

PROOF. Let A be a polynomial ring over R, and E be any $J(\mathfrak{a})$ -subset of A. We denote by D the subset of R consisting of non zero coefficients of the elements of E; then D is a $J(\mathfrak{a})$ -subset of R. By our assumption, $H_R^*(D)$ is properly contained in P(R). Let p be an element of P(R) but not of P(R). Then pA is not an element of P(R).

PROPOSITION 4. Let $R \subset A$ be integral domains. Then the following statements hold.

- (a) If A is algebraic over R and R is a $G(\mathfrak{a})$ -domain, then A is a $G(\mathfrak{a})$ -domain.
- (b) If A is α -generated over R and A is a $G(\alpha)$ -domain, then R is a $G(\alpha)$ -domain.
- (c) In particular, if A is algebraic over R and A is α -generated over R, then R is a $G(\alpha)$ -domain if and only if A is a $G(\alpha)$ -domain.

PROOF. Let K and L be the quotient fields of R and A respectively.

- (a) By Proposition 2, $K = R[..., a_i,...]$, $i \in I$, where $card(I) \le a$. Then $A[..., a_i,...]$, $i \in I$, is algebraic over K, and hence is itself a field, therefore necessarily equal to L.
 - (b) Let $U = \{t\}$ be a subset of A such that ..., t,... are algebraically independ-

ent over R and A is algebraic over R[..., t,...], $t \in U$. If R[..., t,...] is a $G(\mathfrak{a})$ -domain, then R is a $G(\mathfrak{a})$ -domain by Proposition 3. Therefore we may assume that A is algebraic over R. By our assumption, $L=A[..., c_i,...]$, $i \in I$, and $A=R[..., d_j,...]$, $j \in J$, where card (I), card $(J) \leq \mathfrak{a}$. The elements c_i , d_j are algebraic over R and consequently satisfy equations with coefficients in R, say

$$a_i c_i^m + \cdots = 0$$

$$b_i d_i^n + \dots = 0.$$

Since $L=R[..., c_i,..., d_j,...]$ is integral over $R[..., a_i^{-1},..., b_j^{-1},...]$ and L is a field, $R[..., a_i^{-1},..., b_j^{-1},...]$ is necessarily equal to K.

PROPOSITION 5. Let $R \subset A$ be integral domains. If A is integral over R, then the following statements are equivalent:

- (a) R has the property $J^*(\mathfrak{a})$.
- (b) A has the property $J^*(\mathfrak{a})$.

PROOF. (b) \Rightarrow (a) follows from (a) of Proposition 4.

(a) \Rightarrow (b). Let $E = \{a_i; i \in I\}$ be a $J(\mathfrak{a})$ -subset of A, and $a_i^{n_i} + \cdots + d_i = 0$ be the smallest degree equation of a_i over R. Clearly $D = \{d_i; i \in I\}$ is a $J(\mathfrak{a})$ -subset of R, and so by our assumption, we can choose a non zero prime ideal \mathfrak{p} of R which is not in $H_R^*(D)$. Let \mathfrak{P} be a prime ideal of A lying over \mathfrak{p} . Then clearly \mathfrak{P} is not an element of $H_A^*(E)$.

PROPOSITION 6. R is a G(a)-domain if and only if there exists a maximal ideal m in the a-polynomial ring over R with contracts in R to zero ideal.

PROOF. Let K be the quotient field of R. Suppose R is a $G(\mathfrak{a})$ -domain. By Proposition 2, K is of the form $R[..., a_i,...]$, $i \in I$, where $\operatorname{card}(I) = \mathfrak{a}$. Let φ be an R-homomorphism of $R[..., X_i,...]$, $i \in I$, onto K such that $\varphi(X_i) = a_i$, and \mathfrak{m} be the $\operatorname{Ker}(\varphi)$. Then \mathfrak{m} is a maximal ideal in $R[..., X_i,...]$, $i \in I$, and $\mathfrak{m} \cap R = 0$. Conversely, suppose that there exists a maximal ideal \mathfrak{m} in the \mathfrak{a} -polynomial ring A over R such that $\mathfrak{m} \cap R = 0$. Since A/\mathfrak{m} is \mathfrak{a} -generated over R and a field is a $G(\mathfrak{a})$ -domain, R is a $G(\mathfrak{a})$ -domain by (b) of Proposition 4.

2. $H(\mathfrak{a})$ -rings

Kaplansky defines G-ideals and Hilbert rings in [4] as follows: A prime ideal $\mathfrak p$ in a ring R is a G-ideal if $R/\mathfrak p$ is a G-domain. A ring R is a Hilbert ring if every G-ideal in R is maximal.

So we shall define $G(\mathfrak{a})$ -ideals and $H(\mathfrak{a})$ -rings after Kaplansky's definitions.

DEFINITION. Let p be a prime ideal in a ring R. We say that p is a $G(\mathfrak{a})$ -ideal if R/\mathfrak{p} is a $G(\mathfrak{a})$ -domain.

A ring R is an $H(\mathfrak{a})$ -ring if every $G(\mathfrak{a})$ -ideal in R is a maximal ideal.

REMARK. (a) A homomorphic image of an $H(\mathfrak{a})$ -ring is an $H(\mathfrak{a})$ -ring.

- (b) An H(a)-ring is a Hilbert ring, because G-domain is a G(a)-domain.
- (c) Let k be a field with cardinality $\leq \aleph_0$. Then k[X] is a Hilbert ring but not an $H(\aleph_0)$ -ring.
- (d) Let R be a unique factorization domain. If $card(Ht_1(R)) > a$, then R has the property $J^*(a)$.

Corollary to Proposition 6. A prime ideal $\mathfrak p$ in a ring R is a $G(\mathfrak a)$ -ideal if and only if it is a contraction of some maximal ideal in the $\mathfrak a$ -polynomial ring over R.

PROPOSITION 7. Let k be a field, and I be a non empty set. If $card(k) > \mathfrak{a}$ and $card(I) \le \mathfrak{a}$, then $A = k[..., X_i, ...]$, $i \in I$, is an $H(\mathfrak{a})$ -ring.

PROOF. Let $\mathfrak p$ be a non maximal prime ideal in A, and let $U = \{t_j; j \in J\}$ be a subset of $A/\mathfrak p$ such that ..., t_j ... are algebraically independent over k and $A/\mathfrak p$ is algebraic over $k[..., t_j,...]$, $j \in J$. Note that U is not empty because $\mathfrak p$ is not maximal. The ring $k[..., t_j,...]$ has the property $J^*(\mathfrak a)$ by (d) of Remark; therefore $A/\mathfrak p$ has the property $J^*(\mathfrak a)$ by Proposition 4.

THEOREM 1. Let k be a field. Then the following statements are equivalent.

- (a) card(k) > a.
- (b) k[X] has the property $J^*(a)$.
- (c) k[X] is an $H(\mathfrak{a})$ -ring.
- (d) If I is a non empty set such that $card(I) \le a$, then $k[..., X_i,...]$, $i \in I$, has the property $J^*(a)$.
- (e) If I is a non empty set such that $card(I) \le a$, then $k[..., X_i,...]$, $i \in I$, is an H(a)-ring.
- (f) If I is a set such that card(I) = a, then $k[..., X_i,...]$, $i \in I$, is a Hilbert ring.

PROOF. (a) \Rightarrow (b) and (b) \Rightarrow (d) follow from Proposition 3 and (d) of the preceding remark.

- (d) \Rightarrow (a). If we assume that card $(k) \le a$, then card $(k[..., X_i,...]) \le a$; therefore $k[..., X_i,...]$ clearly has not the property $J^*(a)$.
 - (a) \Rightarrow (c) and (a) \Rightarrow (e) follow from Proposition 7.
 - (c) \Rightarrow (b) and (e) \Rightarrow (d) are trivial.

The equivalence of (a) and (f) is proved in Proposition 2 of [1].

PROPOSITION 8. Let $R \subset A$ be rings such that A is integral over R. Then R is an $H(\mathfrak{a})$ -ring if and only if A is an $H(\mathfrak{a})$ -ring.

This follows immediately from Proposition 5.

In [3], O. Goldman proved that a ring R is a Hilbert ring if and only if every maximal ideal in R[X] contracts in R to a maximal ideal. The following proposition shows that an $H(\mathfrak{a})$ -ring is characterized similarly.

PROPOSITION 9. A ring R is an $H(\mathfrak{a})$ -ring if and only if every maximal ideal in the \mathfrak{a} -polynomial ring over R contracts in R to a maximal ideal.

PROOF. Suppose first that R is an $H(\mathfrak{a})$ -ring. Let \mathfrak{m} be any maximal ideal in the \mathfrak{a} -polynomial ring A over R. Since A/\mathfrak{m} is \mathfrak{a} -generated over $R/R \cap \mathfrak{m}$, $R/R \cap \mathfrak{m}$ is a $G(\mathfrak{a})$ -domain by (b) of Proposition 4; hence $R \cap \mathfrak{m}$ is a maximal ideal in R by assumption. Suppose now that every maximal ideal in A contracts in R to a maximal ideal. Let \mathfrak{p} be a $G(\mathfrak{a})$ -ideal in R. There exists a maximal ideal \mathfrak{m} in A such that $\mathfrak{p} = R \cap \mathfrak{m}$ by Corollary to Proposition 6; hence \mathfrak{p} is a maximal ideal in R by assumption.

THEOREM 2. For a ring R the following statements are equivalent:

- (a) R is an $H(\mathfrak{a})$ -ring and for every maximal ideal m in R we have card $(R/\mathfrak{m}) > \mathfrak{a}$.
 - (b) R[X] is an $H(\mathfrak{a})$ -ring.
 - (c) the α -polynomial ring over R is an $H(\alpha)$ -ring.

PROOF. (a) \Rightarrow (c). Let $A=R[...,X_i,...]$, $i \in I$, be the \mathfrak{a} -polynomial ring over R. It suffices to prove that A/\mathfrak{P} has the property $J^*(\mathfrak{a})$ for every non maximal prime ideal \mathfrak{P} in A. When $\mathfrak{p}=\mathfrak{P}\cap R$ is a maximal ideal in R, we have $\operatorname{card}(R/\mathfrak{p})>\mathfrak{a}$ by assumption. $A/\mathfrak{P}=(R/\mathfrak{p})[...,X_i,...]/\mathfrak{P}$, where $\mathfrak{P}=(R/\mathfrak{p})\otimes P$. Since \mathfrak{P} is not maximal, $(R/\mathfrak{p})[...,X_i,...]/\mathfrak{P}$ has the property $J^*(\mathfrak{a})$ by Theorem 1. When $\mathfrak{p}=R\cap \mathfrak{P}$ is not maximal in R, R/\mathfrak{p} has the property $J^*(\mathfrak{a})$ by assumption. A/\mathfrak{P} is \mathfrak{a} -generated over R/\mathfrak{p} , so A/\mathfrak{P} has the property $J^*(\mathfrak{a})$ by (b) of Proposition 4.

- (c) \Rightarrow (b) follows from (a) of the preceding remark.
- (b) \Rightarrow (a). Let m be any maximal ideal in R. R/m[X] is an $H(\alpha)$ -ring; hence card $(R/m) > \alpha$ by Theorem 1.

PROPOSITION 10. Let R be an integral domain which satisfies the following conditions:

- (a) $dim(R) \ge 1$.
- (b) Every non zero prime ideal in R contains at least a prime ideal of height one.
- (c) For any non unit $a \neq 0$ in R, the cardinality of the set of prime ideal of height one containing a is not greater than a. Then R has the property $J^*(a)$ if the a-polynomial ring over R is a Hilbert ring.

PROOF. Suppose R is a $G(\mathfrak{a})$ -domain. By the condition (b) and Proposition 1, R has not the property $J(\mathfrak{a})$; therefore for some $J(\mathfrak{a})$ -subset D of R we have $Ht_1(R) = H_R(D)$; hence the condition (c) implies $\operatorname{card}(Ht_1(R)) \leq \mathfrak{a}$. We put $Ht_1(R) = \{p_j; j \in J\}$, and we fix an element j_0 of J. Let a_{j_0} be a non zero element in \mathfrak{p}_{j_0} , and for any $j \neq j_0$ we pick a non zero element a_j in \mathfrak{p}_j but not in \mathfrak{p}_{j_0} . Then we have $K = Q(R) = R[\dots, 1/a_j, \dots], j \in J$, and $K \supseteq R[\dots, 1/a_j, \dots], j \in J - \{j_0\}$. Q(*) stands for the quotient field of *.) Let $A = R[\dots, X_j, \dots], j \in J - \{j_0\}$ and let \mathfrak{M} be the ideal in $A[X_{j_0}]$ generated by $a_j X_j - 1, j \in J$. Since $A[X_{j_0}]/\mathfrak{M} = K$, \mathfrak{M} is a maximal ideal in $A[X_{j_0}]$. However $A/A \cap \mathfrak{M} = R[\dots, 1/a_j, \dots], j \in J - \{j_0\}, \subseteq K$ implies that $A \cap \mathfrak{M}$ is not a maximal ideal in A; hence by Theorem 5 in [3] A is not a Hilbert ring. This leads to a contradiction by our assumption.

PROPOSITION 11. Let R be a noetherian ring. If the α -polynomial ring $A = R[..., X_i,...]$, $i \in I$, over R is a Hilbert ring, then A is an $H(\alpha)$ -ring.

PROOF. We show that R satisfies the condition (a) of Theorem 2. Let m be any maximal ideal in R. Since $(R/m)[..., X_i,...]$, $i \in I$, is a Hilbert ring and card $(I) = \mathfrak{a}$, the cardinality of R/m is greater than \mathfrak{a} by Proposition 2 in [1]. Let \mathfrak{p} be a non maximal prime ideal in R. Proposition 10 implies that R/\mathfrak{p} has the property $J^*(\mathfrak{a})$; hence R is an $H(\mathfrak{a})$ -ring.

REMARK. Let R be a $G(\aleph_0)$ -domain and K be the quotient field of R. The set $W = \{\{u_1, u_2, ...\} \subset K; K = R[u_1, u_2, ...]\}$ is not empty, because R is a $G(\aleph_0)$ -domain. We say that R is a $G'(\aleph_0)$ -domain if $\{u_n, u_{n+1}, ...\}$ is an element of W for any $\{u_1, u_2, ...\} \in W$ and for any positive integer n. The following proposition is an immediate consequence of Corollary 2 to Proposition 1 in [1] and Theorem 5 in [3].

PROPOSITION. Let R be a one dimensional $G(\aleph_0)$ -domain. If K is an algebraically closed field, and if $\operatorname{card}(R/m) > \aleph_0$ for any maximal ideal in R, then $R[X_1, X_2, \ldots]$ is a Hilbert ring if and only if R is a $G'(\aleph_0)$ -domain.

3. Valuation rings with the property $J^*(\aleph_0)$

PROPOSITION 12. Let R be a valuation ring. Then the following statements are equivalent:

- (a) R has the property $J^*(\aleph_0)$.
- (b) If $D = \{a_i; i=1, 2, ...\}$ is a $J(\aleph_0)$ -subset of R, then $\bigcap_{i=1}^{\infty} Ra_i \supseteq (0)$.
- (c) K((X)) = Q(R[[X]]), where K = Q(R). (Q(*) stands for the quotient field of *.)

PROOF. (a) \Rightarrow (b). We can take a non zero prime ideal $\mathfrak p$ in R such that $\mathfrak p$ is not an element of $H_R^*(D)$. Therefore, for any i, we have $\mathfrak p \Rightarrow Ra_i$; hence $Ra_i \supset \mathfrak p$;

thus $\bigcap_{i=1}^{\infty} Ra_i \supset \mathfrak{p}$.

(b) \Rightarrow (a). Let $D = \{a_i; i = 1, 2, ...\}$ be a $J(\aleph_0)$ -subset of R such that $P(R) = H_R^*(D)$. Then we have $\mathfrak{p} \supset \bigcap_{i=1}^{\infty} Ra_i$ for any non zero prime ideal \mathfrak{p} in R; thus $\mathfrak{p}_1 = \bigcap_{p \in P(R)} \mathfrak{p} \supsetneq (0)$. Clearly $ht(\mathfrak{p}_1) = 1$; hence $R_{\mathfrak{p}_1}$ is a valuation ring of rank one. Take a non zero element a in \mathfrak{p}_1 , then $\bigcap_{i=1}^{\infty} a^i R_{\mathfrak{p}_1} = (0)$; hence $\bigcap_{i=1}^{\infty} a^i R = (0)$, because $\bigcap_{i=1}^{\infty} a^i R_{\mathfrak{p}_1} \supset \bigcap_{i=1}^{\infty} a^i R$. This contradicts to the assertion (b).

As for the equivalence of (b) and (c), see Theorem 1 in [2].

COROLLARY. Let R be a valuation ring. If R has the property $J^*(\aleph_0)$, then $R_{\mathfrak{p}}$ has the property $J^*(\aleph_0)$ for any non zero prime ideal \mathfrak{p} in R.

This follows immediately from the equivalence of (a) and (c) in Proposition 12.

References

- [1] K. Fujita, A note on Hilbert's Nullstellensatz, Hiroshima Math. J., 4 (1974), 421–424.
- [2] R. Gilmer, A note on the quotient field on the domain D[[X]], Proc. Amer. Math. Soc. 18 (1967), 1138–1140.
- [3] O. Goldman, Hilbert ring and the Hilbert Nullstellensatz, Math. Zeit. 54 (1951), 136-140.
- [4] I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1971.

Department of Mathematics, Faculty of Science, Hiroshima University