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Introduction

Krull domains are, roughly speaking, congruent to Dedekind domains modulo

the primes of height ^ 2. This principle has brought on many results on Krull

domains, which generalize the corresponding ones on Dedekind domains; for

example, the fundamental theorem on ideals in a Dedekind domain can be formu-

lated for a Krull domain as follows: For an ideal α of a Krull domain A, there

are primes p 1 ? . . . , p r of height 1, which are uniquely determined, so that A: (A;

a) = A:(A:])ί...pr); here the operation A: (A:*) corresponds to the modulus

"the primes of height ^ 2 " .

It is well known that the notion of divisorial ideals plays an important role

in the theory of Krull domains in fact, the divisorial ideals represent the quotient

of the set of ideals modulo the primes of height ^ 2 . However it seems to the

authors that the importance of the notion of divisorial modules, which generalizes

that of divisorial ideals, has not been recognized yet except the case of lattices.

The purpose of this paper is to introduce the notion of divisorial modules

over a completely integrally closed domain by means of codivisorial modules and

also to develope a theory of them. The key theorem is Theorem 1 (§ 1) which

is valid for a completely integrally closed domain; this is the reason why we are

mainly concerned with modules over completely integrally closed domains rather

than Krull domains. In § 2, we study modules over Krull domains exclusively.

§ 1. Codivisorial and divisorial modules over a completely integrally

closed domain.

1. Let A be a completely integrally closed domain and K be its quotient

field. We say that a fractional ideal a of A is divisorial if α is an intersection of

principal ideals. It is well known that, for a fractional ideal α, A: (A: α) is the

intersection of principal ideals which contain α and is the smallest divisorial ideal

containing α; we denote by α the ideal A: (A: α). For fractional ideals α and b,

we say that α is equivalent to b if α = b; this relation is an equivalence relation and

is denoted by ~ . The set of divisorial ideals can be identified with the quotient



270 Mieo NISHI and Mitsuo SHINAGAWA

set I(A)I~ of I(A) modulo the relation ~ , where I(A) is the set of fractional ideals

of A. Since A is completely integrally closed, the set of non-zero divisorial ideals

of A is a group under the binary operation * defined as follows: a*b = ab.

Let α be an integral ideal and a be a non-zero element of A. Since A is com-

pletely integrally closed, we have a: a = A, which implies that α: (α, α) = (α: α) Π

(a:a) = A(](a:a)ι we denote this integral ideal by α: Aa. Let L(α) denote the set

{aeA;a:Aa~A}. Then we have the following

THEOREM 1. L(α) = α.

PROOF. Let a be an element of α. If y is an element of K such that yA =>

α: Aa, then yAzDa and hence J/XZDO. So a — yaγ for some element αx of A. Put

α 1 =α/y. Then cii^: Aaί = aίy: Aaίy = a: Aa<=yA. Therefore a^ayA, and hence

aczy2A. Inductively we can easily see acynA for nΞ>3. Consequently ^ [ y 1 ]

a A: α; so y" 1 is almost integral over 4̂ and hence contained in A. This implies

that AczyA, and so a: Aa = A. Hence αeL(α).

Conversely we show that L(o)cδ in the case άξ^A. For any element a of

A — α, it is sufficient to show that a φL(α), in other words, a: Aa ξ A. Since α: ̂ α

is divisorial and α: Aa=>a: Aa, a: Aacza: AaξA by the choice of a.

COROLLARY 1. Let a and b be fractional ideals of A. Then

oTΓb = α Π b .

PROOF. We can readily see that the statement can be reduced to the case

where α and b are integral ideals so we may assume that α and b are integral ideals

and b φ α. First, suppose that both α and b are equivalent to A. Let a be an ele-

ment of b — a; then (α Π b): Aa — (a:Aa) Π (b:Aa) = a: Aa. Since acza:Aa and

α~,4, α: Aa~A; this implies that α e α n b by Th. 1. Therefore bczαΓlb and,

since b~A, a Π b = A. Thus we see that if a~A and b~A, then so is α Π b.

Now we proceed to the general case. Since α Π b is contained in both α and

b, we have only to prove that α Π b c= α Π b. Let a be an element of α Π b. Then

(α Π b): Aa = (a: Aa) n (b: Aa) and both α: Aa and b: Aa are equivalent to A;

therefore (α Π b): Aa~A9 which implies α e α n b by Th. 1.

COROLLARY 2. Let α, b and c be ideals of A and a be an element of A.

Then we have

(i) a:Aa = a:Aa.

(ii) Ifb~A and c is divisorial and α = b Π c, then c = α.

The assertions follow immediately from CorolL 1.
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COROLLARY 3. Let M be an A-module and put N = {xe M\ O(x)~A}9 where

O(x) is the order ideal of x. Then N is a submodule of M.

The assertion follows from Coroll. 1 to Th. 1.

2. From now on the submodule N of M given in Coroll. 3 to Th. 1 will

be denoted by M. We give a definition for ^4-modules by means of " ~ " .

DEFINITION 1. Let M be an A-module. We say that M is codivisorial

(resp. pseudo-null) if M = 0 (resp. M = M).

It is easy to see that the functor " ~ " is left-exact additive functor from

the category of v4-modules to the category of pseudo-null ^-modules. The

relation between the ideal theoretical " ~ " and the module theoretical " ~ "

is given by the following proposition.

PROPOSITION 1. Let a be an ideal of A. Then A/a = άla. In particular,

A/a is codivisorial (resp. pseudo-null) if and only if a is divisorial (resp. equiva-

lent to A).

PROOF. For an element a of A, we let a denote the canonical image of a

in A/a. Then a belongs to A/a if and only if O(a) = a: Aa~A. Our assertion

follows now from Th. 1.

PROPOSITION 2. Let M be an A-module. Then M is codivisorial if and only

if the order ideal O(x) is divisorial for every element x of M.

PROOF. It is easy to see that M is codivisorial if and only if Ax is codivisorial

for every element x of M. Hence the assertion follows from Prop. 1.

The following corollary is a direct consequence of Prop. 2.

COROLLARY. // M is a codivisorial A-module, then Ann(M) is divisorial.

PROPOSITION 3. Let M be an A-module. Then M\ΊS/l is codivisorial, and

has the universal mapping property in the following sense: If N is a codivi-

sorial A-module and f is a homomorphism of M to JV, then there is a unique

homomorphism g of MjM to N such that f=gp, where p is the canonical projec-

tion of M to MjM.

PROOF. We may assume that M is not pseudo-null. Let x be an element of

M — M, and put α = O(x). Then we have Ax = Ax Π M = ax by Prop. 1, and hence

we have Ap(x)^Ax/Ax n M = Ax/ax^Ala. Therefore Ap(x) is codivisorial by

Prop. 1. This means that M/M is codivisorial. The last assertion follows

from the fact that f(M) c JV = 0.
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PROPOSITION 4. Let M be an A-module and N be an essential extension of
M. If M is codivisorial, then so is N.

PROOF. Since JV Π M = M = 0, JV = O by the essentiality of N over M.

COROLLARY 1. If M is a codivisorial A-module, then so is E(M), where
E(M) is an injective envelope of M.

This is a direct consequence of Prop. 4.

COROLLARY 2. E(K/A) is codivisorial.

The assertion follows immediately from the fact that KjA is codivisorial.

Here we give a criterion for a module to be pseudo-null.

PROPOSITION 5. Let M be an A-module. Then M is pseudo-null if and
only ifHomA(M,E(K/A)) = 0.

PROOF. It is sufficient to show the "if" part. Suppose that M is not pseudo-
null and put N = M/M. Then there is a non-zero element x of N and O(x) is a
proper divisorial ideal by Prop. 2 and Prop. 3 and hence A: O(x)^^4. Let a
be an element of (A: O(x)) — A. Then A: Aa=>O(x). Let/be a homomorphism
of A to K/A such that f(b) = ab where αb is the class of αb in K/A. Since Ker(/)
= A: Aα=>O(x), there is a non-zero homomorphism g of A/O(x) to KjA such that

f=gp9 where p is the canonical projection of A to A/O(x). Let i be the canonical
injection of K/A to E(K/A) and j be the canonical injection of A/O(x)^Ax to N.
Then there is a non-zero homomorphism h of N to E(K/A) such that /# = ft/,
and hence hq is a non-zero homomorphism of M to E(K/A), where g is the
canonical projection of M to N.

COROLLARY. Let M and N be A-modules. If M is pseudo-null, then so
is Tor*(N,M)forn^0.

PROOF. First we treat the case n = 0. Since M is pseudo-null, we have
Horn*(JV®ΛM, E(K/A))sHom^(N, HomA(M, E(K/4)) = 0 therefore N®AM
is pseudo-null by Prop. 5. Next, when n ^ l , we consider a projective resolution
of N

Then, since each Pn®AN is pseudo-null, we can see that Tor;*(TV,M) is pseudo-
null for every rc^O by noting the fact that submodules and homomorphic images
of a pseudo-null module are also pseudo-null.

PROPOSITION 6. (i) Let 0->L->M->N be an exact sequence of A-modules.
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If L and N are codivisorial, then so is M.

(ii) Let L-^M-^N be an exact sequence of A-modules. If L and N are

pseudo-null, then so is M.

PROOF. The first assertion follows from the fact that the additive functor

" ~ " is left-exact. As for the last one, in the exact sequence

Homκ(N, E(K/A) >Horn*(M, E(K/A)) >HornA(L, E(K/A))

we have HomA(L, E(K/A)) = 0 and UomA(N,E(K/A)) = 0 by Prop. 5, and hence

HomA(M,E(K/A)) = 0. Therefore M is pseudo-null again by Prop. 5.

3. Now we give some definitions for modules and homomorphisms in terms

of codivisorial modules and pseudo-null modules.

DEFINITION 2. Let N be an A-module and M be a submodule of N. We

say that M is divisorial in N if N/M is codivisorial. Furthermore M is said to

be divisorial if it is divisorial in its injective envelope E(M).

DEFINITION 3. Let f be a homomorphίsm of A-modules. Then f is called

pseudo-injective (resp. pseudo-surjective) ΐ / K e r ( / ) (resp. Coker(/)) is pseudo-

null. Furthermore f is said to be pseudo-isomorphic if it is pseudo-injective

and pseudo-surjective.

We have the following corollaries to Prop. 6.

COROLLARY 1. Let N be an A-module, M a submodule of N and L a sub-

module of M. If L is divisorial in M and M is divisorial in N, then L is di-

visorial in N. In particular, if L is divisorial in M and M is divisorial, then

L is divisorial.

PROOF. Consider the following exact sequence

0 >M/L >N/L

Since MjL and NjM are codivisorial, NjL is codivisorial by Prop. 6. Therefore

L is divisorial in N. As for the last one, L is divisorial in E(M) by the above

case. Hence L is divisorial in E(L), namely, L is divisorial.

COROLLARY 2. Letf: L-^M andg:M-+N be homomorphisms of A-modules.

If f and g are pseudo-injective (resp. pseudo-surjective or pseudo-isomorphic),

then so is gf.

PROOF. Consider the following exact sequences

0 >Ker(/) ^
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Coker (/) -JU Coker (gf) > Coker (g).

Then the assertion follows immediately from Prop. 6.

4. In what follows, we shall denote by &(Ά) the ^4-module ®A/a, where α

runs over the ideals of A which are equivalent to A. We give some criteria for a

module to be codivisorial or divisorial in terms of

PROPOSITION 7. Let M be an A-module. Then M is codivisorial if and only

if ExtS{£(A\ M) = Horn,(&(A)9 M) = 0.

PROOF. It is sufficient to show the "if" part. Let x be an element of M

and put a = O(x). Then a~A by the definition of M, and A/a^Ax. Since

Horn^ (&(A), M) = 0, Hom^ (A/a, M) = 0. This means that x = 0. Hence M = 0,

namely, M is codivisorial.

COROLLARY. Let M and N be A-modules. If M is codivisorial, then so is

PROOF. By Prop. 7, it suffices to show that

(N,Λf)) £ Hom^(&(A)®AN,M) = 0.

By Prop. 5, &(A)®AN is pseudo-null because 2{A) is pseudo-null. Since M

is codivisorial, HomA(^(A)®AN9 M) = 0.

PROPOSITION 8. Lei M /?e an A-module. Then the following conditions

are equivalent:

( i ) M is divisorial.

(ii) ExtA(;TG4),M) = 0.

(iii) Lei Λf be an A-module and L be a submodule ofN. IfN/L is pseudo-

null, then the following sequence

HomA (N, M) > UomA (L, M) > 0

is exact.

PROOF. (i)>=>(ii): Let a be an ideal which is equivalent to A, and/be a homo-

morphism of α to M. Then there is a homomorphism g of A to E(M) such that

jf=gi, where i (resp. j) is the canonical injection of α (resp. M) to A (resp. £(M)).

Therefore there is a homomorphism ft of Ala to E(M)jM such that g# = /zp, where

p (resp. q) is the canonical projection of A (resp. £(M)) to A/a (resp. E(M)jM).

Since 4̂/α is pseudo-null and E(M)/M is codivisorial, /i = 0, and hence g(A)czM.

This implies that the sequence Hom^(^4, M)->Hom^(α, M)->0 is exact, i.e.,

ExtA(A/a,M) = 0. Hence Ext A (^(Λ), M)ς*Π Ext A(A/a,M) = 0, where α runs

over the ideals of A which are equivalent to A.
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(ii)c=>(iii): For an element / of HomA(L, M), by Zorn's lemma, there is a

maximal submodule H of JV containing L such that there is a homomorphism g

of H to M which is an extension of/. Now we see that H = N. If otherwise,

there is an element x of JV — H. Put a = H: Ax. Then α is equivalent to A be-

cause a=>L:Ax and L: Ax is equivalent to A by the assumption. Let t be a

homomorphism of α to M such that t(a) = g(ax) for any element a of α. By the

assumption, there is a homomorphism u of Ato M which extends ί. We define

the homomorphism h of H + Ax to M by /i(<y + flx) = gf(j) + αw(l) for any element

y of H and any element α of A; then /z is an extension of g to #4-A*. This

contradicts the maximality of H.

(iii)cφ(i): Put N = p~1(E(M)/M)9 where p is the canonical projection of

E(M) to E{M)jM. Then JV is an essential extension of M and JV/M is pseudo-

null. By the assumption, there is a homomorphism / o f JV to Λf such that // =

id.Mi where ί is the canonical injection of M to JV. Then / is surjective. Since

i is an essential extension, / is injective and hence it is isomorphic; thus we have

M = N. Consequently £(Λf)/Ms£(Aί)/M/£(M)/MΓ and hence E{M)jM is

codivisorial by Prop. 3. Therefore M is divisorial.

COROLLARY 1. Let M be a divisorial A-module. Then M is injective if

and only if ExtA(A/a, M) = 0 for any divisorial ideal a of A.

PROOF. It suffices to show the "if" part. Let o be an ideal of A. Since

a/a is pseudo-null by Prop. 1, the sequence HomA(α, M)->HomA(α, M)-»0 is

exact by Prop. 8 (iii). By the assumption, HomA(A, M)->HomA(α, M)-»0 is

exact. Hence the sequence HomA(A9 M)-^Homy l(α, M)->0 is exact. There-

fore ΈxtA (A/a, M) = 0 for any ideal α of A. This implies that M is injective.

COROLLARY 2. Let M be a divisorial A-module and N be an A-module.

IfHomA{Ίoτi{^{A\ JV),M)=0, then HomA(JV,M) is divisorial

PROOF. By Prop. 8 (ii), it is sufficient to show that the sequence: HomA(A,

HomA(JV, M))-^HomA(ai HomA(JV, M))-»0 is exact for any ideal α of A which

is equivalent to A. Since the sequence

0—>Ίori(Ala,N) >a®AN >aN >0

is exact, so is the sequence

0 > HomA (aN, M) > Horn* (α ® A JV, M) > Hom κ (Tori (A/a, N)9M).

By the assumption, Hom^Torf (A/a, JV),M) = 0 and hence HomA(αJV, M) =

HomA (α ® A JV, M). Since Hom x (A, HomA (JV, M)) s Hom A (JV, M) and HomA(α,

Horn^ (JV,M))^ HornA(α®^JV,M), it is sufficient to show that Hom^(JV, M)->

(αJV, M)->0 is exact. This follows from Prop. 8 (iii) because N/aN is
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pseudo-null.

5. Now we give a definition for ^-modules in terms of the torsion functor

and

D E F I N I T I O N 4. Let M be an A-module. We say that M is weakly flat

We have the following corollary to Prop. 8.

C O R O L L A R Y 3. Let M be a divίsorίal A-module and N be an A-module.

If M is codiυisorial or N is weakly flat, then HomA(N, M) is divisorial.

P R O O F . By Coroll. 2 to Prop. 8, it is sufficient to show that H o m A (Torf

(^G4),JV),M) = 0. This follows from the facts that Tor? {β{A)> N) i s pseudo-

null by Coroll. to Prop. 5, and M is codivisorial or Tor? {&(A)> N) = 0 by Def. 4.

N o w we study a relation between weakly flat modules and divisorial modules.

We need the following well-known lemma. Let M be an A-module and put

M * = H o m z ( M , Q/Z). Then M * is called the character module of M. We

have

L E M M A 1. (i) The sequence of A-modules

0 >L >M >N >0

is exact if and only if the sequence

0 >N* >M* >L* >0

is exact.

(ii) Let M be an A-module. Then M is flat if and only if M* is injectiυe.

See J. J. R O T M A N [4], Lemma 3.34 and Th. 3.35.

P R O P O S I T I O N 9. Let M be an A-module. Then M is weakly flat if and only

if M* is divisorial.

P R O O F . Let α be an ideal of A which is equivalent to A. Consider the exact

sequence

0 >Torf (A/a9M) >a®AM >aM >0.

We have the exact sequences by Lemma 1 (i)

0 > (oAf)* > (α ® A M ) * > Ίor{ (A/a, M ) * • 0

0 >(M/aM)* >M* >(aM)* >0.
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Since (α®/4M)*^Hom/1(α, M*) and M*-*(αM)*->0 is exact, HomA(A, M*)->
Hom^Cα, M*)-»0 is exact if and only if (αM)*->(α®^M)*-»0 is exact, in other
words, Torf(^/α,M)* = 0, i.e., Tori (A/a, M) = 0 by Lemma 1 (i). Hence M*
is divisorial if and only if Tor? {β{A\ M) = 0 by Prop. 8 (ii).

COROLLARY 1. Let M be a weakly flat A-module. Then M is flat if and
only if TorA(A/a, M) = 0for any divisorial ideal a of A.

PROOF. Since M* is divisorial by Prop. 9, M* is injective if and only if
Ext? (A/a, M) = 0 for any divisorial ideal a of A by Coroll. 1 to Prop. 8. By the
argument of the proof of Prop. 9, Ext? (A/a, M*) = 0 if and only if Tori (A/a, M)
= 0. Therefore Tori (A/a, M) = 0 for any divisorial ideal α of A if and only if
M* is injective, namely, M is flat by Lemma 1 (ii).

COROLLARY 2. Let M be a weakly flat A-module and N be a pseudo-null
A-module. Then Tori (N, M) = 0.

PROOF. Let 0-»if-*L-»iV-»0 be an exact sequence of ^4-modules where L
is projective. Since M* is divisorial by Prop. 9, the sequence HomA (L,M*)->
H o i n ^ / ^ M * ) - ^ is exact by Prop. 8 (iii). Since HomA(L,M*)^(L®AM)*
and HomA(H,M*)^(if®^M)*, the sequence (L®AM)*->(#®AM)*->0 is
exact and hence 0^>H®AM^>L®AM is exact by Lemma 1 (i). Therefore
Tori(N, M) = 0 because L is projective.

REMARK 1. It is easy to see that for an A-module M, M* is codivisorial
if and only if Tor^(^(A), M) = &(A)®A M = 0.

6. Here we study some homological properties of the functor " ~ " . Put
= M for any A-module M and consider the right derived functors {RΠ^Γ}

^ of JV. Then 1R°jr = jr because the additive functor jr is left exact. We
have the well-known homological result.

PROPOSITION 10. Let 0->L->M-»N->0 be an exact sequence of A-modules.
Then the sequence

>RnJT{N) -»

is exact.

PROPOSITION 11. Let M be an A-module.
(i) IfM is divisorial, then R1JT(M) = 0.
(ii) If M is codivisorial and R 1 ^ ( M ) = 0, then M is divisorial.

PROOF. Consider a minimal injective resolution of M
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0 >M >EQ-*!L>Eι-*UE2-<i+ >En-

(i): Since M is divisorial, Eo/M = 0 and hence E^=Έ(EJM) = 0 by Coroll. 1

to Prop. 4. In particular, R 1^Γ(M)^(Ker(ί/ 1) n Eί)/do(Eo) = 0.

(ii): Since R1^Γ(M) = 0, Ker(J x ) n E1=d0(E0). By the assumption that

M is codivisorial, Eo = 0 by Coroll. 1 to Prop. 4. Therefore Ker(dί)f] E1=0

and hence Ex=0 because Eί =£(Ker(d 1 )). This implies that M is divisorial.

COROLLARY 1. Let 0->L-*M->N-+Q be an exact sequence of A-modules.

(i) If L is divisorial, then the sequence 0-»L-»M-»N->0 is exact. In

particular, if L is divisorial and M is codivisorial, then L is divisorial in M.

(ii) // M is codivisorial and both L and N are divisorial, then M is divi-

sorial.

The assertion follows immediately from Prop. 10 and 11.

COROLLARY 2. Let a be an ideal of A. Then a is a divisorial ideal if

and only if it is a divisorial module.

PROOF. If α is a divisorial ideal, then α is a divisorial module by Prop. 1

and Coroll. 1 to Prop. 6, because A is a divisorial module. Conversely if α is a

divisorial module, then it is divisorial in A by Coroll. 1 to Prop. 11, i.e., it is a di-

visorial ideal by Prop. 1.

7. Here we give some definitions for ^4-modules. Let N be an ^4-module

and M be a submodule of N. Put DA(M; N) = p~1(N/M), where p is the canoni-

cal projection of N to N/M. Then we say that DA(M; N) is the divisorial enve-

lope of M in N. Furthermore we denote DA(M; E(M)) by DA(M) and it is called

a divisorial envelope of M. Simply we denote DA(M;N) (resp. DA(M)) by

D(M; N) (resp. D(M)) unless there is fear of confusion. The following proposi-

tion is a characterization of D(M; N).

PROPOSITION 12. Let N be an A-module and M be a submodule of N.

Then D(M\ N) is divisorial in N and if L is a submodule of N which contains M

and is divisorial in N, then D(M; N)czL. This means that D(M; N) is the small-

est submodule of N containing M which is divisorial in N.

PROOF. Since AΓ/D(M;N)^iV/M/iV/M, D(M;N) is divisorial in N by

Prop. 3. Consider the exact sequence 0->L/M^JV/M->iV/L-»0. By the assump-

tion, N/L is codivisorial, so N/M^L/M by Prop. 3. Hence D(M;N)czL.

COROLLARY 1. Let M be an A-module and L be an essential extension of

M. If L is divisorial, then D(M)c=L. Therefore M is divisorial if and only
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The assertion follows immediately from Prop. 12.

COROLLARY 2. Let M be an A-module and N be an essential extension of

M. If N is divisorial, then D(M;N) = D(M). In particular, if a is an ideal of

A, then D(ά) = D(α A) = α.

PROOF. It is easy to see that D(M)cD(M;N) by Coroll. 1 to Prop. 6 and

Coroll. 1 to Prop. 12. Conversely, since D(M) is divisorial by the definition of

a divisorial envelope, D(M\N)aD{M) by Prop. 12. The last assertion follows

from Prop. 1.

COROLLARY 3. Let A be a set.

(i) Let N be an A-module and {Mλ;λeA} be a family of submodules of

N. Put Λί = Π Mλ where λ runs over the elements of A. Then D(M; N)a

(]D(Mλ',N).

(ii) Let Nλ be an A-module and Mλ be a submodule of Nλ for any element

λ of A. Put M = ®Mλ and N=®Nλ9 where λ runs over the elements of A.

Then D(M; N)=@D(Mλ: Nλ).

PROOF. It can be easily seen by Coroll. 1 to Th. 1 that the functor Jί com-

mutes with any direct sum (not necessarily finite) of ^-modules. Hence the sec-

ond assertion follows from the definition of D(M; N). As for the first one, since

iV/ Π D(Mλ; N) can be considered as a submodule of ΠNjD{Mλ\ N), it suffices to

show that ΠN/D(Mλ; N) is codivisorial. By virtue of Prop. 2, this follows from

the facts that each N/D(Mλ N) is codivisorial and any intersection of divisorial

ideals is also divisorial.

8. Now we give some definitions for A-modules and v4-homomorphisms in

terms of pseudo-isomorphisms and essential extensions.

DEFINITION 5. Let f be an A-homomorphism. Then f is said to be es-

sentially isomorphic if it is an essential extension and is pseudo-isomorphic.

Let M be an v4-module and put « "̂M = { ( ^ / ) 5 N is a n ^4-module a n d / i s a

homomorphism of M to N and is essentially isomorphic.}. Let (L, g) and

(N,f) be elements of ^ M . Then we say that (L, g) is equivalent to (N,f), and

denote it by (L,g) = (N,f), if there is an isomorphism h of L to N such that

f=gh;wQ say that (N,f) is larger than (L, g), and denote it by (N,/)>(L, g) or

(L, g) < (N,f), if there is a homomorphism j of L to N such t h a t / = gj. It is easy to

see that j is necessarily an essential isomorphism. Furthermore we say that (L, g)

is pseudo-equivalent to (N, g), and denote it by (L, g)~(N,f) if (L, g)>(N,f) and

(L, g)<(N,f). An element of «̂ "M is said to be an essentially isomorphic exten-
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sion ofM. Let (N,f) be an element of tFM. (N,f) is called a maximal essential-
ly isomorphίc extension (resp. a pseudo-maximal essentially isomorphic exten-
sion) ofM, simply maximal (resp. pseudo-maximal), in &M, if there is no element
(L, g) of &M such that (L, g)>(N,f) and (L, g) is not equivalent (resp. pseudo-
equivalent) to (N,f). Now we give alternative criterion of a divisorial envelope
in terms of maximal essentially isomorphic extensions and pseudo-maximal es-
sentially isomorphic extensions.

PROPOSITION 13. Let M be an Λ-module and (N,f) be an element of &M.
Then the following conditions are equivalent:

( i ) (AT,/) is pseudo-maximal in &M.
(ii) (N,f) is pseudo-equivalent to (D(M), i) where i is the canonical injec-

tion ofM to D(M).
(iii) (N,f) is maximal in 1FM.
(iv) (N,f) is equivalent to (D(M), i).

PROOF. First we show that (D(M), i) is maximal in 1FM. Let (L, g) be an
element of 1FM which is larger than (D(M), i). Then we may consider D{M) as a
submodule of L and L/D(M) is pseudo-null. Since E(M) = E{L) and D(M) is
divisorial in E(M),L/D(M) is codivisorial and hence L/D(M) = 0. This implies
that (D(M), ί) is maximal in &M. Now we show that (D(M), i) is larger than every
element of «̂ *M. Let (N,f) be an element of ίFM. Then we may consider N
as a submodule of E(M). Since / is pseudo-isomorphic, N/M is pseudo-null

and hence N/Mc:E(M)IM. This implies that (NJ)<(D(M), i). Therefore our
assertions follows immediately from the above facts.

COROLLARY. Let N be a codivisorial A-module and M be a submodule.
Then (D(M N)J) is an essentially isomorphic extension of M, where j is the
canonical injection of M to D(M;N). In particular, if N is codivisorial and
divisorial then D(M;N) = D(M).

PROOF. It can be easily seen that N is an essential extension of M if N is
codivisorial and N/M is pseudo-null. Therefore if N is codivisorial, then D(M;
N) is an essentially isomorphic extension of M. The last assertion follows from
Coroll. 1 to Prop. 6 and Prop. 13.

9. We have already known in Prop. 4 that an essential extension preserves
the codivisoriality. However this is not true in general for the case of the pseudo-
nullity ( cf. the remark after the next theorem). Here we shall study some
properties of a ring A, which preserves the pseudo-nullity.

THEOREM 2. The following conditions for the ring A are equivalent:
(i) If Eis injective, then so is E.
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(ii) E(β) = E(M)for any module M.

(iii) Let N be an essential extension ofM. IfM is pseudo-null, then so is N.

(iv) Let a be an ideal of A which is not equivalent to A. Then α: Aa is

divisorial for some element a of A —a.

(v) If M is not pseudo-null, then it has a non-zero codivisorial submodule.

(vi) Let a be an ideal of A. Then there is an ideal b of A which is equiva-

lent to A such that α = α Π b.

PROOF. (v)«=>(iii): Suppose that N is not pseudo-null. Then there is a

non-zero codivisorial submodule L of N. Since N is an essential extension of M,

L Π M is a non-zero codivisorial submodule of M. Hence M is not pseudo-null.

(iii)cΦ(ii): Since E(M) is an essential extension of M, E{M) is pseudo-null

and hence E(M)aE(M) by the maximality of E(M). E(M) is an essential exten-

sion M because E{M) Π M = M. Therefore E(Nί) = E(M).

(ii)«=>(i): Let E be an injective ^-module. Then E(E) = E(E) = E. Hence

E is injective.

(i)c>(vi): Put E = E(AI<x). Then E = Ed@E for some codivisorial submodule

Ed of E. Let x be the class of 1 in Aja and put x = x 1 + x 2 where xγ eEd and

x2 e E. Then α = O(x) = O(xx) n O(x2) O(xί) is divisorial by Prop. 2, and O(x2)

is equivalent to A because E is pseudo-null. The assertion follows from Coroll. 2

to Th. 1.

(vi)c=>(iv): Let α be an ideal of A which is not equivalent to A. Then there

is an ideal b of A, which is equivalent to A, such that α = α n b . Since aς^A,

αφb. Take an element a of b —α. Then α: Aa — a: Aa and hence α: Aa is di-

visorial.

(iv)c=>(v): Suppose that M Φ M and take an element x of M — M. Then

O(x) is not equivalent to A. Therefore O(x): Aa is divisorial for some element a

of v4 —O(x). In other words, O(αx) is a proper divisorial ideal. Hence Aax is

a non-zero codivisorial submodule of M by Prop. 1.

REMARK 2. A completely integrally closed domain does not necessarily

satisfy the conditions of Th. 2.

EXAMPLE 1. Let V be a valuation ring whose value group is R, and υ be its

valuation. Then (iv) of Th. 2 is false for an ideal {aeV; v(a)>2} because any

divisorial ideal of Fis principal. Furthermore an F-module M is injective if and

only if it is divisorial and divisible by Coroll. 1 to Prop. 8.

Here we give a definition for a ring.

DEFINITION 6. A domain A is said to be strongly integrally closed if A is
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completely integrally closed and satisfies the conditions of Th. 2.

Now we shall study modules over a strongly integrally closed domain. We

understand that, in the rest of this section, A is always a strongly integrally closed

domain, unless otherwise specified. We have

PROPOSITION 14. Let M be an A-module. Then E(M/M)^E(M)IE(Aί).

PROOF. Consider the following commutative diagram

0 > fϋ > M > MjM >0

0 >E(M) >E(M) >E(M)IE(M) >0.

Then there is a homomorphism / of MjM to E(M)/E(M) such that//> = #/, where

p (resp. q) is the canonical projection of M (resp. E(M)) to M/M (resp. E{M)j

E(M)) and i is the canonical injection of M to E(M). It is sufficient, by (ii) of

Th. 2, to show that/is an essential extension. Since E(M) n M=Λ?, /is injective;

thus we may consider M/AΪ as a submodule of E(M)/E(M). We denote q(x)

by 3c for any element x of E(M). Suppose that Ax n (M/M) = 0. Then for any

element y of Ax Π M, we have y = 0 and hence Ax n McAf. This implies that

Ax n M is pseudo-null, and so Ax is pseudo-null, by (iii) of Th. 2, because Ax is

an essential extension of Ax n M. Therefore y4χc£(M); thus ,43c = 0. This

completes the proof.

COROLLARY. Let M be an A-module. Then we have E(M)^E(M)®E(M/

A?).

The assertion follows immediately from Prop. 14.

PROPOSITION 15. Let M be a pseudo-null A-module. Then RnJ^(M) = 0

forn^l.

PROOF. We consider a minimal injective resolution of M

0 >M >E0 >EX >E2 >En >En+ί >

Then each En is pseudo-null by Th. 2. Therefore En = En and hence Rn^Γ(M) =

f o r n ^ l .

COROLLARY 1. Let M be an A-module. Then

for w^l . In particular, R1Λ/*(M) = 0 if and only if M/M is divisorial.

PROOF. The first assertion follows from Prop. 10 and 15. As for the last
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one, the proof follows easily from Prop. 11.

COROLLARY 2. Let M be an A-module. Then D(M)^D(M)®D(M/M)

andD(M) =

PROOF. Consider the following commutative diagram

0 0 0

I I 1
0 > M > E{M) > E{Sί)IM >0

i 1 1
0 > M > E(M) > E(M)/M >0

i i i
0< M/AΪ >E{MjM) >E{MIM)IMjM >0

i I 1
0 0 0

Each column is exact by Prop. 14. Since E{M)jM is pseudo-null, the sequence

0 • E(M)/M • E{M)jM > E{Mj$ί)IMI$t • 0

is exact by Coroll. 1 to Prop. 15. Hence it is easy to see the sequence:

0 >D(M) >D(M) >D(M/M) >0

is exact. Since D(M) = p"H^(M)/M) = p~1(£(M)/M) = £(M), where p is the ca-

nonical projection of E(M) to E(M)/M, D(Λ?) is injective. Therefore D(M)£

D(M)@D(Mlfil).

REMARK 3. Let A be a completely integrally closed domain. Then the fol-

lowing conditions are equivalent:

( i ) A is a Dedekind domain.

(ii) Every ideal of A is divisorial.

(iii) Every ^-module is divisorial.

(iv) Every ^-module is codivisorial.

(v) A has no proper ideal which is equivalent to A.

(vi) &(A) = 0.

(vii) There is no non-zero pseudo-null >l-module.

(viii) Pseudo-isomorphisms are isomorphisms.

(ix) An essential isomorphism is an isomorphism.

(x) D(M) = M for any ^4-module M.

(xi) The functor " ~ " is an exact functor.
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REMARK 4. Let A be a completely integrally closed domain. Then any

inductive limit of a direct system of pseudo-null v4-modules is also pseudo-null.

§ 2. Codivisorial and divisorial modules over a Krull domain

1. In this section, we shall study modules over a Krull domain. We recall

that a completely integrally closed domain is a Krull domain if and only if the set

of divisorial ideals satisfies the maximum condition. We understand that,

throughout this section, A is always a Krull domain. Let M be an ^4-lattice.

Then we say that M is a divisorial lattice if it is reflexive, i.e., M — A\ (A: M) =

HomA(HomA(M, A), A). A\(A:M) is the smallest divisorial lattice in M®AK

= E(M), where K is the quotient field of A, which contains M. By R. M. FOSSUM

[3], Chap. I, Coroll. 5.5. (e), M is a divisorial lattice if and only if it is a divi-

sorial module. Hence D(M) = A: (A: M). Let K be the quotient field of A

and Htj (A) be the set of non-zero divisorial prime ideals, i.e., prime ideals of

height 1 in A. Then we have

PROPOSITION 16. Let M be a codivisorial A-module. Then

( i ) Ass(M)czlitί(A)\j{0}.

(ii) M = 0 if and only if Ass(M) = φ.

(iii) If M is finitely generated, then Ass(M) is a finite set.

PROOF. The first two assertions follow from Prop. 2. As for the last one,

let {x1?..., x j be a system of generators of M. We use the induction on n.

In the case that n = 1, we put α = O(x1). Then A/a^M and α is a divisorial ideal

of A by Prop. 1. We denote by p ( w ) the n-th symbolic power of p, where p is an

element of Ht x (A). Since it is easy to see the assertion if α = 0, we may assume

that α=j=O. By R. M. FOSSUM [3], Chap. I, Coroll. 5.7., there are finite elements,

say p l v . . , p r, of Htί(A) such that α = p ( W l ) n ••• Π p ( r i r ) for some positive integers

n!,..., nr. Then it can be easily seen that Ass(M) = Ass(A/a) = {pί9..., p r}. In

general case, put N = D(Axί;M). Then N is divisorial in M, namely, MjN is

codivisorial. It is easy to see that N is an essential extension of Axu and hence

Ass 0 4 ^ ) = Ass (ΛΓ), and so Ass(ΛΓ) is a finite set by the above case. Consider the

exact sequence

0 >N >M >M/N >0.

Then we have Ass(M)czAss(iV) U Ass (M/N). Since M/N is generated by (n — 1)

elements, Ass (M/N) is a finite set by inductive hypothesis. Therefore Ass(M)

is a finite set.

LEMMA 2. Let a and b be non-zero fractional ideals of A. Then we have
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PROOF. aϊb = A: [Λ:(α: b) ]cA: [_(A: a)b] = (A:b):(A: a) = {A: [_A:(Λ:b)']}:

(A:a) = A:{(A:a)lA:(A:b)]} = lA:(A:a)y.lA:(A:b)] = a:b. Hence o ^ b c 8 : b .

Conversely we shall show that α: bczα: b. We recall that for any non-zero

fractional ideals c,b of A, c= Π cp, where p runs over the elements of H t j ^ ) ,

and (b: c)p = bp: cp if b is divisorial, where p is an element of Ht j (^4).ι > Therefore

α(A:b))D = α ί)(X:b) ί) = αp(^p:b ) 3) = α ί): bp = (α:b)p, for any element p of Htj (A),

because Ap is a principal valuation ring. Hence α: b = a(A: b). It is easy to see

that ά(A: b) = a(A: b)czα: b, and so α b c α : b.

Now we have a corollary to Prop. 16.

COROLLARY. Let a be an ideal of A. Then Ass(Ala)aAss(A/a).

PROOF. We may assume that Ass(A/α)Φφ, i.e., α g i by Prop. 1 and 16.

Let p be an element of Ass (A/a). Then p = ά: Aa for some element a of A —a.

Put b = a: Aa. Then b = p by Coroll. 2 to Th. 1. Since b: ,iP = b: p, b: AV = p: p

by Lemma 2, because p is divisorial. Therefore b: A p is equivalent to A because

A is completely integrally closed. Since p is divisorial, b : A p φ p . Take an

element b of (b:Ap) — p. Then p = p: /4fc = b:> 1b = α: Aab. This implies that

Ass (A/a) cz Ass G4/α).

PROPOSITION 17. 4̂ Krull domain is strongly integrally closed.

PROOF, (iv) of Theorem 2 follows from Coroll. 2 to Th. 1 and Coroll. to

Prop. 16.

PROPOSITION 18.2 ) Let M be an A-module. Then M is pseudo-null if

and only if Mp = 0for any element p o/Ht^A).

The assertion follows immediately from Prop. 3 and 16.

COROLLARY. Let f be an A-homomorphism. Then f is pseudo-injectίve

(resp. pseudo-surjective or pseudo-isomorphic) if and only if fp is injective

(resp. surjective or ίsomorphic) for any element p of H ^ (A).

The assertion follows immediately from Prop. 18.

2. Now we shall study relations between the ^-modules and the S~ίA-

modules, where S is a multiplicatively closed subset of A. We understand that,

1) See R. M. FOSSUM [3], Lemma 5.3., Coroll. 5.4., and Coroll. 5.5. (b), (c).

2) As for the case that A is a noetherian Krull domain, i.e., A is a noetherian normal domain,
and M is a finitely generated, this proposition was given by N. BOURBAKI. See N. BQURBAKI,

[2], §4, n°4, Prop. 9 and Def. 2.
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in the rest of this section, S is always a multiplicatively closed subset of A. We

recall that S~XA is a Krull domain and S-1A= n Ap where p runs over the

elements of the set {p e HtA (A); p f)S = φ}, and that S~1a is a divisorial S~1A-

ideal (resp. is equivalent to S~1A) for any divisorial ideal α of A (resp. for any

ideal α of A which is equivalent to A). (See R. M. FOSSUM, [3] Prop. 1.8. and

Coroll. 5.5. (b), (c))

PROPOSITION 19. // M is a codivisorial A-module, then 5 - 1 M is also a

codiυίsorial S~ι A-module.

The assertion follows immediately from Prop. 2.

COROLLARY 1. Let M be an A-module. Then S~1M = S~1M. In par-

ticular, S'^M'/Xt^S-^/F^M.

PROOF. Consider the exact sequence

0 >S~ιM • S^M >S-ι(M/M) >0.

Then we have S~1λϊ^S~1M by Prop. 3 and 19. Conversely it can be easily seen

that S"1Λ?c:5~1M by the fact that S'1a^S~ίA for any ideal α of A which is

equivalent to A.

COROLLARY 2. Let N be an A-module andM be a submodule of N. Then

S-1DA(M;N) = Ds-iA(S-lM;S-1N).

The assertion follows immediately from Coroll. 1 to Prop. 19.

PROPOSITION 20. Let M be a codivisorial A-module and N be an essential

extension of M. Then S~ίN is an essential extension of S~ίM.

PROOF. Since N is codivisorial by Coroll. 1 to Prop. 4, S~1N is a codivisorial

S"M-module by Prop. 19. We may assume that S~1iV4=0. Let x be a non-

zero element of S~1N and put x = y/s9 where yeN and seS. Set «̂ " = {pe

AssA(Ay); pnS = φ}. Then Asss-iA(S~ίAx) = {S-1p; pe«^"}. By Prop. 16,

Asss-iA(S~1Ax)Φφ. And hence ^Φφ. Let p be an element of & and take an

element a of A such that y = O(ay). By the assumption, M Π Aay + 0. Take

a non-zero element zofMfl Aay and put z = bay for some element b of A. Then

z/lΦO in S~*M. If otherwise, there is an element t of S such that tz = O and

hence tbay = 0, i.e., tbeθ(ay) = p. Since pr\S=φ, bep. In other words,
z = bay = 0. This contradicts the choice of z. Hence S~ιAx f] S~1Mφ0. This

implies that S~ιN is an essential extension of S^M.

COROLLARY. LeίiV fee a codivisorial A-module andM be a submodule of

N. Then N is an essential extension of M if and only if Np is an essential
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extension of Mp for any element p of Ht^ (A).

PROOF. By Prop. 20, it is sufficient to show the "if" part. Let L be a sub-

module of N such that L Π M = 0. Then Lp Π Mp = (L Π M)p = 0 and hence Lp = 0

for any element p of Ht x (A) because Np is an essential extension of Mp. There-

fore L is pseudo-null by Prop. 18. Hence L = 0 because L is codivisorial. This

implies that N is an essential extension of M.

3. Now we shall study codivisorial injective ^-modules.

The following results are due to I. BECK.

PROPOSITION 21. Let E be a non-zero codivisorial and injective A-module.

Then E is indecomposable if and only if it is isomorphic to K or E{Ajy>)^KjAp

for some element p ofHtί (A).

See I. BECK [1], Prop. 2.3, 2.5 and 2.6.

PROPOSITION 22. Let E be a non-zero codivisorial A-module. Then E is

injective if and only if it is isomorphic to a direct sum of indecomposable co-

divisorial injective modules.

See I. BECK [1], Prop. 2.4, 2.5 and 2.6.

THEOREM 3. A direct sum of codivisorial injective A-modules is injective.

See I. BECK [1], Prop. 2.7.

COROLLARY 1. Let M be a codivisorial A-module. Then we have S'^^

PROOF. S~ιEA(M) is an essential extension of S - 1 M by Prop. 20. Hence

it is sufficient to show that S~ίEA(M) is injective. This follows immediately

from Prop. 21 and 22 and Th. 3.

Let M be an ^-lattice. We recall that S " 1 ^ : (A: M)) = S~ίA: (S~ιA:

S'iM), namely, S-1DA(M) = Ds-lA(S~1M). The following corollary to Th. 3

is the generalization of the case of lattices.

COROLLARY 2. Let M be a codivisorial A-module. Then we have S~ίDA(M)

The assertion follows immediately from Coroll. 2 to Prop. 19 and Coroll. 1

to Th. 3.

COROLLARY 3. Let M be a codivisorial and divisorial A-module. Then

S~ιM is a codivisorial and divisorial S~ιA-module.
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The assertion follows from Coroll. 1 to Prop. 12 and Coroll. 2 to Th. 3.

COROLLARY 4. Let A be a set and Mλ be a codiυisorial A-module for any
λeΛ. Then we have E(®Mλ)^®E(Mλ) and D(®Mλ)^®D(M;), where λ runs
over the elements of A.

PROOF. It can be easily seen that ®E(Mλ) is an essential extension of ®Mλ.
Since each E(Mλ) is codivisorial and injective by Coroll. 1 to Prop. 4, ®E(Mλ)
is injective by Th. 3, and hence E(®Mλ)^®E(Mλ). The last assertion follows
immediately from Coroll. 3 to Prop. 12.

PROPOSITION 23. Let M be a divisorial S"1 A-module. Then M is a di-
visorial A-module. In particular, S~ιA is a divisorial A-module.

PROOF. Let α be an ideal of A which is equivalent to A and / be a homomor-
phism of α to M. Then S - 1α is equivalent to S~1A and hence, by the assump-
tion, there is a homomorphism g of S~ 1A to M such that S~ 1f= gS~xi by Prop. 8,
where / is the canonical injection of α to A. Let j be the canonical injection of A
to S~ίA. Then f=gji. This implies that ExtJt(A/a, M) = 0 for any ideal α of
A which is equivalent to A, i.e., Ext^ (βf(A), M) = 0. Therefore M is divisorial
by Prop. 8.

COROLLARY. Let M be an S~ι A-module.
(i) M is a codivisorial S'1 A-module if and only if it is a codivisorial A-

module.
(ii) M is a codivisorial and divisorial S"1 A-module if and only if it is a

codivisorial and divisorial A-module.
In particular, any A-module is a codivisorial and divisorial A-module,

where p is an element ofHtι {A).

PROOF. The first assertion follows from Prop. 19 and 2 and the fact that
α Π A is a divisorial ideal of A for any divisorial ideal α of S~ίA. As for the last
one, the assertion follows immediately from Coroll. 3 to Prop. 22 and Prop. 23.

THEOREM 4. Let M be a codivisorial A-module.
(i) If M is torsion free, then D(M)^ Π Mp9 where p runs over the elements

of Hi, (A).
(ii) 3 ) If M is a torsion module, then D(M)^®Mp, where p runs over the

elements of Ass (M).
In particular, if M is a coirreducible torsion module, then D(M) = Mp,

where Ass(M) = {p}.

3) This assertion was essentially obtained by I. BECK. See I. BECK [1], Prop. 1.9.
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PROOF, (i): Since M is torsion free, E(M)^E(Mp)^M®AK. Put N =

Π Mp. Then N is divisorial by Coroll. 3 to Prop. 12, because for any element p

of Rt^Ά), Mp is a divisorial ^-module by Coroll. to Prop. 23. Therefore it

suffices to show that (N, ί) is an essentially isomorphic extension of M by Prop.

13, where i is the canonical injection of M to N. It is easy to see that i is an es-

sential extension. Let q be an element of Ήi^^A). Then we have NqcMq Π

(0 Mp®AAq)9 where p runs over the elements of Htiίyi) — {q}. Since Ap®AAC{

= K, NqaMq and hence Nq = M^. This implies that i is pseudo-isomorphic

by Coroll. to Prop. 18.

(ii): Let ip be the canonical homomorphism of M to Mp and put N=@Mp,

where p runs over the elements of Ass(M). Let i = Πip be the canonical homo-

morphism of M to ΠMp. Then it can be easily seen that /(M)c= N by Prop. 16

(iii). Since N is divisorial by Coroll. to Prop. 23 and Coroll. 4 to Th. 3, it is

sufficient to show that ί is essentially isomorphic by Prop. 13. This follows from

Coroll. to Prop. 18 and Coroll. to Prop. 20.

COROLLARY 1. 4 ) Let B be a subring of K which contains A. Then B is

a divisorial A-module if and only if it is a sub intersection of A, i.e., B= Π Ap9

where p runs over the elements of a subset ofHtί(A).

The assertion follows immediately from Th. 4 (i) and the fact that Ap is a

principal valuation ring for any element p of Ht x (A).

The following corollary to Th. 4 is originally due to I. BECK. See I. BECK

[1], Prop. 2.9.

COROLLARY 2. E(KIA)^D(KIA)^®E(A/p), where p runs over the elements
ofUt.iA).

PROOF. By Th. 4 (ii), D{KjA)^ ®{KjA)p, where p runs over the elements of

Ass(KM) = Ht 1 (A). Since E(Alv)^K/Ap^(KIA)p, D(K/A) is injective by Th. 3.

Hence the assertion follows immediately from the above fact.

4. Now we shall give criteria of injective modules and flat modules over a

Krull domain, and study some properties of the derived functors of Jί and the

extension functors.

PROPOSITION 24. Let M be an A-module. ThenM is injective if and only

if it is divisorial and divisible.

PROOF. It is sufficient to show the "if" part. By Coroll. 2 to Prop. 15,

we may assume that M is codivisorial, divisorial and divisible. Since EA(M)/M

4) This result was obtained by J. AHMED in a quite different way. See J. AHMED, Modules

sur les anneaux de Krull. C.R. Aead. Sei. Paris Ser. A-B, 276 (1973).
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is codivisorial, it suffices to show that EA(M)/M is pseudo-null, i.e., (EA(M)/M)p —

0 for any element p of H t ^ ) by Prop. 18. By Coroll. 1 to Th. 3, EA(M)p^

EAp(Mp) because M is codivisorial. Since M is divisible, Mp is divisible Ap-

module, i.e., injective Ap-module because Ap is a principal valuation ring. Hence

Mp=EA(M)r and so (EA(M)IM)p = 0.

COROLLARY 1. Let E be an injective A-module and M be a torsion free

A-module. If HomA(Tor^ {&(A\ M), E) = 0, then HomA (M, E) is injective.

PROOF. Since E is injective and M is torsion free, HomA (M, E) is divisible.

Hence the assertion follows from Coroll. 2 to Prop. 8 and Prop. 24.

COROLLARY 2. Let E be an injective A-module and M be a torsion free

A-module. If E is codivisorial or M is flat, then HomA(M, E) is injective.

The assertion follows from Coroll. 3 to Prop. 8 and Coroll. 1 to Prop. 24.

PROPOSITION 25. Let M be an A-module. Then M is flat if and only if

it is weakly flat and torsion free.

PROOF. It is sufficient to show the "if" part. By Prop. 9, M* is divisorial.

Since M is torsion free, M* is divisible by Lemma 1 (i). Hence M* is injective

by Prop. 24. Therefore M is flat by Lemma 1 (ii).

The following proposition and its corollary 1 are originally due to I. BECK.

See I. BECK [1], Prop. 3.7 and 3.8.

PROPOSITION 26. Let M be an A-module (which is not necessarily codi-

visorial). Then EA(M)p^EAp(Mp) for any element p ofYit^^A).

PROOF. By Coroll. to Prop. 14 and Prop. 17, EA(M)^EA(M)®EA(MjM).

Let p be an element of H t ^ ) . Then EA(M)p^EA(M)p®EA(M/M)p. Since

EA(M) is pseudo-null by Th. 2 and Prop. 17, EA(M)p = 0 by Prop. 18. Since

M/M is codivisorial by Prop. 3, EA(M/M)p = EAp((MlM)p) by Coroll. 1 to Th. 3.

By Prop. 18, Mp = 0 and hence Mp^(M/M)p. Therefore EA(M)p^EAp(Mp).

COROLLARY 1. Let M be an A-module and let

0 >M >E0 >Eί >E2 > >En >En+ι >

be a minimal injective resolution of M. Then En is pseudo-null for n^.2.

The assertion follows from Prop. 26 and the fact that Ap is a principal valua-

tion ring and so gldim(^4) = l.

COROLLARY 2. Let M be an A-module. Then RnJT(M)=0 for n ^ 3 .
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The assertion follows immediately from Coroll. 1 to Prop. 26 and the defini-
tion of Rnjr.

PROPOSITION 27. Let M be an Λ-module. Then M is a codivisorial and
divisorial module of injective dimension at most one if and only (/*RVT(M) = 0
forn = 0, 1,2.

PROOF. It is sufficient to show the "if" part. Since M = R°jr(M) = 0, M
is codivisorial. By Prop. 11 (ii), M is divisorial because R1^Γ(M) = 0 and M
is codivisorial. Since RίΛ'(E(M)IM)^R2Λr(M) = 0, E(M)/M is divisorial by
Prop. 11 (ii) because M is divisorial, i.e., E(M)/M is codivisorial. Therefore
E{M)jM is injective by Prop. 24 because E{M)jM is divisible. This implies that

PROPOSITION 28. Let M be an A-module and n^.2 be an integer. Then
^ n if and only ίfExtn

A(&(A)9M) = 0.

PROOF. It is sufficient to show the "if" part. Let

0 >M >E0-*^Eγ-*U En-±L>E

be a minimal injective resolution of M and put Jn = Ker(dπ). Then ExtA(£?(A),
In-ί)^ExtA(&(A),M) = 0. Therefore /n_ t is divisorial by Prop. 8, i.e., In is
codivisorial. Since /„ is pseudo-null by Coroll. 1 to Prop. 26, /π = 0. Hence
£„ = £(/„) = (), i.e., m]άimA(M)^n.

PROPOSITION 29. Let {Mλ,fλμ}λeΛ be a direct system of codivisorial A-
modules and {M,fλ}λeA its inductive limit. Then M is codivisorial.

PROOF. Let x be an element of M. Then there is an element λ0 of A and an
element xλo of Mλo such that fλo(xλo) = x. Put A' = {λeA;λ^λ0}, and put xA =
fλo,λ(χλo) f°r a n y λeA'. Then A' is cofinal to A. It is easy to see that for ele-
ments λ and λ' of Λ'9 O(xλ)=)O(xλ0 if λ^λ\ and ljm. O(xλ)= U λe^O(xA) = O(x).

λsΛ'

Since each O(xλ) is a divisorial ideal of A by Prop. 2, O(x) = O(xΛ) for some
element λ of A' because any ascending chain of divisorial ideals of A breaks off
at finite step. Hence O(x) is divisorial. Therefore M is codivisorial by Prop. 2.

REMARK 5. Let M be a codivisorial ^4-module. Then HomA(N, M) is co-
divisorial for any ,4-module N, by Coroll. to Prop. 7. But ExtA(N,M) is not
necessarily codivisorial for n ^ l .

EXAMPLE 2. Let A be a regular local ring of Krull dim(;4) = nΞ>2. Then
injdim(/l) = tt and hence Ext^(iV, A) + 0 for any m with 2 g m ^ n , and for some
finitely generated ^-module N. Since Ext^(N, A)p^ΈxV^p(Np9 Ap) for any
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element p of Ht1(A), Ext^(iV, A) = 0 because Ap is a principal valuation ring.
Hence Ext^(N9 M) is pseudo-null by Prop. 18. Therefore Ext^(N, A) is not
codivisorial.

REMARK 6. Example 1 shows that Prop. 24 can not characterize a Krull
domain.

REMARK 7. Let A be a completely integrally closed domain. Then the
following conditions are equivalent:

( i ) A is a Krull domain.
(ii) Any direct sum of codivisorial and injective yl-modules is injective.
(iii) Any direct sum of codivisorial and divisorial ^1-modules is divisorial,

and any codivisorial, divisorial and divisible ^4-module is injective.
To see this, we make use of a method similar to one due to H. BASS who

gave the well-known criterion for a ring to be noetherian in terms of injective
modules by it.
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