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Introduction

Pietsch [9] introduced the concept of absolutely p-summing operators in

normed spaces. This concept was extended in Ramanujan [10] to absolutely

A-summing operators by the aid of symmetric sequence spaces λ. On the other

hand, Mityagin and Pelczyήski [6] introduced the concept of (p, r)-absolutely

summing operators in Banach spaces and this was recently extended in Miyazaki

[7] to (/?, q; r)-absolutely summing operators by using the sequence spaces lpq

and lr. The object of this paper is to extend these two kinds of concepts to (λ, μ)-

absolutely summing operators in normed spaces by making use of abstract se-

quence spaces λ and μ and to develop a theory of such operators.

In Section 1, we define the sequence spaces λ of type A and the sequence

spaces μ of type M and define the (λ, μ)-absolutely summing operators. It is

shown that lpq is a space of type A and /, is a space of type M. In Section 2,

we state some basic properties of (λ, μ)-absolutely summing operators. We in-

vestigate in Section 3 some inclusion relations between the spaces of (λί9μί)'

and (λ2, μ2)-absolutely summing operators. Section 4 is devoted to studying

composition of two (λ, μ)-absolutely summing operators. Two spaces of (λί9

μ j - and (λ2, μ2)-absolutely summing operators may happen to coincide, when

their domain and range are particular normed spaces. These facts will be investi-

gated in Section 5.

The author would like to thank Professor S. Togo for his valuable comments

in preparing this paper.

§ 1. Notations and Definitions

For a sequence space λ the α-dual is denoted by λx. If λxx = λ, then

λ is said to be a perfect sequence or a Kothe space. We start with the sequence

space c0 of all scalar sequences converging to zero and the sequence space ω of

all scalar sequences, which are given respectively an extended quasi-norm p and

an extended norm q satisfying the following conditions :

(a) Ifforanyx = (x1,...,xn,...)ecoandy = (yl9...,yn,...)eω we setxi = {xu

. . . ,x ί 5 0,. . .) and yi = (y1,..., yi90,...) for i = l , 2 , . . . , then K ^ ) - > / > ( * ) and q(yι)
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(b) p and q are both absolutely monotone.

We shall then define the sequence space λac0 (resp.μceo) to be the space

consisting of all xec0 (resp.xeω) such that p(x)<oo (resp.q(x)<cc).

Furthermore we assume that λ and μ satisfy the following conditions:

(c) λ and μ are both the K-symmetric spaces. That is, if xπ is the sequence

which is obtained as a rearrangement of the sequence x corresponding to a

permutation π of the positive integers, then p(x) = p(xπ) for each xeλ and each

π and q(y) = q(yπ)for each yeμ and each π.

(d) μ is a Kδthe space.

(e) The topology given by the norm q on μ is the Mackey topology of

the dual pair (μ, μx) so that μx =(μ, q)f.

(f) λ and μ have the norm preservation property. That is, if x = (x^)

is such that xf = 0/or all iφn, then p(x)=\xn\ and q(x)=\xn\.

We say the above λ and the space /^ to be spaces of type A and say the above

μ to be a space of type M.

If μ is of type M, then we have Z x £μ£ l^ and either μ £ c 0 or μ=lo0.

We remark now that φ, ω, c and c0 are not of type M and that any space of

type M is also of type A.

In the following, we shall show that the Lorentz space lpq (\<p,q<oo)

is of type A.

DEFINITION 1. The Lorentz space lpq is the collection of all sequences

(aι)ec0 such that \\(aι)\\lp q<co, where denoting by (|flf|*) the non-increasing

rearrangement of (\at\) we put

1

if 1 < P < oo, 1 < q <oo,

j
sup iP~\aι\* if 1 < p < oo, q = oo .

PROPOSITION 1. The Lorentz space lpq(l < p, q < oo) is of type A.

PROOF. It suffices to show that lPΛ satisfies the condition (a). Assume
°° £_ i

first that l<p<oo and l<g<oo. If a = (aι)elpq, we have Σ *'p |flf|*
9<oo.

i = l

Here putting (\ai\*) = (bk), for any ε>0 we have a positive integer M such that
oo £_<
Σ ip \bi\q<£ If we denote b{ = an. for i = l,...,M, there exists a positive

i=M+ί

integer JV such that {au..., aN}^{ani,...,anM}. Let {cl9...,cN} be the non-

increasing rearrangement of {au...,aN}. Then c—bi for i = l , . . . ,M and we

have

oo £_1 N £ _ |

i = l l i=ί
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oo «_ t / M q_Λ N q_Λ

Σi>"Ί*ιl«-(Σi'l*ιl' + Σ i ί ' Ί
1=1 \i=l i = M+l

Σ ?~'lA Σ= Σ /?~'lAlf- Σ *' k f|
ί=M+l i=M+l

= Σ /'"1(|Aιl ί-k l l
f)+ Σ I'-MM

i=M+l i=JV+l

Therefore | | α f | | ί p g converges to | | α | | w

Next assume that l < p < o o and q = co. If a = (ai) e lp>q, we have

sup ί>|αI |* = Q<oo. Hence if we put (|flil*) = (frfc), there exists a positive integer
i i_

M such that Mp| fc M |>β —ε. Hence taking JV by the same way as in the above
i_

proof, we have sup ip\ai\
¥>Q — ε. Hence \\ai\\ι converges to | |α| |, .

l£i£N P'9 p q

Finally, in case of 1 <p<oo and 1 <q<oo, if | | Λ | | | = OO, it is easy to show

that Ha4!!, tends to | |α| |2 and the proof is complete.
U II In Q II /̂*ιfl *- *-

Next we start with two normed linear spaces (E, || ||) and (F, || | |). Let μ

be of type M. Then we shall denote by μ(E) the vector sequences x = (xw), xn e £,

which are weakly contained in μ in the sense that for each aeEr the sequence

(<xn,a>) of scalars is in μ.

Here suppose that x = (xn) belongs to μ(E). Then from a theorem of Pietsch

[8] it follows that sup q(\<xn, α > | ) < o o . We shall denote by εu the functional
l lβ l l^ i

defined on μ(E) by εμ(x)= sup q((\<xn9 a>\)) which is also denoted by
| | β | | ^ l

S U P 11(1 <xn > a>\)\\u- εu(χ) c a n easily be verified to be a norm. This gives μ(E)
l l«l |£i
a natural topology.

Next let λ be of type Λ. Then we define the space A[F] as the space of all

vector sequences y = (yn), yneF, such that the sequence (||)>J|)eA. We denote

by ccλ the functional defined on Λ,[F] by αA(<y) = p((||.vn||)) which is also denoted by

IKIIJ/IIDIL O Γ II(yw)II A[F] Thus λ\_F~\ is topologised in a natural way by the quasi-

norm aλ{y). We can easily show that μ{E)=>μ[E~] for any μ of type M.

DEFINITION 2. Let E and F be normed linear spaces, let T be a linear

mapping on E into F and let λ and μ be of type A and of type M respectively.

Then the mapping T is said to be (λ, μ)-absolutely summing provided for each

finite set of elements x l 5..., xn in E the following inequality is satisfied:

(1) I K ^ I L C F ] < P sup 11(1 < x ι , α > | ) | | μ ,
llβll^i

where p is constant.

REMARK. | |(Tx i)| |A [ F ] appearing above is to be interpreted as the quasi-
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norm of the element (Txi9...9 Txn, 0,...) in the vector sequence space λ[F] with

a similar interpretation for | | ( |<x, , α> |) | | A ί .

We denote by πλμ(T) the least constant p satisfying (1) for any finite set

{x^..., x j in E and by π A μ ( £ , F) the set of all (λ, μ)-absolutely summing opera-

tors. Then πλfμ(E9 F) is a quasi-normed linear space with a quasi-norm πλ > / l(T).

When λ = lPjq and μ = /r, the mappings T above are called (p9 q; r)-absolutely

summing operators and discussed extensively in Miyazaki [7],

§ 2. Elementary properties of (λ9 // )-absolutely summing operators

PROPOSITION 2. Let B(E, F) be the normed space of all bounded linear

operators with the norm | |Γ | |= sup ||Tx||, let λ be of type A and let μ be
ll*l|£i

of type M. Then we have πλ,μ(E9 F)aB{E9 F) and ||T|| <π λ > μ(T) for every Te

PROOF. By virtue of Definition 2, we have

||(||Tx||,0,...)IL < πλJT) sup ||(| < x, a > |, 0,...)||,.
| | α | | ^ l

Therefore we have | |Γx | |<π λ > μ (T) | |x | | . Consequently we have

TGB(E9F) and | |Γ | | < πA μ(T).

Thus the proof is complete.

PROPOSITION 3. Let λ be of type A, let μ be of type M and let I be a Banach

sequence space satisfying /=></>, \\et\\ = 1 and / 'c/ x . // there exists ξ = (ξn)

such that ξeco,ξφλ and ξΊxcμ, then there exists a continuous linear map-

ping on I which is not (λ9 μ)-absolutely summing.

PROOF. The identity mapping T on / is linear and continuous. Define

(*<">) in / by x^ = ξnen. Then if aeΓalx

9 we have (<*<">, a>) = ξa eξΊxczμ

and (x<»>)eco(ί). However \\Tx™\\ = \ξH\. Hence (||Γx<w>||) φ λ. Thus the

proof is complete.

COROLLARY. Assume that λ is of type A9 λξ^c0 and μ is of type M. Then

there exists a continuous linear mapping on c0 which is not (λ, μ)-absolutely

summing.

PROOF. Since ί j C μ c ^ and there exists a ξec0 which does not belong

to λ9 the condition of Proposition 3 is satisfied.

THEOREM 1. Let λ be of type A and μ be of type M. Let us consider the
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following properties of T: E-+F.

( i ) T is a (λ, μ)-absolutely summing operator.

(ii) J/x=(x /)e/i(£)nco(£), then Tx = (TXi)eλ[Fl

(iii) J/x = (xt) eμ(£), then ίx = (7χ)eλ[F~\.

Then

(1) (i) and (ii) are equivalent.

(2) If λ is of type M, (i), (ii) and (iii) are equivalent.

(3) Let λ be of type M. Then even if λ and μ do not satisfy the condition

(f ), (i) and (iii) are equivalent.

PROOF. (1) (i)=>(ii): Let (i) be valid and let x = (xi)eμ(E)f]c0(E). For

each fixed n, consider xn=(x1,...,xn, 0,...). Then we obtain

IKHΓxJ,..., | | 7 \ , | | , 0 , . . . ) U A < p sup | |(| < χl9 a > |,..., | < xn, a > |,0,...)llμ

!l«l|£i

and since the norm on μ is absolutely nomotone, the above expression is

<ρεμ(x). Since λ satisfies the condition (a), it follows that | |( | |T'x i | |) | |A<oo.

By Proposition 2 (|| 7XH) belongs to c0. Consequently ΐx e λ[F]. Thus (i)=>(ii)

is proved.

(ii)=>(i): Let (ii) be valid and let (i) be not valid. Then for any positive

integer j there exists a finite set {x/}i<^,,(y) in E satisfying sup | | ( |<x/, Λ> |) | | μ

< 1 and ||(||Tx/||)||A>j2-/. From our assumptions it follows that the sequence

x of vectors

2 '•••' 2 ' 2 2 ' " * ' 2 2 ' * " ' 2 / *'*" ' 2J ' " "

is in μ(E), and, since {x{} is bounded, x is contained in co(E). Also since the

quasinorm defining the topology of λ is absolutely monotone, it follows that

ΐx φ λ\_F~\. This is a contradiction.

(2) (iii) => (ii) is clear. The proof of (ii) => (i) follows in the same way as in

the proof of (i) => (ii) of (1) and the proof of (i) => (iii) follows in the same way

as in the proof of (i) => (ii) of (1).

The analogous calculation of (1) shows the part (3) of the theorem. Thus

our assertions are proved.

THEOREM 2. Let λ and μ be of type M. Then the space πλtfl(E, F) is a

normed linear space with the norm πλ>μ(T) and if F is a Banach space, πλ>μ(E, F)

is complete.
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PROOF. We omit the proof of πλ>μ(T) being a norm and of πλtfi(E, F) being
a normed linear space. Assuming that F is a Banach space, we shall prove that
πλμ(E,F) is complete. Let {Tn} be a Cauchy sequence in πλμ(E,F). Then for
given ε>0 the inequality | | ^ - T J < π A > μ ( T Π - T m ) < ε holds for n,m>N. Thus
{Tn} is a Cauchy sequence in the Banach space B(E, F) and therefore there exists
a TeB(E,F) such that lim | |7;-T| | =0. Since πλtμ(Tn-Tm)<ε for n,

w->oo

we get for n, m>N and for each finite set {Xi}ι^i<n in £

< ε sup | |( | < xh a > \)\\μ.

Letting m-»oo, we get

This implies πλtfl(Tn— T)<ε for any n>N. The proof is complete.

PROPOSITION 4. Let λ be of type A and μ be of type M.

(i) IfμΓιco(/:λ, then πλ>μ(E, F) = {0}

(ii) πίao,μ(E,F)

PROOF, (i) If possible, let T(#0)eπΛ > μ(£,F) and let (an)eμf]co\λ.
Here αf may be assumed to be positive for ί = 1, 2 Let x0 be an element of

E such that ||xoll = l and ||Txo|| =K(#0). Then we have (Ί Γ-^XollV

μ Π c0. This contradicts TeπλJE,F),(a^)eμ{\cQ\λ but

which proves (i).
(ii) Since μ satisfies the conditions (b) and (f), for each finite set of elements

xj,..., xn in E the following inequality holds:

sup||7\.|| = \\TxJ < \\T\\\\xJ < \\T\\ sup ||(| <xha > | ) | | μ ,
i l|α||£l

where x ί o is an element of xί9...9 xn. Thus our assertions are proved.

THEOREM 3. Let E, F and G be normed spaces, let λ be of type A and let
μ be of type M.

(i) // SEB(E,F) and Teπλ>μ(F,G), then TSeπλffl(E,G) and πλtfl(TS)

(ii) // Seπλiμ(E,F) and TeB(F,G), then TSeπλJE,G) and πλ>μ(TS)
<\\T\\πλtμ(S).

PROOF, (i) For each finite set of elements xί9..., xn in E9 by our assump-



(λ, μ)-Absolutely Summing Operators 401

tion the following inequality is valid:

mτsχι\ <

<

<

πλ.β(T) sup U\ <

πA >,,(Γ)| |S|| sujk

π λ ,/T) | |S | | sup ||(

Sx.

Id
| <

,a >

<xt,

xhb

)\\μ

S>a>\)\

> DIU,

which proves (i).

The analogous calculation shows (ii) of the theorem. In fact, the following

inequality holds:

< \\T\\πλtμ(S) sup 11(1 < χi9a > \)\\μ.
llβll^i

Thus our assertions are proved.

COROLLARY. Let λ be of type A and let μ be of type M. Then π λ > μ(£, E)

is a two sided ideal in B(E,E) and for Seπλifl(E,E) and TeB(E,E), the fol-

lowing inequalities hold: π A i M (SΓ)^π λ f | l (S) | |T | | and πλtfl(TS)< ||T||πA>/i(S).

LEMMA 1. Let λ be a space of type A. Then we have A®£c:A[£].

PROOF. Let φ be the mapping on λ®E into S(E), the linear space of all

sequences with values in E, defined by 0((cf), x) = (c, x ) e l [ £ ] . Consequently
n

by using the definition of tensor product, the linear mapping φ: Σ ( c i / ) ® x ί
n i = l

-K Σ ciixi) niapps λ®E into λ[E~] and φ is an algebraic isomorphism. Thus

the proof is complete.

Now we denote by λ®ΛλF the quasi-normed space λ®F with the topology

induced by the quasi-norm ccλ and also by μ®εμE the normed space μ®E with

the topology induced by the norm εμ.

PROPOSITION 5. Let λ be of type A, let μ {φl^) be of type M and let

πλμ(E,F)Φ0. Then the mapping T: E^F belongs to πλtμ(E,F) if and only if

I®T: μ®εJE-*λ®ΛλF is continuous.

PROOF. Assume that I®T: μ®εμE-*λ®aλF is continuous and T does

not belong to πA / i(E,F). Then for any positive integer j there exists a finite

set {xO^nuy in E satisfying αΛ((Tx/))>yβμ((x/)). Since Σ ^ 0 * , = Σ (0,...,
i 1 i 1
Σ ^ , Σ

i= 1 i= 1

0,x,,0,...)=(Xi,...,xn,0,...), we have

iU
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Tx{) = αΛ((Tx/)) > jεμ((x{)) = Jεμ( Σ e ; ® */)
i = l i = l

Consequently J ® T is not continuous. This is a contradiction. Thus the suffi-

ciency is proved. Conversely, assume that Te πA § μ(£, F). Then f: μ(E) Π co(E)

->A[F] is continuous. Therefore I®T\ μ®εμE-+λ®aχF is continuous, for

μ®εμEaμ(E) Π co(£) and T and 7®T have the same values on μ®E. This

completes the proof.

§ 3. Some inclusion relations between the spaces of (λ l 5 μ 1)-and (λ2, μ2)-

absolutely summing operators

Suppose that α and β are sequence spaces. We define oc-β={(xnyn): (xn) e a,

(yn)
e β}- Here we denote by D(β, α) the set of diagonal matrices carrying β into

α. We use the following results of Crofts [1].

LEMMA 2. D(β, α)c(j? α x ) x and, ifot is a Kδthe space, D(β, α) = (jβ α x ) x .

PROPOSITION 6. Let λt and λ2 be of type A and let μx and μ2 be of type

M. Ifμ1z>μ2 and λ2z>λu then πλuμι(E,F)c:πλ2,μ2(E9F).

THEOREM 4. Let λγ and λ2 be of type A and let μί and μ2 be of type M.

If there exists a sequence space v c / ^ satisfying the conditions v-μ2c:μ1 and

(v.Ax)xc:A2, then we have πλuμi(E,F)cπλ2tμ2(E9F).

PROOF. Let Tbe (λl9 /^-absolutely summing on E into F and let (xn) e μ2{E)

Π cjβ). Then for each α = (απ) e v and aeE' we have

( < ctnxn, a > ) = α( < xM, a > ) e v.μ2 c μt.

Since Γis (A^μJ-absolutely summing it follows that |a|(||TxM||) = (||T(aMxM)||)eA1

and since λί is solid, α(|| Txn\\) e λ1 and therefore we have (|| Txn\\) e D(v.Ax). Hence

by Lemma 2 (\\Txn\\)e(v-λx

ί)*czλ2. Thus T is (λ2,μ2)~absolutely summing.

This completes the proof.

EXAMPLE. Let λx = lu μί = li9 λ2 be of type A and μ2 be of type M such

that μ2aλ2. Then if we set v = (μ x.μ2) x ==μ2% we have v μ2czlί and (v λ^)x =

μ2aλ2 so that, by the above theorem, every absolutely summing mapping is

0*2 > i" 2)-absolutely summing.

§4. The composition of (λ9 /i)-absolutely summing operators

THEOREM 5. Let E, F and G be normed spaces, let \<p, ri<oo(ί = l,2)
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be real numbers such that — I < and let λt and λ2 be sequence spaces
P rι r2

of type A satisfying λ2^>λ1 lp. Then for any Te πlplp(E, F) and S e nλίtlr (F, G)

the composition ST belongs to πλ2lr (E, G) and satisfies πλ2tlr(ST)<

Cπλιjr (S)πlpflp(T) where C is a constant.

PROOF. By virtue of Proposition 6, it suffices to prove the assertion under

the assumption — = — I . Since T is absolutely p-summing operator, by
r2 P rί

Pietsch [9] there is a probability measure μ, that is, a regular positive Borel

measure μ with total mass 1 on the weakly compact unit ball K' of E' such that

IITx|| <πιP,ιP(τ)(\κ,\<*,a>\Pdμ(a)Jϊoϊ every xeE. Let {xj 1^Λ be an arbi-

trary finite set of elements in E. Put Xi = xfξi where £, = (\ !<*;> a>\r2) .

Then, by our assumption, it follows that

where C is a constant. The terms of the form < Tx, b > can be written as

< Tx, b > = \ < JC, a > f(a)dμ(a) for each xeE
JK'

with an fe Lpt{K\ μ) satisfying the inequality

/Γ \> 1 1

(2) Qκ \f(a)\P'dμ{a)y < πlpJp(T) \\b\\ , j + -jr= 1 .

In fact, let Ep(Kf, μ) be the subspace of Lp{K',μ) which is constituted by the

rest classes φx for φx(a) = <x, a> eC(K') with xeE. Then for each beF'

there exists a linear form βb on Ep{K',μ) defined by <φx,βb> = <Tx, b>

and it satisfies

I < φx,βb > I < IIΓxll ||61| < πlpflp(T)(\ | < x, a > |^μ(α)Y||ί>||.
\jκ /

Therefore there exists an fe Lp,(K', μ), — -\—K- = 1, such that

< Tx, b > = \ < x, a > f(a)dμ(a) for each xeE
JK'

and it satisfies (2). Hence by Holder's inequality, we obtain
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\<Tx, b>\<[ \<x,a>\\f(a)\dμ(a)

= ί I <x, a > |ΊΓ(| < x, a > \^\KaψW \f{aφdμ{ά)
J K

| <x,a> \r*dμ(a)y^\ < x, a > | " |/(α)Kdμ(α

Replacing x by xf in the above inequality, we obtain

I < Txf, b > | " < ( J j < x£, α > \'

Finally, we get

I<^,α>l r ί y'(( \Λa)\> dμ(a))>r

|||| / \JK' /

Consequently
1

ll(l|STx,||)||Λ2 < Cπλul {S)πlp>lp(T) sup ( l | < x() a > | 'Λ ' a

which completes the proof.

\THEOREM 6. Let E, F and G be normed spaces, l<p, r<oo, - — H — < 1 ,

and λ be of type A satisfying Ip λa^. Then for any Teπ l p t l p(E, F) and any

SeπλAr(F, G) the composition ST belongs to πluh(Ey G).

PROOF. In case of p=l, this is clear by Theorem 3. We shall show this

in case of p > 1. Put — -\—V = 1. Then it satisfies λ c \p, and lr => lp>. By Pro-

position 6, Seπλilr(F,G)aπlp,ilp,(F,G). Hence applying Theorem 5 to 5 and

T, we obtain STe πluh(E, G). Thus the proof is complete.

§5. (λ9 //)-absolutely summing operators on special spaces £ and F

LEMMA 3. Let E be isomorphic to a subspace of L^μ) for a measure space

(K, Σ, μ), let F be any normed space and let λ be of type A. Then Te B(E, F)

belongs to π Λ / l (£, F) if and only if for any S e BQ^, E) the composition TS

belongs to 71x^(1^, F).
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PROOF. By virtue of Theorem 3 it is clear that if Teπλih(E,F) a n d S e

£(/«>,£), then TSeπλfh(lw,F). Conversely, we assume that TeB(E,F) satisfies

the condition TSen^l^F) for any SeBil^E) but T φ πλM(E,F). Then

there exists a sequence {x^aE such that Σ * i converges unconditionally and
i

(3) 11(11 ΓxJDII ^

Here we define SeBil^F) by S((α,))=Σ>Λ for each (a^el^. On the other

hand, from (3), there is a sequence {ηt}ec0 such that | |(^il |Γx i | |) | |λ=oo, that is,

11(1175(^11)1^=00. Since Σ l o / A , <*>l<oo for each α e ί i , that is, (ηfr)
e ίi('oo) Π Coί/^), we have TS φ πλih{l^, F). This contradicts our assumption

and the proof is complete.

THEOREM 7. Let λi and λ2 be of type A.

(i) If l2

%λ\"=>λ\ and λ2 is a Kόthe space, then we have π λ l f I l (£,F)cz

πλ2j2(E,F).

(ii) Let E and F be the same spaces as in Lemma 3. Then if I2'λ*czλ2

and λi and λ2 are Kόthe spaces, we have πλuh(E, F)zDπλ2tl2(E9 F).

PROOF, (i) Putting v = (/ϊ / 2 ) x = /2, we have (I2'λ\ycλγ=λ2 and 12Ί2

c / ^ Therefore by Theorem 4 πλuh(E, F)aπλ2tl2(E, F).

(ii) Let Te πλ2fh(E, F). S e B{1^, E) is always 2-absolutely summing. Since

(I2'λ*)aλ2, it follows that l2-λ2czλ1. Therefore on account of Theorem 5,

we have TS€πλuh(lΌ0,F). Hence by Lemma 3, we have Teπλuh(E,F), which

completes the proof.

COROLLARY. Assume that λγ and λ2 is of type A, l2-λ*=λ2 and Ax and

λ2 are Kόthe spaces. Let l<r<2 and F be any normed space. Then we have

πχuiS}r>F) = πχ» ι2Qr*F) and πλi, h(Lr(0, l ) , f ) = πA a, h(Lr(0,1),F).

PROOF. This follows from Theorem 7 and the result [5] asserting that

for l < r < 2 the spaces lr and Lr(0,1) are isomorphic to subspaces of Lx(μ).

THEOREM 8. Let λ be of type A and let μ be of type M. If Z2 μ
x=>>lx,

λ is a Kόthe space and H is a Hubert space, then we have πλitι(H, H) = B(H, H).

PFOOR. From [4] it is known that π2Λ(H, H) = B(H, H). Therefore we

may show that πλμ(H, H) f) π2ί(H, H). But this follows from Theorem 4, for

putting v = (/x μ ) x = μ x we have v.μcz/j and (μ x */ 2 ) x <=AXX —λ. Hence we

obtain πλ μ(H, H) =) B(H, H). Thus the proof is complete.
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