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1. Introduction

Mathematical models representing physical systems in which the rate of

change of the system is related to the past history, make use of differential equa-

tions with time lag [1]. The oscillatory behavior of such equations need to be

very carefully watched in regard to certain high speed mechanisms which might

become unstable due to oscillations caused by delays; see Minorsky [8, p. 518].

The following equation

(1) γ(t)-y(t-π) = 0

points out the difference in the oscillatory nature of (1) and the corresponding

ordinary differential equation

(2) y"(t)-y(t) = O.

Equation (1) has sin/ and cost as solutions while (2) is nonoscillatory. The

difference between equations

and

(3)

is also interesting. The oscillatory behavior of equation (3) and

(4)

is the same regardless of the delay term. In fact a great many oscillatory criteria

pertaining to equations of the form

(5)

remain valid for the corresponding retarded equation

(6) y
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as long as the delay τ(ί) is bounded. For information in this regard, the reader

is referred to [2,3,4,6,7,10-11].

Recently G. Ladas, G. Ladde and J. S. Papadakis [7] found the oscillatory

criterion for an equation of the type

(7) y'V)-p(t)y(g(t)) = 0

where p(t)>0 on some positive half line. They showed that if

(8) limsupΓ (g(t)-g(s))p(s)ds > 1
t-*oo Jg(t)

then bounded solutions of equation (7) are oscillatory.

Our purpose, here, is to study a much more general equation

(9) /">(0+(-1)"+ XOXίKO) = fit).

Section (2) of this paper is devoted to finding the oscillatory criteria for equation

(9) and thus generalizing the existing results of [7]. Section (3) characterizes

solutions of equation (9). There are obvious examples of equations of the type

(9) which have bounded solutions satisfying conditions found in theorems (1)

and (2). Therefore, the existence of bounded solutions of equation (9) on some

positive half line will be assumed throughout this manuscript.

In what follows, the term "solution" applies only to continuously extendable

solution (on [T, oo), T > 0 ) of equations it pertains to.

We call h(t) e C[T, oo) oscillatory if h(t) has arbitrarily large zeros. Other-

wise h(t) is called nonoscillatory. Among other assumptions:

(i) /(0, p(t)9 g(t) e C[T9 oo), Λ], p(t) > 0, g(t) > 0.

(ii) 0(f) < ί, g(t)-+co as ί->oo. 0'(O > 0.

2. On oscillation

THEOREM 1. Suppose

(10) liminfί'
yn— ϊ)\

Let there exist a function r(t) such that

(11) r(n\t) = / ( 0 , KO remains bounded as t -> oo,

and suppose the function
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(12) Φ(t)=[t P(s)r(g(s))ds

is oscillatory.
Then bounded solutions of equation (9) are oscillatory.

PROOF. Let y(t) be a bounded solution of equation (9). If y(t) is non-
oscillatory then y(ϊ) is eventually of the same sign. Without any loss of generality,
let ί o > T b e large enough so that for t>t0, y(t) and y(g(t)) are both positive.
In a manner of Kartsatos [4] (also see [5]), let

(13) x(t) = y(t)-r(t).

From equation (9), (11) and (13) we have

(14) χ ( w ) (O+(-i) n + 1 KO^(O) = o.

From (11) and (13), x(t) is bounded and since from (14)

(-\)nχ("\t) > 0 for t>tθ9

there exists a conveniently large To > t0 such that

(15) (-iyx(i\t)>0, i = l , 2 , . . . , n - l ; t > To.

From (13) and (15) x(t)>0 eventually since if x(t2)<0 for some t2 then
x'(t)<0= >x(t)-+ — oo as ί-»oo, a contradication. Now by generalized mean
value theorem we have

(16)

(a-b)"
(«!) y "

where c € (α, f>).

Let T0<s<t, then g(s)<g(t), since #'(ί)>0

Taking asgi(s) and 6 Ξ J ( ( ) in (16) and invoking (15) we have

(17) x(g(s))>ί2±ή-

Multiplying (17) by p(s) we have

(18) P(x(g(s)) > (- l)^i

which gives from (14)



354 Bhagat SINGH

(19) (- iyx^(t)=

+ p(s)r(g(s)).

Integrating (19) between g(i) and t we have

(20) ( - l)*χl*-»(t) >ΓΓ (g(t]-g(s)

}

)n~1p(s)ds- l ]
LJ*<o (n-l)l J

p(s)r(g(s))ds.

Choose tί large enough so that t1>0 and

(21) 0( i j > 0.

Then from (20) and (21) we have

(22) (-i)-χ<--i>(/1)^(-i)--iJc<

Since (-l)πx n" 1(ίi)<0, (22) yields a contradiction due to condition (10).
The proof is now complete.
The following example clarifies this theorem.

EXAMPLE 1. Consider the equation

(23) y"(t)-&e-*ί2y(t-πl2) = -2έΓf cos/.

Let r(t) = e~tsmt, r(ί)->0 as ί->oo

r"(t) = -2e~t cost.

Thus r(t) satisfies Condition (11). Also

r(g(s))p(s)ds = Γ e-π/
^(f) Jί-π/2

= - 8 \ e~s

Jί-π/2

(sin t- cos ί ) - e~t+^2(sin ( ί-π/2)- cos (ί-π/2))]

sin ί(l + ̂ π / 2) - cos ί(l -
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Since

l-eπ/2

has arbitrarily large solutions due to periodicity of tan/, we conclude that

<K0=Γ P(s)r(g(s))ds
Jg(t)

is oscillatory. Thus r(t) satisfies condition (12). As for condition (10) we have

liminf Γ Se~π/2(t-s)ds = Se~π^2^ > 1 .
t-*ao Jt-π/2 O

Thus all the conditions of this theorem are satisfied. Hence all bounded solutions

of equation (23) are oscillatory. In fact y = 5e~tsint is a solution of equation

(23).

3. On characterization

In this section solutions of equation (9) are characterized. Our next theorem

generalizes theorem (2.1) of [7]. Let first n = 2k.

THEOREM 2. Suppose

(24) \°°g(t)p(t)dt = oo, g'{t) > 0

and the function r{t) of Theorem 1 is such that

(25) r ^ O - ^ O as t -» oo, i = 0, 1, 2,..., 2fc-l

where

Let y(t) be a nonoscillatory solution of equation (9). Then either

\yV\t)\ - oo or \y«\t)\ -» 0, as t - oo, ί = 0, 1, 2, 3,..., 2 fc-L

PROOF. Without any loss of generality, suppose that y(f) and y(g(t)) are

both positive for t>t2, where t2 is conveniently large. Let χ(i) = y(t) — r(f).

Since

r ( 2 k ) (0=/(0,
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we get from equation (9)

(25a) x{2k\t)-p(t)y(g(t)) = 0

which gives x ( 2 f c ) (0>0. Thus jcί 2 *" 1 ^) is increasing for t>t2. ByLΉospitaΓs

rule

(26) U m ( 2 f c ~ * > : * ( ^ ^

since (25) holds. Thus limyi2k~ί)(g(t)) = y(2k~1\oo) esists since
f-xχ>

lim x*2*"1 >(£(*)) = x ^ - ^ o o ) exists.
f-*oo

Now suppose x ( 2 f c " 1 ) ( 0 > 0 . Since x i2k\t)>0, t>t2 and r(0~>0, there exists

a ί3 > ί2 such that

(27) / 2 f c - 1 } ( 0 ( O ) > O , t>t3.

Thus

(28)

We will show that j ( 2 ) ί ~ 1 ) (oo) = oo. Suppose to the contrary j ( 2 ί ί " 1 ) ( o o ) < o o .

In a manner of Theorem (2.1) of [7] we have from (25a) for a conveniently large

h

t3

! ,

from (28) and choice of ί3. Thus

~l%) \[ ( ) ( ) d > oo as t - oo ,

a contradiction. Hence

(29) lim x<2 *-! >(ί) = lim / 2 * " ι >(t) = oo



Impact of Delays on Oscillation in General Functional Equations 357

which in turn implies

(30) y>(ί) -> oo, i = 0, 1,2, ..,2/c-l.

Suppose now

(31) J C < 2 Λ ~ 1 ) ( 0 < 0 , ί > ί 4 > ί 3

From (31), we must have

(32) x<2fc"2>(0 > 0

eventually. In fact if x ( 2 f c " 2 ) ( ί )<0 eventually, then x(t)-+-co and hence y(t)->

— oo as t-+oo. Hence (32) holds. Thus there exists t5>t4 such that

(33) x^2k~2\t) > 0, t > t5.

It also follows from nonnegative nature of y(t) and the fact r(t)-+O as ί-»oo

that

(34) limxί 2^ 1)^) = 0 = li
f-*00 f-»CXD

Now from (25a), in a manner of theorem (2.1) of [7] we have

(35) x^-i\t) = χ( 2 ^υ ( ί 5 ) + Γ p(s)y(g(s))ds

which gives

(36) X(2k-i)(t5)= («p{t)y{g{t))dU
Jts

Again from (35) we have on using (36)

(37) χ(2*-2>(0 = χ( 2 ^ 2 )( ί 5 ) + ( ί- ί 5 )χ(2 f c - i ) ( ί 5 ) + Γ (t-s)p(s)y(g(s))ds
J

(t5-s)p(s)y(g(s))ds
ts

-\ sp(s)y(g(s))ds.
Jts

Thus
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(38)

Now

(39)

because otherwise the right hand side of (38) tends to — oo as ί->oo forcing
x(2k~2\t) to be eventually negative. This contradiction to (33) shows that (39)
holds.

From (34) and (39), for arbitrarily small εt >0, ε 2 >0

y(t) < ε2,

(40)

for t>t6>t5, where t6 is conveniently large.
We now invoke Landau's inequalities between derivatives of bounded

functions. See Schoenberg [9]. There exists a constant k>0 such that

(41)

Conclusion follows from (40) and (41).
A similar argument holds when y(t)<0 in the beginning of the proof.
The proof is now complete.

COROLLALY 1. Suppose the conditions of Theorem 1 and Theorem 2
hold. Let y(t) be a nonoscillatory solution of equation (9). Then \y(i)\^>co
as ί-xx>.

When n=2fc + l, equation (9) takes the form

(42) y(2k+1Kt) + p(t)y(g(t))=f(t).

We shall prove stronger result for (42).

THEOREM 3. Suppose

™9(t)p{i)dt = oo, g'(t) > 0

and there exists a function r(t) such that

μ2k+ί\t)=f(t)9r«Xt)-+0 as ί-> oo, i = 0, 1,..., 2fc.

Let y(t) be a nonoscillatory solution of (42). Then
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\y(i\t)\ -• 0 as t -• oo, i = 0, 1, 2,..., 2k.

PROOF. We proceed as in Theorem 2. Let y(g(t))>0 for t> t5. As before

we have

(43)

where x(t) = y(t) - r(t). Thus x ( 2 k + 1 \t) < 0, ί > ί5. Integration yields

(44)
G\s)

Since x ( 2 f c )(ί)>0 for large t9 (44) yields

(45) lim ^ y j ) ) = lim j;'(flf(j)) = 0 = lim Λ'(

which in a manner of Theorem 2 implies (by Schoenberg's inequalities)

(46) \y«)(t)\-+o as ί-*oo, i=l,2,...,2fc,

since we see that (44) and (45) also yield limx(2k\t)= lim.y(2fc)(0 = 0. Let t6>t5

ί-*co t-*ao

be large enough so that x (2 fc)(ί)>0 for t>t6. Multiplying (43) by g(t) and inte-
grating we get

(47) χ(2*)(0<7(0-(' x^2k\s)gXs)ds+\t p(s)g(s)y(g(s))ds = x^k\t6)g{t6).
Jt6 Jt6

Now x(2k\t) is decreasing. Therefore (47) yields

x(2kKt)g(t)-χ(2k>(t6)g(t6)-[ χ<2kKg(s))g'(s)ds+[ p(s)g(s)y(g(s))ds < 0
Jt6 Jt6

or

(48) - χ ( 2 k ^ ω ^ ( n " 1 ) W 0 ) + ^ 2 f c - 1 W 6 ) ) + [ P(s)g(s)y(g(s))ds < 0.
Jt6

From (46), (48) and condition on r(t), we must have

limΓ p(s)y(g(s))g(s)ds < oo
ί-»ooJf6

0 as t -> oo.

COROLLARY 1. /n addition to the hypothesis of Theorem 3 suppose (10),
(12) fto/d with n = 2fc+l, Tften î erj; solution of (42) is oscillatory.
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3. Remarks and examples

REMARK 1. The next example shows that it is not possible to weaken

condition (12) of Theorem 1 if all other conditions of this theorem are satisfied.

EXAMPLE 2. The equation

(49) y^iv\t)-2e^2-π)it-π) = -<

has

y(t)= -e~<

as a solution. Taking

r(t)= -e

we find that all conditions of Theorem 1 except condition (12) are satisfied.

For condition (12)

φ(t) = e
Jt-π

^ [t ds
t-π

eventually.

REMARK 2. This example also satisfies the conditions and hence conclusion

of Theorem 2.

References

[ 1 ] R. Bellman and K. Cooke, "Differential-Difference Equations," Academic Press,
New York, 1963.

[ 2 ] J. S. Bradley, Oscillation theorems for a second order delay equation, J. Differential
Equation 8 (1970), 397-403.

[ 3 ] H. E. Gollwitzer, On nonlinear oscillations for a second order delay equation, J.
Math. Anal. Appl. 26 (1969), 385-389.

[4 ] A. G. Kartsatos, On the maintenance of oscillations of nth-order equations under the
effect of small forcing term, J. Differential Equations 10 (1971), 355-363.

[ 5 ] T. Kusano and H. Onose, Oscillations of functional differential equations with retarded
arguments, J. Differential Equations 15 (1974), 269-277.

[ 6 ] G. Ladas, Oscillation and asymptotic behavior of solutions of differential equations
with retarded arguments, J, Differential Equations 10 (1971), 281-290,



Impact of Delays on Oscillation in General Functional Equations 361

[ 7 ] G. Ladas, G. Ladde and J. S. Papadakis, Oscillations of functional-differential equa-
tions generated by delays, J. Differential Equations 12 (1972), 385-395.

[ 8 ] M. Minorsky, "Nonlinear Oscillations," Van Nostrand, NJ, 1962.
[ 9 ] I. G. Schoenberg, The elementary cases of Landau's problem of inequalities between

derivatives, Amer. Math. Month 80 (1973), 121-158.
[10] Bhagat Singh, A necessary and sufficient condition for the oscillation of an even order

nonlinear delay differential equation, Canad. J. Math. 25 (1973), 1078-1089.
[11] V. A. Staikos and A. G. Petsoulas, Some oscillation criteria for second order nonlinear

delay differential equations, J. Math. Anal. Appl. 30 (1970), 695-701.
[12] V. A. Staikos, Oscillatory properties of certain delay-differential equations, Bull.

Soc. Math. Greece 11 (1970), 1-5.
[13] P. Waltman, A note on an oscillation criterion for an equation with functional argu-

ment, Canad. Math. Bull. 11 (1968), 593-595.

Department of Mathematics,
University of Wisconsin-center,
Manitowoc, Wisconsin 54220.






