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§1. Introduction

A (continuous) mapa: M—M of a space M into itself is called an involution
if a2=id. We say that an involution « on M is equivalent to an involution
o' on M’ if there exists a homeomorphism h: MZ M’ such that «’h=ha. The
purpose of this note is to classify (fixed point) free invoultions on compact con-
nected surfaces by this equivalence relation.

For an involution a on M, we obtain its orbit space M/« from M by identify-
ing x with a(x) for xe M. Then, we have the following

THEOREM 1.1. Assume that X is a compact connected surface of genus
g and the boundary 0X consists of | components. Then the number n of equiva-
lence classes of free involutions on connected surfaces, whose orbit spaces are
homeomorphic to X, is given by

[1/2]+ min {g, 1} if X is orientable,

[1/2] 4+ min {g, 3} if X is non-orientable.

Now, we use the following notation:

(1.2) Let a: M—>M be an involution on a surface M of genus g such that
the boundary dM has I components and the number of « invariant components
islo (£1). Then, the type of suchais (g, I, ly, 1) if M is orientable and « preserves
the orientation, (g, [, I,, —1) if M is orientable and « reverses the orientation,
and (g, I, Iy, 0) if M is non-orientable.

Then we have the following classification theorem of free involutions on com-
pact connected surfaces.

THEOREM 1.3. (i) There exists a free involution of type (g, 1, ly, &) if
and only if we have the following (1), (I) or (I1II):

(1) &=1,1,=0is even, 121, is even and g+2min {ly, 1} —1,/2=1 is odd;

(I1) e=-1,1,=0,1=0 is even and g=0;

(III) &=0, 1,20 is even, 121, is even and g+2min{l,, 1} —1,=2 is even.

(ii) There exist two free involutions of type (g, 1, lo, €) up to equivalence
if e=1,=0,120 is even and g=4 is even, and otherwise a free involution of
type (g, 1, 1y, €) is unique up to equivalence.
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In §2, we construct some typical free involutions on compact connected
surfaces, and prove Theorem 1.3 in Proposition 2.14, by assuming Theorem 1.1.
By using the well-known classification theorem of double coverings, we
prove Theorem 1.1 for an orientable surface X in §3 and for a non-orientable

surface X in §4.
The author wishes to express his gratitude to Professor M. Sugawara for

his valuable suggestions and reading this manuscript.

§2. Constructions of typical involutions

In this section, we construct some typical free involutions.
On the torus S! x S!, we have the free involution

2.1 0g: Sg — Sgs So = St xSY, ay(z, z') = (—2z, 2').
We construct the free involution
(2.2) o S; — S; (iz1)
as follows: Fori=1,
Si=8S'xI{I=1[0,11), oz, t)=(—2z,1).
We consider the involution
0, STx ST — ST xS, a,(z, z') = (2, Z’) (" denotes the conjugation),

which has four fixed points (+1, +1). Then, by removing the interiors of four
disjoint &, invariant disks around these points, we obtain the desired surface S,
and the restricted involution a,. Inductively, we construct S; and «; from the
disjoint union S;_; U S, and the involutions «;_, and «, by identifying one com-
ponent of 0S;_; with one component of dS,.

Also, on the 2-sphere S? and the torus S! x S!, we have the free involutions

(2.3) B: 8% — 82, B(to, t1, t2) = (—tg, —t;, —13);
(2.4) piStxSt — Stx S, f'(z,z')=(—2z Z').
By (1.2) and the definitions, we have easily the following

LEMMA 2.5. The types of these involutions ay, a; (i=1), f and B’ are
1,0,0, 1), (i—1, 2i, 2i, 1), (0, 0,0,—1) and (1, 0, 0, — 1), respectively.

Now, let a: M—M be a free involution on a compact connected surface
M, and we consider the following constructions:
(2.6) Let k=0. By removing the interiors of 2k disjoint disks Dj,..., Dy
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in M—0M such that aD,;_,=D,; (1<i<k), we obtain the surface M, =M
—\UZk, Int D; and the restricted free involution o: M, —M,.

(2.7) Let k=zj=1. By attaching 2j Mdbius bands on dD; (1 <i<2j) to the
surface M, of (2.6), we obtain the non-orientable surface MP ; and the free
involution « on M ; is induced from a on M,.

(2.8) Consider the case that M is orientable, and let k=2j=0. Then, by
attaching 2j handles on dD; U dD;, , for i=1, 2 (4) and 1 Zi<4j—2 to the surface
M, of (2.6), we obtain the surface M, ; and the free involution o on M, ; is induced
from « on M,.

From these definitions, we have immediately the following

" LEMMA 2.9. Assume that o is a free involution on M of type (g, I, l,, £1).
(i) The type of a on M ; of (2.7) is (29 +2j, 1+2k—2j, 15, 0) for kzj=1.
(i) The type of o on M, ; of (2.8) is (g +2j, I+2k—4j, l,, 1) for k=2j=0.

By Lemmas 2.5 and 2.9, we have the following

LEMMA 2.10. (i) By applying the construction (2.8) to the involution
o;: S;—S; (i=0) of (2.1), (2.2), we obtain the involution

aon(S)y,; for iz0,kz220,

whose type is (i+2j+1—2min {i, 1}, 2i+2k—4j, 2i, 1).
(ii) By applying (2.8) to the involutions B:S?—S? of (2.3) and
B': S*x S'—>S1x St of (2.4), we obtain the involutions

B on (S?);and B on (S'xS'),; for k=220,

whose types are (2j, 2k—4j, 0, —1) and (2j+1, 2k—4j, 0, —1) respectively.
(iii) By applying the constructions (2.7) to the involutions o; (i=0) of
(2.1), (2.2) and B of (2.3), we obtain the involutions

o on (SR ;and Bon (SR ;  for iz0,kzj=1,

whose types are (2i+2j+2—4min {i, 1}, 2i+2k—2j, 2i, 0) and (2j, 2k—2j, 0, 0)
respectively.

LeMMA 2.11.  In the above lemma, the involutions a, on (Sy)p,; and f on
(S?)0+1,7+1 of (iii) have the same type (2j+2,2k—2j,0,0) for k=j=1, but
these are not equivalent.

Proor. Consider the involution a, on M=(S,)? ;. From the definitions
of (2.1) and (2.7), we see easily that the homology group H,(M; Z) is generated
by cycles a, b (of So=S8'xS"') and c;,..., ¢,; (of the attaching M&bius bands)
with the relation 2(c,+---+¢,;)=0, and that the induced automorphism o,



174 Tohl Ason

of H,(M; Z) is given by
%0x(@) = a, 0ou(b) = b+2F 0 1 a0y, ou(Caimy) = €25
tox(C2)) = €3 1.

Therefore, for odd prime p, the induced automorphism o, of the vector
space H,(M; Z,)=Z,{a, b, cy,..., c;;_,} is given by the above equalities with
cy;=— 237 1¢c; and so its determinant det oy is equal to (— 1)J.

For the involution  on N=(S2)%,, ;,, we see by the same way from the
definitions of (2.3) and (2.7) that the induced automorphism f, of the vector space
H\(N;Z,)=Z,c,,...,c2;+1} is given by

Bs(cai—1)=cai Balcr)=c2i—1 (IiZ)), B*(czjﬂ): - Z?:JTI Ci»

and so its determinant detf, is equal to (—1)i*1,

By the above facts, there is not a homeomorphism 4#: MZ N satisfying
Bahy =hyaos, and we have the desired result for k=j.

Assume that there is a homeomorphism h: (Sy)P ;R(S?*)+1,;+1 such that
ph=ha, for k>j. Then, by attaching 2k —2;j disks, we can extend h to a homeo-
morphism h:(S0)? ;R2(S?)%1,j+1 such that ph=ha,, which contradicts the
above result. g-e.d.

For the orbit space of a free involution, we have

LEMMA 2.12. Let o be a free involution on M of type (g, 1, ly, €). Then
the boundary of the orbit space M/a consists of (I+1,)/2 components, and M|«
is orientable for e=1 and non-orientable for e= —1, 0. Furthermore, the genus
of Ma is equal to 2+2g—1,)[4, (2+2g—1,)/2 and (2+g—1,)/2, according to
e=1, —1and 0.

Proor. The first half is clear. Since M—M/o is a double covering, we
have the equality 2y(M /o) = y(M) of the Euler characteristics. By this equality, we
see easily the second half of the lemma. qg.e.d.

By this lemma, we have immediately the following

Lemma 2.13. (i) The orbit space (S;) ;/o; of the involution «; of Lemma
2.10 (i) is orientable, its genus is j+1—min {i, 1}, and its boundary consists of
2i+k—2j components.

(il) The orbit spaces (S?), ;/p and (S* xSY), ;/|p' of Lemma 2.10 (ii) are
non-orientable, their genuses are 2j+1 and 2j+ 2, respectively, and their boun-
daries consist of k—2j components.

(iii) The orbit spaces (S))g ;/o; and (S*)P ;/B of Lemma 2.10 (iii) are non-
orientable, their genuses are j+2—2min{i, 1} and j+1, and their boundaries
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consist of 2i+k—j and k—j components, respectively.
Now, we are ready to prove the following
ProposITION 2.14. Theorem 1.3 holds if Theorem 1.1 is valid.

Proor. By Lemmas 2.10 and 2.11, the free involutions in Lemma 2.10
show the existence in Theorem 1.3. Also by Lemma 2.13, we see easily that
there are n equivalence classes of these involutions whose orbit spaces are homeo-
morphic to X, where n is the number given in the end of Theorem 1.1. There-
fore we have Theorem 1.3, if Theorem 1.1 is valid. q.e.d.

§3. Orientable surfaces

Let a be a free involution on a connected surface M, whose orbit space M /o
is homeomorphic to a given compact connected surface X. Then, we have a
double covering M—M/a~x X and its Stiefel-Whitney class w,(«)>0 in the coho-
mology group H!(X; Z,). Furthermore, if o’ is equivalent to «, then we see
easily that w,(a’)~w,(¢) by the definition of the equivalence of involutions,
where ~ is the equivalence relation defined by
(3.1) x~y in HYX;Z,) if x=t*y) by the induced automorphism
t*: H(X; Z,)>H'(X; Z,) of some homeomorphism ¢: X2 X. :

Therefore, by the classification theorem of double coverings, we have the
following

LemMA 3.2. The equivalence classes of free involutions on connected sur-
faces, whose orbit spaces are homeomorphic to X, are in one-to-one correspon-
dence with the equivalence classes of H'(X; Z,)— {0} under ~ of (3.1).

Now assume that X is a compact connected orientable surface of genus g
and the boundary 0X has | components. Then X has a cellular decomposition
induced from the convex region with the boundary polygon

aibai'bit...aba; b wid witowdiwr .
Therefore, the (co)homology groups of X are given by

(3 3) HI(X; Zz)=Zz{a1, bl""’ ag, bg, dl""’ dl—l}’ d1+"'+d1=0;

HY(X; Z,) = Z,{a}, b},..., a}, b}, di —di,....d}_, —d}} .

To determine the equivalence relation ~ of (3.1) on HY(X; Z,), we use
the following results of P. A. Smith [2, (8.1)].

(3.4) There exist homeomorphisms t,;, t,; (1Si<g), ty;), ta(1=50, <9,
ix)), t, 1£kZl-1) of X onto itself, and the induced automorphisms of
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H (X ; Z,) satisfy the following conditions:
tix(a;) = a;+by;
Lan(b;) = a;+ by;
tyiju(@) = a;+aj,  ty(b)) = bi+bj;
taij(@) = 4y, tae(a)) = a;+b;
h(ay) = a; +d;

where these conditions mean that the remaining basis elements in (3.3) are un-

changed.
The following lemma is clear, since t* is given by the transposed matrix of t,.

LEMMA 3.5. These homeomorphisms induce the automorphisms of
HY(X; Z,) given by

t1,(b}) =af + b} ;

t3i(af) =af + b} ;

t5;;(a}) =af +a}, t5,;(bf) =bf + b} ;
tf;;(bY) =af +b%, t5;;(b) =a’ + b} ;
gdi—df)=ai+(di—d}) ;

where these conditions mean that the remaining basis elements in (3.3) are
unchanged.

Also, we have the following by [2, (8.1)].

LeEMMA 3.6. For any permutation t of {1,...,1}, there exists a homeo-
morphism t. of X onto itself, satisfying

ts(a) = a;, ta(b) = b;, t(d) =dyy in H(X;Z,).
Thus we have t¥(a¥)=al, t¥(b}) =b¥ and
t¥(di—dp) =(d}-14y—df) = (di-1y—df) in H'(X; Z,) .
By using these results, we prove the following lemmas for the equivalence

relation ~ of (3.1) on H(X; Z,).

LemMmA 3.7. (i) a~a?% for any ae A—{0}.
(i) a+d~d for any ac A and d e D—{0}.
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(iii) Any de D—{0} is not equivalent to a}.
Here A=Z,{a%, b%,..., ai,b}}, D=2Z,{d}{ ~dji,..., di-, —df} cH'(X; Z,).

Proor. (i) Let a=af +---+af +bf +---+b5 , i< <ip ji < <j,

If g=0 and i;=1, then a~aj by the composition of t§;; (i=iy,..., i,) of
Lemma 3.5. If g=0and i;>1, then a~af +a by t§,;,.

Assume g=1. By applying t%; of Lemma 3.5, we may assume that {i,...,
i,} and {j,,..., j,; are disjoint. Then, by the composition of tf;; (i=i,,..., i,;
Jj=Jj1) we see that a~b%, +---+b% , which is equivalent to b§ by the similar proof
to the above. Also, b§ ~a% by using t*, and t3,.

(ii) If ax0, we see that a+d~a%+d by the same proof as in (i). Also,
a%+d~d by tf.

(iii) Any homeomorphism t: X2 X satisfies #(0X)=0X, and so t*(4)cA
since A=Im{H'(X, 0X; Z,)>H"'(X; Z,)}. This shows (iii). qg.e.d.

LemMma 3.8. (i) (df,—df)+--+(d}, —d})~(d}—=d})+--+(di—d}), for
any 15k, <---<k,<l.
(ii) For integers n and m such that I>n>m=1,

(A8 —df) ++++ (d—dD) ~ (df = dD) + -+ (dfy— d)
if and only if n=m+1 is even.

Proor. (i) It is evident by considering t* of Lemma 3.6.
(ii) (Sufficiency) By ¢, of Lemma 3.6 for the transposition t=(n, I), we see
that

(a5 —df) -+ (d = di) ~ (df = df) + oo (die —d) +n(d5 — ),

which is equal to (d{—df)+---+ (d}—d}) since n=m+1 is even.

(Necessity) Any homeomorphism ¢: X2 X induces a permutation of
components of 0X, and so t*(d,u)=d, in H,(X; Z,) for some permutation
tof {1,...,1}. Then we have

t*(df —df) =x, + (diq,— df) — (diy— di) in H'(X; Z,)
for some x, € A, and so
(X (di—df)) = Zhe1x+ a1 (digy — di) —m(digy—df) .

If this is equal to XY i_,(d}—d}) (I>n>m), we have m+1=n and m is odd
by (3.3). qg.e.d.

Now, we obtain the first half of Theorem 1.1.

PrOPOSITION 3.9. Theorem 1.1 holds for an orientable surface X.
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Proofr. By Lemmas 3.7 and 3.8, the equivalence classes of H!(X; Z,)
—{0} are represented by af (when g>0) and Y 2{!(di—d}) for 1=2n+1<I.
Therefore, we have the desired result by Lemma 3.2. qg.e.d.

§4. Non-orientable surfaces

In this section, we assume that X is a compact connected non-orientable sur-

face of genus g and the boundary dX has [ components.
Then, X has a cellular decomposition induced from the convex region with

the boundary polygon
ciCy...ccwidywil o wdwrt,
and ;he (co) homology groups of X are given by
H(X; Z,)) = Z,{cy,..., cp dy,..s di—y}, dy+--4d, =0;
@D H\(X; Z,) = Zy{c%,..., ¢t di—di,..., di_, —di} .

To determine the equivalence relation ~ of (3.1) on H!(X; Z,), we construct
some homeomorphisms of X onto itself as follows.

LeEMMA 4.2. For each permutation o of {l,...,9}, t of {l,...,1} and 1
< k<, there exist homeomorphisms s,, t, and t, of X onto itself such that

Sex(C) = Coy (1 ST=9);
tald) =dy (A1 =k=D;
ts(cy) = ¢ +di;
and the remaining basis elements in H,(X; Z,) of (4.1) are unchanged.

Proor. To prove the existence of s,, we may assume that o is a transposi-
tion (i, i+1). Write the surface symbol of X by aabbP (a=c;, b=c;.,). By
the equivalences

aabbP ~ a;b='b~'a,P (a; = abb) ~ ba,b™'a,P (a, = b~'a,) ~ bbaja;P

(a3 =b7"ay)

of surface symbols, we have a homeomorphism s: X=X such that s.(a)=D>b,
s«(b)=a; and the other basis cycles are unchanged. In H,(X; Z,), we have
a,=a+b+b=a,a,=b+ay, ay=b+a, and so a;=a as desired.

By the same way, we can prove the existences of ¢, and t,, by using the equiva-
lences
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wdw 'vev 1P ~ vev 'wildw,P (w; = w™lvev™1),
cewdw P ~ ¢ywd=*w e P (¢; = ewdw™ 1) ~ ¢c,c,wild 1w P
(wy =w'ey)
of surface symbols. q.e.d.

LeEmMMA 4.3. Assume g=4. Then there exists a homeomorphism s: X2 X
such that s,: H(X; Z,)>H(X; Z,) satisfies

sx(c)) = citertey, syi(cy) = ¢y +cp+c,
sx(€3) = catc3+cy, sulcs) = citeztey,
si(c) = ¢; (i > 4), s4(dy) = d,.

Proofr. Consider the following equivalences of surface symbols:

€1€1€2€2C363¢4C4P ~ cic3' ¢’ eacscic3 ey P (cy = ¢z, € = c3¢4)
~eyciczlerlcichezley P (¢ = c3'ceyc3)
~cycaciTleresc T che P (ch = cc3'erlciche3?)
~cheheieyT e c ches P (¢ = cycheiTY, oy = T ches)

~ehehel el ehehescsP (¢ = cheiter ).

Then, ¢y=c;+cy+cy, cY =cy+cy+c3, Ca=cy+c3+c, and cy=c;+c3+c, in

1(X; Z,), and we have the desired result in the same way as the proof of the above
lemma.

q.e.d.

By using these lemmas, we have the following lemmas for the equivalence
~ of (3.1)in HY(X; Z,), where

C=2Z,{c},...,c}}, D = Z,{d} —dj,..., d}-,—d}}.
LeEMMA 4.4. Any element ce C—{0} is equivalent to

ck,ci+chifg=22,orci+--+clifgz3,
and these are not equivalent to each other.

Proor. We have

s5(ch)

s*(c%)

G-l =i =9), s3(df—d}) =di—di(l=k <),

ct+ch+ck, s*(ch) =ch+ch+ck,
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$*(c8) = ch el +cl, s¥(eh) = el + i+l
$*(ch) = ¢1i > 4), s*(df—d}) = d}—df

for s, of Lemma 4.2 and s of Lemma 4.3. By using these homeomorphisms,
we see easily that

cfi+-tef ~ek et od, 12 <<i,£9,12j,<+<j,2£9)

if p<g, q<g and p=q (2). This shows the first half.

Now, we can consider ¢f e H'(X, 0X; Z,) and the cup product cfc* is equal
to 6;;[X], where [X]e H*(X, 0X; Z,) is the fundamental class (cf. [1, §75.2,
p. 270]).

Assume c¢f+ch~c%. Then cf+ci=r*(c%) in H'(X, 0X; Z,) for some
homeomorphism ¢: (X, 0X)—(X, 0X), and so

0= (ci+ch)ci+ch) =r*(cic)) =*[X] =0 in HX(X, 0X;Z)y),

which is a contradiction.

We notice that ¢; +---+c¢,e H(X, 0X; Z) is the unique element of order 2.
Therefore, for any homeomorphism t: X—X, tu(c;+--+c))=c;+-+¢, in
H(X, 0X; Z), and so in H,(X, 0X; Z,). This shows that t*(c{+ - +c§)=c}
+---4ck by the Poincaré duality. Thus, c§f+---+ci=1*(c{+:-+cf) im-
plies p=g. g.e.d.

LEMMA 4.5. (i) c+d~d for any ce C and de D—{0}.
(ii) Any ce C—{0} and d e D—{0} are not equivalent.

Proor. (i) is proved by using t, and s, of Lemma 4.2. (ii) is proved by
the same way as Lemma 3.7 (iii). qg.e.d.

By the exactly same proof, we have

LEMMA 4.6. Lemma 3.8 holds also for a non-orientable surface X.
By Lemmas 4.4-4.6 and 3.2, we have immediately

ProroSITION 4.7. Theorem 1.1 holds for a non-orientable surface X.

Combining Propositions 3.9 and 4.7, we have completely shown Theorem
1.1, and so Theorem 1.3 by Proposition 2.14.
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