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1. Introduction

The main purpose of this paper is twofold: it is shown first that under certain

assumptions every bounded solution of the equation

(i) (fl,-i(ίχ (fl2(ίXβi(ίK)/ ) / ) ' + i > ( 0 H ( ^ ω ) ) = e ω

is either oscillatory, or tends to a finite limit as ί-> + oo. The proof of this result

is much simpler than the one given by Singh and Dahiya [4, Theorem 1], who

considered the case n = 2 under stronger assumptions. Secondly, a result is given

according to which an equation of the form

(II) xM + G(t,x) = Q(t)

can have at most one positive solution. This result extends to the general case

a result of Atkinson [1]. Atkinson considers second order equations and makes

use of Sturm's comparison theorem. This theorem does not hold in its full gen-

erality for n-th order equations. Here a result is employed from Kartsatos

[3, Theorem 2].

A function f(t), te[t0, +oo), to>0 is said to be "oscillatory" if it has an

unbounded set of zeros on [ί0, + oo). By a solution of (I) (or (II)) we mean a

function x(t) which satisfies (I) (or (II)) for every t in an infinite interval [ί0, + oo),

ί o >α. In what follows, R = (— oo, +αo), R+ = [0, +oo), J = [α, + oo), where

α is a fixed number.

2. Oscillation and nonoscillation of (I)

THEOREM 1. Assume that equation (I) satisfies the following:

( i ) ak: J->R+\{0} is continuous, and such that
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(ii) P( ί ) Ξ Λ(0 + -P2(0, where Pt: J-*R + \{0}, P2:J-+R are continuous,
and such that

\\P2(t)\dt < +00;
J a

(iii) H: R-+R is continuous, and xH(x)>0 for every xφO;

(iv) g: J->R+\{0} is continuous, and lim g(t) = + 00;
ί->oo

(v) Q: J->R is continuous, and

1 f °°

\\mdt < +00

Then every bounded nonoscillatory solution of (I) has a finite limit as t

PROOF. Let x(t) be a bounded nonoscillatory solution of (I), and assume
that x(t)>0, te[μx, +00), α : > α (a corresponding argument holds in case x(t)
is assumed to be eventually negative). Then there exists α 2 >α 1 such that g(t)
>oq for t>a2. Thus, x(g(t))>0 for t>ot2. Now integrating (I) from α2 to
t>a2 we obtain

(1) G«-i(0 = GΛ-i(α2)

-[' P2(s)H(x(g(s)))ds+[' Q(s)ds,

where Gk(t) = ak{t)Gk.x{i), G0(t) = x(f), fe=l, 2,..., n-\.

Now we consider the two possible cases:

CASE 1. [ °° P1(s)H(x(flf(s)))ds = + 00

CASE 2. Γ P ^ S ^ M ^ S ) ) ) ^ < +00.

In Case 1, using the fact that the last two integrals in (1) converge, we ob-
tain lim Gn_1(0= -00. Since Gn-.ί(t) = an_1(t)G'n_2(t) and an_1(t)>0, it follows

f-> +oo

that G'M_2(0 and GM_2(0 are eventually of constant sign. Continuing the same
way we obtain that x'(t) is of constant sign for all large t. Thus x(t) tends mono-
tonically to a finite limit as t-> + 00.

In Case 2, we obtain that lim Gn_x(i) = λ exists and is finite. If this limit
t-><X)

is positive or negative, then Gn_x(t) is respectively positive or negative for all
large t. Either case implies immediately that all the functions Gk(t), fc=l, 2,...,
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n — 2 are eventually of constant sign, which yields the monotonicity of x(t).
Now let

(2) l imGπ_ 1(0=0.
ί-+oo

Then given ε>0 there exists μ(ε)>0 such that

(3) ieH-i(OGi-2(ni < 1

for every t\ t">μ(ε). Consequently, dividing the first of (3) by an_1(f) and
integrating from t' to t" we obtain

(4) |Gn-2(t')-GM_2(OI < β, t\ t" > μ(s).

This is the Cauchy criterion for functions. It implies that lim GM_2(0 exists and
t-KΩ

is finite. If this limit is positive or negative, then x(f) is eventually monotonic.
If it is zero, we continue the same way. Thus, we either have x(t) monotonic
for all large t, or

(5) lim aί(t)x'(t) = 0,
ί-+oo

which implies, as above, the existence of the limit lim x(t). This completes
f->oo

the proof.
Singh and Dahiya [4, Theorem 1] showed the above theorem in the case

n = 2, g(t) = t — λ(t), H(x) = x and under the additional assumptions: (i)-(v),
a1(t)>p>0, (°Op1(ί)Λ= +oo, (°°|ρ(ί)|Λ< +oo.

THEOREM 2. In addition to (i)-(v) of Theorem 1, let lim infH(x)Φ09
f o o l*|-*αo
\ Px(t)dt= + oo, P2(t) = 0, teJ. Then every nonoscillatory solution of (I)
J a.
is bounded and tends to a finite limit as

PROOF. Assume that x(t) is a nonoscillatory solution of (I) with x(ί)>0,
*(#(0)>0> ί>αχ>α. Consider the two cases of the proof of Theorem 1. In
Case 1 the solution x(t) and all the functions Gk(ί), k — 1, 2,..., n — 2 are eventually
monotonic. If all the Gk are eventually nonpositive, then x(t) is decreasing, thus
bounded. If this does not happen, let G£(ί), 0<i<n-2 be the last of the Gk(t)
with the property Gf(ί)>0 for all large t. Then G'f(0<0 for all large t, which im-
plies the existence of a constant M>0 such that \Gi(t)\<M, t>oc2>(x1. Conse-
quently,

(6)
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which proves the boundedness of G^^t). Similarly we can show the bounded-

ness of Gk(t) for every /c = 0, 1, 2,..., i-2. This proves the theorem in Case 1.

Case 2 can only happen (because of the assumption lim inf H(x)Φ0) if lim inf x(t)
|Λ:|-*OO ί-*oo

= 0. Since lim GM_1(r) = A exists and is finite, x(t) will be eventually monotonic
f-» QO

if λ^O, and since liminfjc(0 = 0, we must have \imx(t) = 0. If Λ = 0, then we
ί-*oo t->ao

obtain from (4) that lim Gn_2(t) = μ exists and is finite. Arguing in the same

way as above we deduce that x(t) is eventually monotonic and tends to zero for

μ^O otherwise lim Gn_3(t) = μί exists and is finite. Continuing the same way
t-+σo

we get that lim {G0(t) = x(t)} exists and is finite. This completes the proof.
f-»oo

The above theorem extends to the general case Theorem 2 in [4].

THEOREM 3. Let the assumptions of Theorem 2 be satisfied except the

integrability of Q(t) and let Q{t) = GQ

nLx(t) with G°(t) = ak(t) G j ^ ί ) , G%(i) = M(t\

where M(t) satisfies

lim sup M(t) = + co, lim inf M(t) = - oo.
r-+oo ί-» oo

Then every solution of(ϊ) is oscillatory.

PROOF. Let x(t) be a solution of (I) with x(t)>09 x(g(t))>0, t>0Lx>0L.

Let x{t)-M(t) = u{t\ ί > α j . Then M(t) + u(t), M(g(t)) + u(g(t)) are positive for

t>aλ and u(t) is a solution of the equation

(7) Gr.At) + P(t)H{u{g{t)) + M{g{t))) = 0,

where Gf(ί) = ak(t)Gf!_ ί (t), k = 1, 2,..., n -1, Gg(ί) = u(t). Now we distinguish

three cases:

CASE 1. u(t) is positive for all large t;

CASE 2. u(t) is negative for all large t\

CASE 3. u(t) is oscillatory.

In Case 1, it follows, as in the proofs of Theorems 1, 2, that u(i) is bounded.

This implies the oscillation of x(t)9 a contradiction. In Case 2, x(t)<M(t) for

all large ί, a contradiction to the positivity of x(t). In the third case

(8) \ Pί(t)H(u(g(t)) + M(g(t)))dt < +00

otherwise G jL^ί)-* — 00, which implies the monotonicity of u(t), a contradiction

to its oscillatory character. Inequality (8) implies now that lim G*_x(ί) exists

and equals zero, otherwise u(t) would be monotonic, a contradiction as above.
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Thus, as in Theorem 2, every G£(0 is bounded, and in particular G%(t) = u(t) is

bounded, which implies the oscillation of x(t) as in Case 1 above. This completes

the proof.

3. Equations possessing at most one positive solution

The following theorem extends to the general case Theorem 6 in Atkinson's

paper [1].

THEOREM 4. Assume that the equation

(9) x^ + H(t, x) = 0, (n:even)

has no eventually positive solutions. Moreover, assume that:

(i) P is defined, positive and n times continuously differentiable on [0, oo)

with P(M)(0 = 2(0> *e[0, oo). Moreover, liminfP(ί) = 0;
t-*CD

(ii) H(t, ύ) is defined and continuous on [0, oo) x R, and is continuously

differentiate there w.r.t. u, and H2(t, u) = (d/du)H(t, u) is nonnegative and

increasing w.r.t. u. Moreover, uH(t, u)>0for u > 0 and

[C°tn-1H2(t, P(i))dt < oo.
Jo

Then the equation

(10) x^ + H(t, x) = Q(t)

can have at most one eventually positive solution.

PROOF. Assume that U, V are two solutions of (10) such that U(t)>0,

V(t)>0, te\t0, oo), ί o ^0. Then it follows from Theorem 3.1 in [2] that

(11) 0 < [7(0 < P(0, 0 < K(0 < P{t), t > (some)*! > t0,

lim[l/(0-K(0] = 0
ί->αθ

Now we show that W(t) = U(t) — V(t) is oscillatory. In fact, assume that there

is t2>tί such that W(t)>0 for t>t2. Then from (16) we obtain

(12) W^\t) = -lH(t, U(t))-H(t, K(0)] < 0

for every t>t2 because H is increasing w.r.t. the second variable. This implies

that all the derivatives W^\t), ί=l, 2,..., n — 1 are of constant sign for all large

t, and that no two consecutive derivatives can be of the same sign for all large t

because of the boundedness of W(t). Consequently W'(t)>0 for all large t, a
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contradiction to the fact that W(t) is positive for all large t and lim W(t) = 0*)

f-»oo

Thus, W(t) oscillates. Now, by the mean value theorem, we have

(13) H(t, U(t))-H(t, V(t)) = H2(t, λ(t))W(t), t > tl9

where λ(t) is a continuous function lying between U(t) and V(t). Thus, λ(t)

<P(t)9 t>tx.

Consequently, W(t), t>tt is an oscillatory solution of the equation

(14) W

Since, however, H2(t, λ(t))<H2(t, P(t)\ we have

(15) [*)t»-1H2(t9λ(t))dt< oo.

An application of Theorem 2 in Kartsatos [3] shows that W(t) = O for all

large t, and this proves our assertion.

As an example, consider the equation

(16) x^ + (l/t5)x3 = 720r7, t > 1.

Here we have P(t) = Γ1, and H2(t, P(ί)) = (3/ί5)P2(0 = 3/ί7. Moreover the

unperturbed equation oscillates (cf., for example, Kartsatos [8, Example]).
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*) An analogous situation appears if we assume W(t)< 0, t>t2.




