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1. Introduction

In this paper we consider, among others, equations of the form

(I)

Our main purpose here is to present a theorem which considerably improves
a corresponding result of Singh [11, Theorem 1]. Our proof is also much simpler
than the one given by Singh in a special case of (I). A corollary to our result is
also given and improves the corresponding result of Singh. In Theorem 2 we
consider a small forcing β(f), in Theorem 3 a homogeneous equation with damp-
ing, and Theorem 4 deals with the case of a damping treated as a small perturba-
tion.

The reader is referred to a survey paper of the author [6] for several
results concerning n-th order equations. Equations with damping have been
considered also by Kartsatos and Onose [7], Naito [9] and Sficas [10]. Singh's
main result in [11] is related to a result of Hammett [3], but the former does not
contain the latter because of an integral condition on p(i). For a natural extension
of Hammett's result in the n-th order case, and for p(i) = l, the reader is referred
to Kartsatos [5]. For other extensions to Hammett's results, relative references
are those of Atkinson [1] and Grimmer [2]. For oscillation results concerning
forced functional equations the reader is also referred to, for example, Kusano
and Onose [8], or Staikos and Sficas [12].

In what follows, # = (-00, oo), #+ = [0, oo), jR? = (0, oo) and £Γ = [Γ, oo)
for some fixed finite T. Moreover, n^2, and the functions p: RT-+R%9 g:RT

-+R+9 Q: RT-+R, H: RτxR-+R will be assumed continuous on their respective
domains. Furthermore, H(t, u) will be assumed increasing in u and such that
uH(t, u) > 0 for every u Φ 0. For the function g(t) we merely assume that lim g(t)

ί-*oo
= + 00. By a solution of (I) we mean any real function which is n times con-
tinuously differentiate and satisfies (I) on an infinite subinterval of [Γ, oo). A
solution of (I) is said to be "oscillatory" if it has an unbounded set of zeros in
its domain of existence. A solution x(t) of (I) is "bounded" if \x(t)\ ^K for all t
in the domain of x(i), where K is a positive constant,
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2. Main results

THEOREM 1. Consider (I) under the following assumptions:

+00, +00, ff(ί, ±fc)Λ= ±00

/or αnj constant k>0. Then if x(t) is a nonoscίllatory solution of (/), x(n~2\t)
tends to a finite limit as f-»oo.

PROOF. Let x(i) be a nonoscillatory solution of (I) and assume that
for all large ί. Then there exists ί^Γsuch that x(ί)>0, x(g(i))>Q for all t^t^
Now integrating (I) from ̂  to ί^ί l9 we have

(2.1) X0*(n-1}(0 = C- #(s, x(0(s)))Λ + Q(s)ds,
J t i Jti

where C is a constant.
Since H(t, x(g(tj))>0 for t^tί9 we consider the following two possible cases:

Case 1. #0, x(g(s)))ds = + oo,
•Jίi

Case 2. ί°°̂ (5, jcto(s)))ds < + oo.

Case 1 implies limXO^(n"1)(0= ~oo Thus, χ("-1>(ί)<0 for all large t.
ί->00

Consequently, x(n~2\t) is monotonic and positive for all large ί, otherwise we
would obtain the contradiction limx(ί)=— oo. It follows that the assertion of

t-χx>

the theorem is true in Case 1. In Case 2 we must have lim p(t)x(n~l\t) = μ
ί-»oo

exists and is finite. Let μ>0. Then x(rt~1)(0>0 eventually. Now there are
two possibilities: either x(M~2)(ί)>0 or x(Λ~2)(ί)<0 for all large t. The second
possibility proves our assertion. If the first one is true, then we must have x(t)
-> + oo as ί-»oo. It follows that x(g(t))^λ>Q and H(t, x(g(t)))^H(t, λ)>0

for all ί^(some)ί2^fι. The integral condition on H takes us back to Case 1,
a contradiction. A completely analogous situation holds in the case μ<0. Now
let μ = 0. Then given ε>0 there exists <5(e)>0 such that

(2.2) -ε < 1

for every t\ t"^δ(ε). Dividing the first of (2.2) by p(tf) and integrating from
t' to t" we obtain

(2 1} \χ(n~2ϊ(t'} — χ(n~2>>(t"}\ < F t' t" > fi(p}\^4* ~JJ IΛ ^l j Λ I t J\ ^** o, t , I/ *^ l / lOl «
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By the Cauchy criterion for functions, we get that limx(rt~2)(i) exists and is
ί-*oo

finite. This completes the proof for x(f) eventually positive. Similarly one can
show the assertion for an eventually negative x(f).

Singh considered in [11] the case H(t, u) = a(i)u, g(t) = t — τ(t), where τ(ί)
is bounded above,

500 Cbn

\Q(t)\dt < + oo, and lim \ a(f)dt = + oo
T n-*oojαn

for any sequences {αrt}, {bn}, bn^an^T9 with limαw = limb r t= + 00, and lim(ί?rt
«-»oo «->oo n-*oo

-«„)=+ GO.

COROLLARY 1. Let n = 2 in Theorem 1. Then all nonoscillatory solutions
of (I) tend to zero as ί->oo if H satisfies the additional assumption

= ±00,

and p(t)^λ>Qfor ί^Γ, where λ is constant.

PROOF. Let x(t) be a nonoscillatory solution such that x(t)>0 and x(g(fj)
> 0 for t ̂  1 1 ̂  T. From Theorem 1 we obtain that lim x(f) = A exists and is finite.

f->OO

Let A>0. Then given ε with 0<ε<^4 there exists t2^tl such that

-e<x(g(t))-A<ε, t^t2.

Consequently, H(t, x(g(t)J)^H(t, ^-ε)^0 for every t^t2. Integrating
now (I) from t2 to t ̂  t2 and dividing by p(t) we obtain

(2.4) χ'(ί) ̂  -[l/Xί)] H(s, X-βXs + α/^ Q(s)ds
Jί2 Uf2

Thus, x'(0-^ — °° as ί^ oo, a contradiction to the positiveness of x(f). It
follows that limjc(ί) = 0 for x(f) eventually positive, and an analogous proof covers

ί-*oo

the case for x(t) eventually negative.

Singh obtained the conclusion of the above corollary in [11] from Theorem 1
there without any additional assumptions. Singh's Theorem 1 only ensures that
p(t)x'(t) tends to — oo as ί-»oo, but this fact is not enough to imply limx(ί) = 0.

f-»00

Consequently, Singh needs additional assumptions to conclude Case 1 of Theorem
2 in [11].

THEOREM 2. Consider (I) with the following assumptions:
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(s, + k)ds = ± oo, p(t) ^λ>0,
T

lim (' (" -(β° [1/X«2)](°° Q(u1)duldu2du3-dun
t-+<X>JTJUn JUS JU2

exists and is finite,

where k is an arbitrary positive constant. Then every nonoscillatory solution
of(ϊ) tends to zero as t-+ao.

PROOF. Let x(t) be an eventually positive solution of (I) and assume that
liminfXO>0. Then there exists a constant JKX) such that x(g(t))>K for every

* (say) «£ f^Γ. Consequently, H(t, x(g(t)))^H(t, K)>0 for fetl9 and, by
integration of (I) from ^ to t'^ti9 we get

(2.5) jcC

H(s, K)ds + (llλ) Q(s)ds
ίl

Thus, we obtain a contradiction by taking the limits of both sides as f-»oo.

It follows that lim infjc(0 = 0. Now let
f-*00

[i/K«2)](c°ρ(u1)rfulίίu2ίίM3...dwn
U3 J U2

for all *;>*!, with ^ chosen so that x(0>0, x(g(i))>Q, t^t^. Then letting w(0
=x(0-P(Oweget

(2.6) O(0w<»- J >(ί)]' + H(ί, wto(ί)) + Pfo(O)) = 0.

Since x(flf(0) = w(flf(ί)) + P(flf(0)>0 for ί^ίl9 it follows that
is decreasing for ί^ίlβ This implies that w^""1^) is of fixed sign for all large t.
Thus, w(0 is monotonic for all large t. Since x(t) = w(i) + P(i) and limP(ί) = 0,

ί-*QO

if follows that limx(f) = L exists and must equal zero because liminfx(ί) = 0.
f-χχ> ί-*oo

A similar proof covers the case of an eventually negative x(t).

It should be noted here that the integral condition on the function Q(t) can
be replaced by the condition that P(t) be a solution of the equation

such that limP(0 = 0, and \ Q(s)ds ^K (constant). The above theorem does
ί-»oo \JT

not contain, for n = 3, Theorem 3 in Singh's paper. However, it does contain a



On the Oscillation Problem of Nonlinear Equations 261

special case of that theorem; namely, when the integral condition on the forcing
term Q(t) as above holds. No integrability assumption was made here on the

function l/p(f)
In the following theorem we consider the equation

(II) *<»> + q(i)x^n- ί > + H(t, x(flf(0)) = 0

with q(t)^0. This equation was studied by Kartsatos and Onose [7] with g(f) = t,
and by Naito [9] and Sficas [10]. None of the results of these papers contains

the following because of the assumptions on q(f).

THEOREMS. Consider (II) with q: Rτ->(— oo, 0] and continuous. Then
every bounded solution of (II) is oscillatory for n even, and oscillatory or tending
monotonically to zero as ί-»oo for n odd, if

q(t) ̂  -M/f, tn-iH(t, ±λ)dt = ±00
JT

for some constant M >0, any constant λ>0, and every t^.T.

PROOF. Let x(f) be such that x(t) > 0, x(g (t)) > 0 for all fet^T, and
bounded. Then it follows from the Lemma in [7] (cf. also Naito [9]) that

jc(»-ι>(f)>0 for t^t±. Now let n be even. Then x'(t)>0 for ί^ί lβ Let ί2^ί1

be such that x(g(t))>K>Q for t^.t2, and some constant K. Now consider the
function tn'1x(n"1\t)9 t^t2. Differentiation of this function, and then integra-
tion from t2 to ί, taking into consideration (II), yields

(2.7) ί"-1**1

^ ίΓ1^(B"1)(ί2)- sn"1H(s9 K)ds.
Jt2

The first member of this equation is bounded below by

(2.8) -(n-

Taking limits as ί->oo in (2.7), we get

limΓ sn-2χ("-1\s)ds= +00.
ί-*oo Jί 2

The rest of the proof for n even follows now as in Theorem 1 in [4]. Similar

arguments cover the case n odd and negative solutions.
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This theorem can be extended to cover larger classes of functions //; for ex-
ample, functions of the forms considered in [4]. It can be easily shown now that
the conclusion of the above theorem holds for all solutions of (II), if q(f) ̂ —k
(for some positive constant k), t^ T, and

°°#(s, ±λ)ds = ±00
Γ

for every constant λ>Q.
In the following result, the damping q(t)x(n~l\i) is treated as a "small"

perturbation.

THEOREM 4. Assume that q: Rτ-+(—co, 0] is continuous. Moreover, let

f oo

-\ tn~lq(i)dt< +00.
JT

Furthermore, assume that all solutions of

(III) x^ + H(t, x(0(f))) = 0, n even,

oscillate. Then for every nonoscillatory solution x(t) of (II) we have limx(ί) = 0.

PROOF. Let x(t), x(g(t))>Q, t^t^T. Let H(t, xfo(ί))) =/(ί), *t'
=y(t), t § t ! . Then we have

(2.9)

Solving this equation we obtain

(2.10) Xί) = expΓ-(' q(s)di\ly(tί)-{'f(u)enp\("q(s)ds'\du
L Jt! JL Jti LJti J

^ XίJ exp[- J|

Since, again by the Lemma in [7], χ(""1>(ί)>0, it follows that x^"
is bounded. Thus, the equation

ιι<»)(f)= -^(Ox(n"1}(0

has a solution u(t) with lim w(0 = 0. In fact, this solution is the function
f->00

Now we can consider the transformation w(t) = x(i) — w0(ί), which takes (II)
into
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(2.11) *<»> + #(*, wfo(0) + n0(0(0)) = °

It is easy to show now (cf. Kartsatos [6]) that the existence of a positive
solution of (2.11) implies the existence of a positive solution to (III) for all large t,
a contradiction to our assumption. Similarly for a negative solution x(t). Con-
sequently, if x(i) is positive (negative), w(t) = x(i) — uQ(t) is negative (positive)
for all large t. This implies in both cases: limx(f) = 0.

ί-+oo

The above theorem remains true for all bounded solutions of (II), if we as-
sume, in addition to the integral condition on q(i), that all bounded solutions of
(III) are oscillatory. This last result improves Theorem 1 in [7].
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