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§1. Introduction

In this note, we say that M is an S3 (=SU(2))-manifold, if M is a connected
compact smooth manifold admitting a non-trivial smooth S3-action S3x M- M.
The purpose of this note is to classify such closed manifolds of dimension less
than 5 by S3-equivariant diffeomorphisms.

We notice the following results (cf. [1, Cor. 3.2] and [6, Th. 2.6.7]).

(1.1) Any closed proper subgroup of

S3={qeH; |q|=1} (H is the quaternion field)
is conjugate to one of the following subgroups:

St={zeC; |z| =1}, the unit circle in the complex field C;

NS!={z, zj; ze S!'}, the normalizer of S! in S3;

Z,={zeS"'; z"=1}, the cyclic group of order n (=1); o

D*(dm)={z, zj; z€ Z,,}=n3(D(2m)), the binary dihedral group of order
4m (28); ,

T*=n3Y(T), 0*=n31(0) and I*=n3!(I), the binary tetrahedral, octahedral
and icosahedral groups of order 24, 48 and 120, respectively.

Here, n,: S?—S0(3) is the double covering defined by

nAQp = qpq~" (g€ S3, pis a pure quaternion),

and D(2m) is the dihedral group of order 2m and T, O and I are the tetrahedral,
octahedral and icosahedral groups.

For an S3-manifold M, we denote by (H) its type of principal isotropy sub-
groups, and consider the following two cases:

(a) Every isotropy subgroup is principal.

(b) There exists a non-principal isotropy subgroup K=2H.

Unless otherwise stated, we consider S3/H as the S3-manifold with the
action 7y, n,(¢)[pl=[gp]. Also, for any S3*-manifold M, and any manifold
N, we consider M, x N as the S3-manifold acting S3 trivially on N.

Then, closed S3-manifolds are classified up to equivariant diffeomorphisms
by the following theorems.
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THEOREM 1.2. If dim M =2, then only the case (a) holds, and M is deter-
mined uniquely by H=S" or NS' and M=S3/H=S? or P,(R), respectively.

THEOREM 1.3.  Assume that dim M =3.
The case (a). When H is any subgroup of (1.1) except St, M is determined
by H, and

M=S83/H if H is finite, =P,(R)xS! if H=NS!.
When H=S', M is determined by H and the orientability, and
(S3/SH)x St = S2xS! if M is orientable,
(S?2xSYHY/(p, z) =(—p, —z))  otherwise.

The case (b). M is determined by the principal isotropy subgroup H=S!
and two non-principal ones K and K,, and

S3 (S? acts on it via n,) if K;=K,=S3,

P3(R) = S3/(q

—q) (82 acts on S3 via n,)

if K,=S5%K,=NS!,
(S2xSYHI(p, 2) =(-p,2) if K;=K,=NS"

For the case that dimM =4 and H=S!, we take a small closed invariant
tubular neighborhood U of the fixed point set F(S3, M) (cf. [3, VI, Th. 2.2]),
and consider the S3-submanifold M'=M —IntU. (U=¢g and M'=M if F(S3,
M)=g.) Further we consider the fixed point set F(S!, M') of the restricted
St-action. Then, we have

ProrosiTION 1.4. (i) F(S!, M’) admits the non-trivial Z, (=NS!/S!)-
action induced from the given S3-action, which is free on the boundary 0F(S!,
M), and F(S', M")/|Z, is connected. Also F(S*, M’) is a compact surface.

(ii) Let D3 be the unit disk of dimension 3, admitting the S3-action via
N,. Then we have an equivariant diffeomorphism

M =~ o(D3 x F(S', M"))/Z,,
where Z, acts on D3 by the antipodal map and on F(St, M) by (i).

THEOREM 1.5. Assume that dim M =4.

The case (a). (i) If H=1, Z,, O* or I*, then M is determined uniquely
by H, and M=(S3/H)x S!.

(i) IfH=Z,(n=3), D¥(4m) (m=2) or T*, then M is an S3|/H-bundle
over S' with structure group NH/H, and M is determined by H and the first
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integral homology group H (M), which is given by the following table:

H H (M)
Z,(n=3) Z,+Z* Z(n:odd), Z,+Z (n: even)
D*(4m) (m=3) Z,+Z (m:odd)*, Z,+Z,+Z (m:even)*, Z,+Z
D*(8) Z,+Z,+7Z% 2,+Z,Z
T* Zy+272*, 7

(M=(S3/H)x S! for the case indexed by *).

(iiiy If H=NS!, then M=P,(R)x N, where P,(R) is the S3-manifold in
Theorem 1.2 and N is any connected closed surface.

If H=S"', then F(S3, M)=¢ and M is determined by the above proposition,
where the Z,-surface F(S', M) is a closed surface and the Z,-action is free.

The case (b). (iv) When H is finite, H is Z,, D¥(4m) (m=2) or T*, and
M has two non-principal isotropy subgroups K, and K,.

If H= D*(8), M is determined uniquely by H, K, and K, of the following
table:

H K, (I=1,2)
Z, (n:odd) Z,, S, S (n=1)
Z, (n:even) Z,,, D*(2n), S', NS! (n=4)
D*(4m) (m=3) D*(8m), NS!
T* o*

If H=D*(8), M is determined by H, K,, K, and H,(M), which are given
by the following table:

(K, K3) H,(M)
(D*(16), D*(16)) Z,42,4+Z,,2,+Z,
(D*(16), NS*) Z,+2,, 2,
(NS, NS1) Z,, 0 B

(v) IfdimHZ=1,then H=S' and M is determined by the above proposition,
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where the Z,-action on the surface F(S', M')=F(S', M) is not free if F(S3, M)
=9.

The results on the classification of Z,-surfaces, which are used in (iii) and (v)
of the above theorem, are given in §7.

§2. Closed subgroups of S3

In this section, we prepare some known results on closed subgroups of S3
and their real representations.

LeEMMA 2.1. The binary octahedral group O* in (1.1) is generated by
e=exp(ni/4), € =(1+j)//2 and ¢'=(1+k)/|/2.

Proor. We notice the following equalities for any a, b, ze C, which are
seen easily:
(a+ bj)z(a—bj) = (lal?2z+|b|?2)+ab(—z+2)j,
(2.2) B
(a+ bj)j(@—bj) = (—ab+ab)+(a?+b?)j.
By considering the set A={+1i, +j, +k} of vertices of the regular octahedron,
we see that

O* = 13'(0) = {ge S*; qAq™ ' = A}.

Therefore, we see easily by using (2.2) that O* contains the subgroup O’ of S3
generated by e, ¢’ and e”. Therefore O* =0’ since these groups are of order
48. q.e.d.

LEMMA 2.3. Let H be a finite subgroup of S3. Then the normalizer
NH of H in S3, the factor group NH|/H and $#f,(NH|H) are given as follows:

H NH NH/H $2,(NH/H)
Z,(n=1,2) s3 S3 (n=1), SO3) (n=2) I
Z,(nz3) NS! NS (n: odd), O(2) (n: even) 2
D*(4m) (m=3) | D*@8m) | Z, 2

D*(8) o* D(6) 3
T* o* | z, 2
o*, I* O*, I*¥ | 1
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In the above lemma, for a given topological group G,
(2.4) f1o(G) = mo(G)/ ~

is the set of equivalence classes of elements of n,(G) under the inner automor-
phisms, and ##,(G) is its cardinal number.

ProOF. When H is | or Z,, the results are clear.

Assume H=Z, (n=3). By (2.2), it is easy to see that a+bje NZ, is
equivalent to ab=0, and so NZ,=NS'. Further, there are isomorphisms
NS'/Z,~ NS! for odd n given by z—z", j—j and NS!/Z,~0(2) for even n given

. cosnf sinnf\ . 0 1
by e"1’(0')—’<—sinn9 cosnﬂ)’j—*(l 0>‘

Assume that H=D*@8)={+1} U A, where A={+i, +j, +k}. Then,
ND*(8)=0* by the proof of Lemma 2.1. Furthermore, e?=i, b3=—1 and
ebeb= —1 (b=ee') are in D*(8), and

D(6) = {1, x, xy, xy%, y, y?},  x?=p3 =xyxy =1,

is the dihedral group of order 6. Hence O*/D*(8)= D(6).

For the case H=D*(4m) (m=3), we see easily by using (2.2) that ND*(4m)
={a+bjeS3; ab=0,a%*+b%€Z,,}, which is equal to D*@8m). It is clear
that D*(8m)/D*(4m)=2Z2,.

Finally we consider the case H=T%*, O* or I*. It is well known that T
=A,, 0=S, and I=As, where S; and A; are the symmetric and alternating
groups of i letters. Therefore, T* is the normal subgroup of O* and T*<I*,
and also O* ¢ I* since 120 is not a multiple of 48. Since T* has two non-commu-
tative elements of order 6, T*, O* and I* are not contained in any conjugate of
D*(4m) or NS'. Also, we see that {qzg; g€ S3}=S3 if z—Z 0 by using (2.2),
and so the proper normal subgroup of S3 is 1 or Z,. Therefore we see that
NO*=0%*, NI*=I* and NT*=0*.

The results of ##,(NH/H) are obtained easily. q.e.d.

Now, we prepare some results on real representations of closed subgroups of
S3.

LEMMA 2.5. Let K be a closed subgroup of S3, p: K—»0(k), k<4—dim S3/K,
be a non-trivial representation, and H be a principal isotropy subgroup of
the K-action on the unit disk D* via p. Then, these are given by the following
table up to equivalence:
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K k p H
3,4 | nyn9p=qpq~! St
S3
4 ni:n(@p=qp 1
1,2 vivz)=1,v(j)=—1 St
NS!
2 Yan (NZ1): 92,(2)p=2%"p, V2.(/)P=—DP D*(4n)
St 2 o, (n=1):0,(2)p=z"p zZ,
Z3n 1 A ) (g, )= —1 Z,
o* I p: p(e)=p(e)=p(e")=—1 T*
D*(4l71) ] Xl: Xl(aZHI):I’ Xl(])=—1 ZZm
1 X2 X2(aam)=—1, x2())=1 D*(4m)
D*(8m)
1 X3: XS(a4nr)= - 1’ X3(]) =-—1 ast*(4m)a§"l,

(a,=exp(2ni/n), e=ag, &' =(1+))//2, "=(1+k)//2).

Proor. When K=S3, the results follow immediately from [1, Prop. 3.7]
and its proof. The results for K=NS! or S' are [1, Prop. 3.8]. The others
are secen easily. q.e.d.

§3. Actions with orbits of codimension 1

In this section, let G be a compact connected Lie group and M be a closed
(compact and without boundary) connected smooth n manifold. Assume that
there is given a non-trivial smooth action Gx M—M of G on M, and let (H) be
the type of its principal isotropy subgroups, and d be its maximal orbit dimen-
sion, i.e., the dimension of the principal orbit G/H, (cf. [3, IV, 3]).

(3.1) [3, IV, Th. 3.3 and VI, Cor. 2.5] When every orbit is principal, M
is a G/H-bundle over the closed manifold M/G with structure group NH/H,
where NH is the normalizer of H in G.

(3.2) [3,1V, Lemma 4.1] The orbit space M/G is an n—d manifold if
n—d<2.

(3.3) If d=n, then M is equivariantly diffeomorphic to G/H.

For the case d=n—1, we consider the following situation:

(3.4) Forl=1, 2, let K,2H be a closed subgroup of G and

p;: Ky — O(k), k; =n—-dimG/K,
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be a representation. Assume that the K;-action on a unit disk D*: via p, is transi-
tive on the boundary dD*' and its isotropy subgroup (K)),, is equal to H for
some p; € 0D¥:, and also the G-manifold G x x D*' has (H) as the type of principal
isotropy subgroups.

Then, we can identify G x ,,dD*'=G/H by the equivariant diffeomorphism

Gx KlaDkla[g’ pl] — t}HGG/H,
and for any a € NH, we obtain the G-manifold
3.5 M, = Gx g D1\, Gx g,D¥2,

where the attaching map «: G x g 0D¥'=G/H—G/H=G x ,0D*2 is given by
a(gH)=ga"'H (g € G).

ProprosiTION 3.6. [3, IV, Th. 8.2] Assume that d=n—1 and there exist
non-principal orbits.
(i) Then there exist K, and p, of (3.4) and

M =M,  forsome aeNH.

(i) Assume that there exist K, and p, of (3.4) satisfying the following:

(3.7 If pi: K,»O(k) satisfies the assumption of (3.4) except the con-
dition H=(K)),,, then there exists y € NK,; such that pic,, is equivalent to p,
where c,(k)=vky;! (k€ K)).

Then, we can choose any such fixed K, and p, for those in (i).

Proor. (i) It is sufficient to notice in the proof of [3, IV, Th. 8.2] that
we can take M, _ =Gx g D¥* (I=1,2), which follows immediately from the
differentiable slice theorem (cf. [3, VI, Cor. 2.4]).

(i) In the same way, we can writt M=XG X g, . \D¥' UGX g, ,,,D*2,
where K, acts on D*! via p;. Then by (3.7) it is easy to see that G x g, ,;)D¥
is equivariantly diffeomorphic to G x x D%, and we have the desired result.

q.e.d.

Now, we consider the following condition for the situation (3.4):
(3.8) For any y,e NHn NK,, the right translation i, of Gx gD is
smooth, where ¥,, is given by

¥, L9, tp] =[gyit,tp] (@eG, 0=t 1),

PROPOSITION 3.9. Under the assumption (3.8), M, and My of (3.5) for
o, Be NH are equivariantly diffeomorphic if and only if there exist y,e NH
NNK, (I=1, 2) such that y, and B~'y,o are contained in the same component
of NH/H.
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Proor. (Sufficiency) We can choose a smooth path 6:[0, 1]-NH/H
from yp, to f~'y,a, which is locally constant at 0 and 1. Then, by considering

(*) M, = Gx g D¥ U (G/H %[0, 1]) U G X -1, D¥2 t=ua b)),
the desired diffeomorphism y: M,~ M, is given by
(%) Ylg, tp] = [gvi's tp], ¥lg, tp.] = [go™ '3 B, tp,]

and Y(gH, s)=(g0(s)"'H, s) for geG, t, se[0, 1].

(Necessity) Assume that M, and M, are equivariantly diffeomorphic.
In the same way as the proof of [3, V, Th. 5.1], we can choose an equivariant
homeomorphism : M,~ M, such that M, and M, have the forms of (*), and
Y maps G x g, D¥tand G X ,-1,,D to Gx g D¥* and G x g-1g,zD*2, respectively,
satisfying () for some y,e NHNNK,;(I=1,2). Then y, and f~!y,a are con-
nected by the path

0:[0,1] = G/H %[0, 11— G/H x [0, 1] —> G/H. g.e.d.
For the condition (3.8), we have the following

LeEMMA 3.10. Assume that the representation p;: K,—>O(k)) satisfies
p(K))>SO(k). Then (3.8) holds, if p, is equivalent to pc,, for any y,e NH
n NK,.

PrROOF. We use the notations omitting the index I. ¢, in (3.8) is the
bundle map of the disk bundle D¥—G x xD*—G/K onto itself, inducing /: G/K
—-G/K, i (gK)=gy K. Therefore, it is sufficient to show that f= y,|D¥* is
linear. From the definition of y,, we see that f is given by

ftp(g)p) = tp(ygy~')p  for geK.

There exists A’ € GL(k) such that pc,=c,.p by the assumption, where c¢,(X)
=AXA"! (X €O(k)). Then it is easy to see that A’=tA for some A € O(k) and
10, since p(K)>SO(k). Thus we have pc,=c,p and so

(%) _ f(Xp)=AXA"1p for any X ep(K).

Consider the isotropy subgroup p(K),={Xep(K); Xp=p}. Then we see
easily that 4p(K),4~! = p(K), by (*) and so A4 belongs to the normalizer N(p(K),)
in O(k). On the other hand, we see easily that N(p(K),)={BeO(k); Bp=+ p}
since p(K)=0(k) or SO(k). Therefore we see Ap=+p, and hence

f(Xp) = AXA'p= +AXp for any X e p(K).

This shows that f is linear as desired. g.e.d.
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The following lemma for the special case that G=S3 is used in §5.

LEMMA 3.11. When n=4, H=1, G=K,=S3 and p, is n,:S*->0(4) in
Lemma 2.5, the condition (3.8) holds.

Proor. For this case, G x g, D*'=D* and y,,: D*->D* is given by v, (p)
= py; !, and hence we have the lemma. g.e.d.

§4. Proofs of Theorems 1.2 and 1.3

In this section, we apply the results of the previous sections for the case that
G=S3 and dimM <£3.

ProoFr oF THEOREM 1.2. Since dim H <1 by (1.1), we have d=dim S3/H >2.
Also dimM/S3=2—-d=0 by (3.2). Thus d=2 and dimH=1, and the result
is clear from (1.1) and (3.3). qg.e.d.

PrOOF OF THEOREM 1.3. In the same way as the above proof, the maximal
orbit dimension d satisfies 2<d < 3.

When d=3=dim M, M is equivariantly difffomorphic to S3/H by (3.3), where
H is finite.

When d=2=dimM —1, we have H=S"! or NS! since dimH=1. For the
case (a), M is an S3/H-bundle over S! with structure group NH/H by (3.1). If
H is NS!, then NH/H=1 and so M is equivariantly diffeomorphic to (S3/NS')
xS'=P,(R)xS'. If H is S', then S2=S3/S! and M is an S2-bundle over
S1 with structure group NS!'/S!'=Z,. Thus M is equivariantly diffeomorphic
to S2x S! or (S?2x SY/(q, z)=(—q, —2)). -

For the case (b), we apply Proposition 3.6. Lemma 2.5 shows that there do
not exist K, and p, satisfying (3.4) for H=NS'. If H=S!, then Lemma 2.5 shows
that K; and p, of (3.4) are given by

K,=8%p=n, or K;=NS',p=v,

and the condition (3.7) holds. Therefore, it is sufficient to classify M, by Pro-
position 3.6. Since the condition (3.8) holds by Proposition 3.10, we see easily
that M, ~ M, and hence M,~ M, for any «, B NS! by Proposition 3.9. Thus,
M is determined uniquely by H=S! and (K,, K;)=(NS!, NS!), (NS, S3) or
(83, S3). g.e.d.

§5. The case that dim M =4 and H is finite

In this section, we assume that M is a closed S3-manifold of dimension 4,
and its principal isotropy subgroup H is finite.
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For the case that every orbit is principal, (3.1) shows that M is an S3/H-
bundle over M/S3 =S with structure group NH/H, and we have its characteristic
class y in #o(NH/H) of (2.4) by the classification theorem [4, Th. 18.5]. These
show the following

ProOPOSITION 5.1. When every orbit is principal, M is determined by H
and ye #,(NH/H).

LEMMA 5.2. Theorem 1.5 (i) holds.

Proor. When H is a finite subgroup of (i) in Theorem 1.5, we have ##,(NH/
H)=1 by Lemma 2.3, and hence the desired result by the above proposition.
q.e.d.

To study the case (ii) of Theorem 1.5, we consider the relation between the
characteristic class y and H,(M).

LeEMMA 5.3. Let A, (I=1, 2) be a connected space such that A, N A,=A,.
Then the first integral homology group H((A,\U,A,), of an attaching space
A\J,A; by a homeomorphism ¢: Ag— Ay, is given by

(5.4) H,(4, Uq:Az) = Coker (il*s_(i2¢)*)+H0(Ao),
where i;: Ag— A, is the inclusion and (i1, —(i,0)s): H{(Ao)>H(A))+H,(4,).

Proor. (5.4) follows immediately from the Mayer-Vietoris exact sequence
of (4,\U,A4;; A;, Ay). qg.e.d.

The following lemma is clear.

LEMMA 5.5. Let H be a finite subgroup of S*, D(H) be the commutator
subgroup of H, and . € NH. Then, we have the commutative diagram

Hl(SS/H)i—’ H1(S3/H)
H/D“(H) —“—*-»H/l”)(H),

where o: S3/H—S3|H is the right transformation given by a(gH)=goa"'H and
¢.: H>H is the automorphism given by c,(h)=aha™!.

In the above lemma, we see easily the following

LeEmMMA 5.6. If H is a subgroup in (ii) of Theorem 1.5, then it holds the
following table:
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H H/D(H) o ; Car
D*(dm) (m:even 23) | Z,<a,>+Z,<j> | a4y, ‘ Aym—Aoms =2+ ]
D*(4m) (m: odd = 3) Z,<j> Aam jo—j
ag i—i, joi+j
D*(8) Z,<i>+2Z,<j> ,
ee’ i—j, joi+j
Z,(nz3) Z,<a,> J a,——a,
T* Zy<ee > ag ee'— —ee’

where Z,<a> is a cyclic group Z, generated by a, and ee’=(1+i+j+k)/2.
Now, we are ready to prove (ii) of Theorem 1.5.
LEMMA 5.7. Theorem 1.5 (ii) holds.

Proor. Let M be given by H and y=[a], xe NH, in Proposition 5.1.
Denote E,={exp(tni); I-1<t<1}<=S! (I=1,2), and set A,=n"1(E,), where
n: M—>M/S3=S" is the projection of the bundle. Then

Ay=A, N A,=S3H U S3/H (disjoint union),

and the definition of x shows that M =A4,\,4, and the diagram

4, L Ao - » Ao

] l\ |

S3/H L _ S3|HUS3H 1%, S3|H

is commutative, where the inclusion i is a homotopy equivalence and f is the
folding map. These facts and Lemma 5.5 show that (i;4, —(i,@)s) in (5.4) is
equal to the homomorphism

H'+H' — H'+H', (a, b)—> (a+b, —a—c,(b)),
(H'=H|D(H)). Thus we have easily
H(M)=H,(A,\U,A4,) = H[Im(1—c,)+Z

by Lemma 5.3, and hence we obtain (ii) of Theorem 1.5 by the above lemma.
g.e.d.

Now, we study the case (iv) in Theorem 1.5, by applying the results in § 3.
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LEMMA 5.8. If H is finite, then we can take H and K, (I=1, 2) in the tables
of (iv) of Theorem 1.5 as the ones in Proposition 3.6 (ii).

Proor. By Lemma 2.5, it is sufficient to show that (3.7) holds for H=
D*(4m), K,=D*@8m), py)=yx, and p;=yx;. This is clear, since yx,=ysc,, by
definitions of y, and y;. qg.e.d.

LEMMA 5.9. Theorem 1.5 (iv) holds when H = D*(8).

Proor. Let (H, K,, K,) be given in the table of (iv) of Theorem 1.5. By
the above lemma and Proposition 3.6, it is sufficient to classify M, for « € NH.
We see that (3.8) holds by Lemmas 2.5, 3.10 and 3.11, and so we can classify
M, by Proposition 3.9.

If H=1 or Z,, then NH/H =S3/H is path-connected, and so M, ~ M, for any
o€ NH by Proposition 3.9.

Let H=Z,(n=3), D*(4m) (m=3) or T*. Then we see that NH=NS!,
D*(8m) or O* and NK;>D*(8), D*(16m) or O¥*, respectively, by Lemma 2.3.
Consider the element a,e NH N NK,, given by a,=j, a,, or e, respectively.
Then we see that M; ~ M, and hence M,~ M, for any «, f € NH by Proposition
3.9. Thus M is determined uniquely by (H, K;, K,). q.e.d.

Next we consider the case that H=D*(8).
LeEMMA 5.10. Theorem 1.5 (iv) is also valid when H = D*(8).

Proor. In the same way as the above proof, it is sufficient to classify
M, (« e ND*(8)) by Proposition 3.9, where K,=D*(16) or NS'.
By the proof of Lemma 2.3, we have

ND*(8)/D*(8) = D(6) = {1, x, xy, xy2, y, y*},

where x=eD*(8), y=ee’D*(8). Since NH n NK,=D*(16), Proposition 3.9 and
the easy calculation show that

MM, M, ~xM,, ~ M, ® M.
Now, we calculate H,(M,) for a=1 or ee’ by Lemma 5.3. By (3.5),
M,=A,\U,A,, Ag=A, n A, =S3*H (H = D*(8)),
where A;=S3 x g D*:, and we have the commutative diagram

Ayt g A

1]

S3/K, <— S*|H = S3|H
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where p and p, are the projections and p is a homotopy equivalence. By identify-
ing

H,(Ag) = H/D(H) = Z,<i>+Z,<j>,

Z,<e>+2Z,<j> if K, = D*(16),
H\(4)) = K,/D(K)) = _

Z,<j> if K,=NS!,

(cf. Lemma 5.6), the above facts and Lemma 5.5 show that ((i,)y, —(iy®)4) in
(5.4) is equal to the homomorphism given by

i— (0, 0), j— U, =) if a=1,
i— 0, =), j—0, =) if a=ee.

Then (5.4) and the easy calculation show that H,(M,) is given by the second table
in (iv) of Theorem 1.5. q.e.d.

§6. The case that dim M=4 and dim H=1

In this section, we assume that M is a closed S3-manifold of dimension 4
and dimH=1.

LemmAa 6.1. If H is NS!, then every orbit is principal, and the first half
of Theorem 1.5 (iii) holds.

Proor. The first half of lemma follows immediately from Lemma 2.5.
Then, M is a trivial S3/NS'-bundle over N=M/S? by (3.1), and N is a con-
nected closed surface by (3.2). q.e.d.

In the rest of this section, we assume that H==S1,

When the fixed point set F(S3, M) is non-empty, any point x € F(S3, M) has
an invariant neighborhood which is equivariantly diffeomorphic to D* with the
S3-action given by 5, (cf. Lemma 2.5). Thus we have

F(S}, My=F, u--UF, F,=S' (1<I1<k).

Further, F(S3, M) has a closed invariant tubular neighborhood U, which is
a D3-bundle over F(S3, M), and so

62 U=U,U--UU, U=D>xS' or D3xS'/(q,2) =(—q, —2)),

where S3 acts on D3 via 7,. On the other hand, the S3-manifold M'=M —
Int U is

(6.3) M’ = M—IntU =~ (S3/S') x 2, F(S!, M")
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by [5, Lemma 4.2], where F(S!, M’) is the one of Proposition 1.4,
LemMA 6.4. Proposition 1.4 (i) holds.

Proor. M'[S3=F(S', M’)|Z, is connected since M’ is so. Because the
isotropy subgroup at x e dM’'=0U is conjugate to S!, the Z,-action is free on
OF(S!', M'). We see that F(S', M’) is a surface by (6.3). qg.e.d.

We prepare the following lemma to show (ii) of Proposition 1.4.

LEMMA 6.5. Let G be a compact Lie group, H be its closed subgroup,
and assume that gHg=' <« NH (g€ G) impliesge NH. Let X be a smooth mani-
fold with a smooth NH|H-action. For any G-equivariant diffeomorphism
f:Y>Y, Y=(G/H) X yg;uX, there is an NH|H-equivariant diffeomorphism
f': X—>X such that

flgH, x]1 =[gH, f'(x)] (9HeG/H, xeX).
PrOOF. For any x e X, we set
SIH, x]1=[f/i(®)H, f,(x)] in Y.
Since f is H-equivariant, we have
flgH, x]1 = [gfi(x)H, f,(x)]  forany geG.

If geH, the above two equalities show that f,(x)NH=gf,(x)NH . Hence
f1Y(x)Hf(x)= NH, and so f,(x) e NH by the assumption. Thus we have

flgH, x] = [gH, fi(x)H ‘- f(x)] ~ forany geG,

which shows that fis a bundle map of the bundle X - Y—G/H onto itself. There-
fore f'=f|X is the NH|/H-equivariant diffeomorphism of X onto itself, and
we see easily the desired equality. q.e.d.

Since the assumption of the above lemma holds for G=S3 and H=S", we
have the following

COROLLARY 6.6. Any S3-equivariant diffeomorphism of S2?xS'/((q, z)
=(—¢q, —2))=S82x4,S! or S2xS'=82x,,(Z,x S") onto itself can be extended
to an S3-equivariant diffeomorphism of D3 x S'/((q, z)=(—¢q, —z)) or D3 x S!
onto itself.

PROOF OF PrOPOSITION 1.4. (i) is proved in Lemma 6.4. (ii) follows im-
mediately from the above corollary, (6.2) and (6.3). g.e.d.

Now, we have Theorem 1.5 completely.
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ProoF oF THEOREM 1.5. (i), (ii) and (iv) are proved in Lemmas 5.2, 5.7,

5.9 and 5.10. (iii) and (v) follow immediately from Proposition 1.4. q.e.d.
In the last of this section, we give some examples of manifolds in Theorem 1.5.

ExamMPLE 6.7. The following are manifolds in (ii) of Theorem 1.5, which
are not product bundles:

(S3/H) x 4,S! for H=2,(n = 3), D*(4m) (m = 2) and T%*,

where Z, acts on S! by the antipodal map and on S3/H by a: gH—ga 'H for
a=j, d,, and e, respectively;

(S3/H) x 4,St for H = D*(8),
where Z; acts on S! by the rotation and on S3/H by gH—g(ee') ' H.

ExampPLE 6.8. The following are manifolds in (iv) of Theorem 1.5, where
the equation in the parentheses indicates the S3-action:

5%, P2(C), P4(R) (q-[p, x] =[qp, xD);
Py(O) (g Ip®p1=109p® qr'D;
52 x8*/(p, 1) = (=, P)) (q-Cp, ) =larq™", qrq™' D
S3 x.5182, S3 x 1P,(R),
where S! acts on S2 or P,(R) by b-[a, x]=[b"a, x];
S3 x ys1S%, S3xp5:U? (U?: the Klein bottle),
where NS! acts on S§2 or U2 by b-(a, x)=(b?"a, x), j*(a, x)=(a, —x);
S3x ys1S%, S3 X nsiPy(R), S3x .S!

where NS! acts on S? or P,(R) by b-[a, x]=[b?"a, x], j-[a, x]=[a, x], and
O* acts on S! by 0*—0*/D*(8)—D(6) = O(2).

§7. Z,-actions on surfaces

In this section, we classify Z,-surfaces which appear in (iii) and (v) of Theorem
1.5.

We consider the following Z,-surfaces:

The cylinder C=[—1, 1]x S! with the Z,-action (¢, x)—>(—1t, x).

The unit disk D= D? with the Z,-action x— —x.

The Mobius band B=[—1, 1]x S/((t, x)=(—t, —x)) with the Z,-action
[t, x]-»[—1t, x], whose boundary is 0B=1xS!=S"! with the Z,-action x— —x.
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By using these surfaces, we can construct the following Z,-surfaces:
(7.1) Let N’ be a connected compact surface such that ON'=S! x {l,...,
k}, k=0. Then we have

Z,xN' U Cx{l,.,k}, O0<k <k

(7.2) Let N’ be a connected compact surface admitting a free Z,-action such
that ON'=Z,xS'x {l,..., k} US' x{l,..., m}, k=0, m=0, (where Z, acts on
Z,xS!' by (£1,x)-»(F1,x), and on S! by x—»—x). Then for 0Zk'Zk,
0s=m,<m;+m,<m, we have

N UCx{l,.,k'} UDx{l,...m} U Bx{m;+1,..., m;+m,}.
Then, we have the following

THEOREM 7.3. Let N be a compact surface admitting a non-trivial Z,-
action such that Z, acts freely on its boundary ON and N|Z, is connected. Then
N is equivariantly diffeomorphic to a Z,-surface of (7.1) or (1.2). Any Z,-
surface N’ in (7.2) is characterized by the classification theorem [2, Th. 1.3].

Proor. If N is not connected, then we see easily that N~ Z, x N’, which is
the one of (7.1) for k'=0.

Assume that N is connected, and consider the fixed point set F(Z,, N) whose
component is a point or a circle. Each component has an invariant tubular
neighborhood D if it is a point, and C or B if it is a circle. Therefore, we have
easily the theorem by considering N'=N —Int U, where U is a closed invariant
tubular neighborhood of F(Z,, N). ' q.e.d.
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