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Let n be an integer, n>2, let ¢ be a continuous function from [0, o) to
(0, 00), and let G be the set to which g belongs if and only if g is a nondecreasing
unbounded continuous function from [0, o) to [0, o0) such that g(f) <t whenever
t>0. Let G° be that subset of G to which g belongs if and only if g is in G and
g(t)<t whenever t>0. We propose to study the differential equation

(D uM(O)+(—1)""1q(Dulg®) = 0,

for g in G. A function u from [0, o) to (— 0, o0) is called a solution of (1)
if and only if there is b>0 such that u‘" exists on (b, c0) and (1) is true when-
ever t>b. A solution u of (1) is called oscillatory if and only if the set {¢: t>0
and u(t)=0} is unbounded. Otherwise, u is called nonoscillatory. Although
the analogue of (1) without delay is known to have a positive bounded solution,
several authors have shown that if the delay is large enough, i.e., g is small enough,
then every bounded solution of (1) is oscillatory. In particular, if g is in G, if

2 g:t"" 1g(tdt = oo,
and if
®) limsup|’ (9(0)=g()~ a()ds > (n=1)!,

then G. Ladas, V. Lakshmikantham, and J. S. Papadakis [3] have shown that
every bounded solution of (1) is oscillatory. M. Naito [7] has shown that if
g isin G and

) limsupg' (s—g()™ 1 g(s)ds > (n—1)!,

t -0 g(t)
then every bounded solution of (1) is oscillatory. Note that although each of
(3) and (4) implies (2), (3) and (4) are independent. Since the results of [3]
and [7] are of the nature ““if g is small enough then every bounded solution of
(1) is oscillatory”’, the question arises: If g is large enough can we conclude
the existence of a positive bounded solution? We shall give a result which answers
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this question affirmatively, and we shall also give a comparison result. R. Driver
[1], [2] has given results, independent of the present study, which are related
in the sense that they ensure that, in some circumstances, delay differential equa-
tions with small delays have behaviors similar to the corresponding ordinary dif-
ferential equations without delay.

THEOREM 1: Suppose that g is in G° and that
(%) oM@+ (= D" 1 g(Du() = (= 1)"(t—g(0)q(1)
has a positive bounded solution. Then (1) has a positive bounded solution.

THEOREM 2: Suppose (g, h) is in G°xG° and g(t)< h(t) whenever t>0.
Suppose also that there is a positive bounded solution of (1). Then there is a
bounded positive solution of

(6) wm()+(—1)" 1g(w(h(®)) = 0.
Before proving Theorem 1, we need the following lemma.

LEMMA: Suppose ¢>0 and each of ¢ and Y is a positive continuous
function on [c, ©©). Suppose also that (1) < ¢(t) whenever t>c, and that there
is a positive bounded solution u of

) um@)+ (=D g@u@)=(-1)"¢@)
on [c, o). Then there is a positive bounded solution v of
8) v+ (= D" q(o(t) = (= D)"Y(D)

on [c, o0) such that v(t) <u(t) whenever t>c.

Proofr: Since u>0 on [¢, ), (7) says that u(™ is eventually one-signed.
Since u(™ is eventually one-signed, u(*~! is eventually one-signed. Con-
tinuing this, we see that there is d > ¢ such that none of u, u’,..., u("~1) has a zero
on [d, o0). With arguments similar to those of [4, Theorem 2], we see that
u®ykt <0 on [d, o) if k=0,...,n—1. Thus u®>0 on [d, o0) if k is
even and u®® <0 on [d, ) if k is odd. Since we now have (—1)u®(d)>0
for k=0,...,n—1, arguments similar to those of [5, Lemma] show that
(= DFu®()>0if c<t<d, k=0,...,n—1. Thus, u®>0o0n [c, o) if k is even
and u®) <0 on [c, o) if k is odd. Arguments similar to those of [6, Lemma
2] now give

©) —u@= m_—lz),gf(s—t)"-zq(s)u(s)ds+a—;‘-2—)—,§f°(s—t)"-2¢(s)ds

and
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(10) u(@) > = 1)'8 (s—p)n1 q(s)u(s)ds+( 1)'5 (s—=t)" 1¢p(s)ds
if t>c. From (9) and (10) it follows that

ayn —-u'@ = (s=0)"2q(s)u(s)ds+ —0D)"2Y(s)ds

(n 2)vg (n 12)'5

and

(1) w02 525y I),g (s=)"'q(s)u(s)ds +— (s =) 1y (s)ds

=)
if t>c. Now one can define a sequence {z,}, each value of which is a positive
continuous function on [¢, o), according to z;=u,

Zk+l(t) (n 1)'8 (S t)n_ Q(S)Zk(s)ds"‘( 1),8 (S t)" ll//(S)dS

if k>1 and t>c. A straightforward induction argument shows that if k is a
positive integer then z,,,<z,<u on [c, 00). This and (11) say that {z;}%-,
is equicontinuous. Thus a subsequence converges locally uniformly, and, by
monoticity of the sequence, {z,}%-; converges locally uniformly. Call the
limit v. Clearly v(f)<u(t) whenever t>¢, and the Dominated Convergence
Theorem says

(13) v(t)—( 1),S (s=pr1 q(s)u(s)ds+( 1),S (5= YY(s)ds

if t>c. Differentiating (13) yields (8) on [¢, o0), and the proof is complete.

Note that (9), (10), and (13), and the facts that v<u and Yy <¢ on [c, o),
ensure that v’ <0 on [¢, o), and —v'< —u’ on [¢, c0). This will be used in the
proof of Theorem 1.

Proor orF THEOREM 1: Let w, be a bounded positive solution of (5).
Since w, >0, w; <0, w} >0, we know that w,(oo)—hm w,(t) and wl(oo)-hm wi (1)
both exist. Also, w)(00)=0, for otherwise wl(oo) and w’(c0) cannot both exist.
Find ¢ >0 such that |w)(s)] <1 if s>g(c). Let b>c, and let 4 and u be continuous
nonnegative functions on [¢, co0) such that A(¢)+ u(f)=1 if t>¢, such that A(r)=1
and u(t)=0 if t>b, and such that u(t)>0 if c<t<b. If t>c then

wi(g(D)—wi(D] < t—g()

since |w'(s)|<1 whenever s>g(c). Thus the lemma says there is a bounded
positive solution w, on [¢, o) of
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WO+ (=D 1 q(twy(1) = (= D"u() (t—g())q(1)
+(=1D"ADq(®) (w1(g(D) —w1(1))

with w,<w,; on [¢c, ), and —w) < —w) on [c¢, ). Extend w, to [g(c), o)
by requiring w,(f)=w,(c) if g(c)<t<c. Now our lemma says there is a bounded
positive solution w; on [¢, o) of

wi(@)+ (= 1) 1g(Ows(1) = (—1)"u() (t—g())q(?)
+(=D"A(®)q(1) (wx(g(2)) — w,(1))

with w;<w, and —w3< —w) on [¢, o). Extend wj to [g(c), ©) by requiring
wi(H)=ws(c) if g(c)<t<c. Continuing, we see that there is a sequence {w;}5r-,
of positive nonincreasing functions such that

(14) Wepr S W < wy

on [c, o) if k>1,

(15) —Wit1 S —WE< —w

on [c, ) if k>1, w(f)=w(c) if g(c)<t<c and k>1, and

(16) Wi (D +(= D" 1 g(Owies 1 (1) = (= 1)"u(®) (t— g(D)q(?)
+(=1D"A1q(®) (wi(g()) — wi(D))

on [c, o0) if k>1. By (14), {w,}¥-, converges pointwise, and (15) says the
sequence is equicontinuous, so {w;}j-,; has a locally uniform limit. Call this
limit u. Now (16) says {w (™}, converges locally uniformly, so u( exists
on (c, 00), wi" —»u™ locally uniformly, and

amn uM(0)+ (= 1" 1q(Du(®) = (—1)"u®) (t—9g())q(?)
+ (= 1)"A()q() (u(g(1)) —u(D)

if t>c. From the hypotheses on A and p, (17) gives (1) on [b, ), so u is a
solution of (1), and clearly u is bounded, so it remains to show u is positive.

Clearly u is nonnegative and nondecreasing, so if d>c and u(d)=0 then
u(t)=0 whenever t>d. Suppose c<d<b and u(d)=0. Now u=0 on [d, ),
so u™(d)=0, and (17) is violated since u(d)(d—g(d))q(d)>0. Suppose u>0
on [c, b), u has a zero, and d is the first such zero, i.e., d>b, u>0 on [c, d), and
u(d)=0. Now u™(d)=0 and, since g(d)<d, q(d)u(g(d)>0; contradicting (1).
Thus u>0 on [¢, o), and the proof is complete.
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Note that, in the Proof of Theorem 1, the introduction of A and u, and
the requirement that g be in the subset G° of G, ensured that u ‘‘starts off”’ positive,
and the assumption that g is in G° ensured that, after (17) reduces to (1), u cannot
have a zero.

ProoF oF THEOREM 2: Let u be a bounded positive solution of (1).
Find ¢>0 such that u(™ exists on (¢, o), such that u>0 on [g(c), ), and
such that (—1)*u® >0 on [¢, o) for k=1,...,n—1. Let b>c be such that
g(b)=c. Let @ be given by i(f)=u(b) if t<b and #(t)=u(t) if t>b. Let v
=u—#. Now v>0 on [g(b), b), and v=0 on [b, o0). Also,

aM@)+ (=D 1 q(Di(g(D))=(—1)"q(Dv(g(®))
if t>b. Thus

(18) 10 = oL =0 ta@ag(s)ds

oy, =" @(g()ds
if t>b. Since @ is nonincreasing, #(g(t))>d#(h(f)) whenever t>b. Thus (18)
yields

(19) O e G (OLICOE

o= 1) ] S (s—D"'q(s)v(g(s))ds

if t>b. Iteration as before yields a bounded nonnegative solution w of

0) w(t) = X (s— )" 1q(s)w(h(s))ds

(=
o), GO (s)ds,
W)+ (= 1)1 g(Ow(h(e) = (= 1),a(olg()

on [b, ). The positivity of v on [g(b), b), and the fact that h is in G°, ensures
as before that w has no zeros. If d>b and g(d)> b, then (20) yields (6) whenever
t>d, so the proof is complete.
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