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1.

It has been an open question whether there exists an infinite-dimensional

Lie algebra satisfying the maximal condition for subalgebras. Recently in the

paper [3], we have given an affirmative answer to this question by showing that

the Lie algebra ^introduced in [1, p. 177] is such a Lie algebra.

On the other hand, in the paper [2] R. K. Amayo has constructed a counta-

ble infinity of pair-wise non-isomorphic Lie algebras satisfying the maximal condi-

tion for subalgebras. The reasoning is however much complicated.

Thus in this paper we shall present simple and brief proofs of the results in

[2] by reasoning along the same lines as in [3].

The author wishes to express his thanks to Professor S. Togo for his sugges-

tion of this problem.

The fundamental tool which we employ is the lemma in [3], We state it

without proof in the following

LEMMA. Let S be a subset of N satisfying the condition: If s, t e S and

s^t9 s + teS. Then there exists a finite number of different elements s{, s2,...,
sr of S such that

(i) sί is the smallest element of S,

(ii) S={51}U{s2 + n51 |n = 0, 1, 2,.. .}U ••• U {sr+nsL\n = Q, 1, 2,...}.

Let f be a field of characteristic 0. We let λ : Z x Z->ϊ be a map such that

(*) i*j=*W9j)*Q

and let A(λ) be the infinite-dimensional (not necessarily associative) algebra over
f with basis {w(i)|*eZ} and bilinear product defined by

w(0°w(j) = λ(i, j)w(ί +j), i, jeZ.

For any non-negative integer n, let A(λ, n) be a subalgebra of A(λ) generated by
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For any element x of A(λ), we denote by min(x) and max(x) re-
spectively the integer k and m such that

••*••= .Σ «XO, αfcαm ^ 0.

THEOREM 1. A(λ, 1) satisfies the maximal condition for subalgebras.

PROOF. Let H be any subalgebra of A(λ, 1) and S the set of all max(x)
for xeH. If s, teS and s^ί, then s = max(x) and t = m&x(y) for x, yeH and
therefore by (*) s + ί = max(χoj;)eS. Hence by Lemma there exists a finite

number of different elements sί9 s2,. 5

 sr of S satisfying the conditions (i), (ii)
in its statement. For z = l, 2,..., r, take an element zt of /f such that max(zf)
= sf. We then assert that H= <zl5..., zr>.

Suppose on the contrary that H^ <z1,..., zr>. Take an x in H\<z1,...,
zr>. We shall find elements xt in H\<z1,..., zr> for z'^0 as follows. Put
x0 = x. Assume that xf is already found in H\<zί,..., zr>. If msix(xi) = sί,
then there exists a jSel such that maxίXf — j8z1)<s1. Since xi — βzί eH9 by the
minimality of sl we have xf — βz1=Q9 which is a contradiction. Therefore we
have maxίx^^Sj and

) = sμ(i) + nLsl9 μ(i) * 1.

By (*) there exists a yf e f such that

Now we put x / + 1 =Xi — 7/(zμ(ί)oΠίz1). Then x / + 1 is in #\<zl5..., zr>. Thus we
have found a sequence of different elements x, of H\<z l5..., zr> such that

max(x0) > max(xι) > max(x2) > ••• .

This is a contradiction.
Therefore we have H= <z1,..., zr> as asserted. Every subalgebra of

A(λ9 1) is thus finitely generated. Hence A(λ9 1) satisfies the maximal condition
for subalgebras.

3.

As a consequence of Theorem 1 we have the following theorem which is
Theorem B in [2].

THEOREM 2. A(λ9 ή) satisfies the maximal condition for subalgebras.

PROOF. If n=0, then every subalgebra H of A(λ, 0) is either H n A(λ9 1)
or H n A(λ9 l)H-Ix for some xeH. By Theorem 1 H is therefore finitely gener-
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ated. If n^ 1, then A(λ, n) is a subalgebra of A(λ, 1). Hence all A(λ, n) satisfy
the maximal condition for subalgebras.

Theorem C in [2] is a part of the following

COROLLARY. Over any field of characteristic 0 there exists a countable
infinity of pair-wise non-isomorphic infinite-dimensional algebras, Lie algebras,
Jordan algebras, associative algebras satisfying the maximal condition for
subalgebras.

PROOF. If λ(i,j) = ί—j, A(λ, n) is a Lie algebra. Since the dimension of
A(λ, n)/(A(λ, n)°A(λ, n)) is precisely n + l, A(λ, n)^A(λ, m) for n^m. Hence
the assertion holds for algebras and Lie algebras. By putting λ(i,j) = (i—j)2

and λ(i, j ) = l, we have the statement for Jordan and associative algebras respec-
tively.

Finally we show the following theorem which is Theorem A in [2].

THEOREM 3. A(λ) satisfies the maximal condition for subalgebras.

PROOF. Let H be any subalgebra of A(λ) and let M = H ί ] A ( λ , 0). By
Theorem 2 M is finitely generated. Put S = { — min(x)|min(x)<0, xeH}. If
s, t e S and s ̂  t, then s = — min (x) and t = — min (y) for x, y e H and therefore by
(*) 5-f t— — min(x°y)εS. Hence there exists a finite number of different ele-
ments s l s s2,..., sr of S satisfying the condition (i), (ii) in Lemma. For ί = 1, 2,...,
r, we take an element zi of H such that — min (zf) = st. We then have H = < z t,...,
zr, M >. This can be proved in the same way as in Theorem 1. So its proof will
be omitted. Thus we can conclude that A(λ) satisfies the maximal condition for
subalgebras.
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