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0. Introduction and summary

The theory of fractional factorial designs, first introduced by Finney [12],
has found increasing use in agricultural, biological, industrial, and other various

experimentations. One reason for the usefulness of fractional designs in prefer-
ence to complete factorials is that they involve a lesser number of assemblies or

treatment combinations, since higher order effects can be in general assumed negli-

gible. In the beginning, the theory was developed for orthogonal fractional
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designs in which the estimates of various effects of interest are all υncorrelated.
However, as is well known, they are available only for special values of N as-
semblies. Moreover they are in general uneconomic in that they require a large
value of N in comparison with the number of unknown effects. As generaliza-
tions of orthogonal fractional designs, Chakravarti [5] first introduced the concept
of balanced fractional designs. In these designs the covariance matrix of the
estimates of effects has desirable features second to orthogonal fractional designs,
although the estimates are not uncorrelated. Of course, balanced fractional
designs are flexible in the number of N assemblies with the fact that more experi-
mental situations can be handled. Such economic designs are very attractive
and often practical.

After important work of Bose and Srivastava [2, 3], Srivastava and/or
Chopra have developed balanced fractional 2m factorial (briefly, 2m-BFF) designs
of resolution V (cf. [7-10, 28, 34, 35, 37]). It is known from their results that
these designs have close relationships with balanced arrays (B-arrays) of strength
4, which make it possible to interpret the problems into those in combinatorial
fields. For some work in these fields, see Chakravarti [6], Srivastava [29],
Srivastava and Chopra [36], Rafter and Seiden [18]. The above investigations,
however, have been restricted to the effects up to two-factor interactions only.
Since three factor or higher order interactions can not always be neglected, it
is desirable to study fractional designs of higher resolution.

Recently, Yamamoto, Shirakura and Kuwada [41] have established a general
connection between a 2"'-BFF design of resolution 2 / 4 - 1 and a B-array of strength
21. In the above paper, the authors also have discussed some properties of a
triangular type multidimensional partially balanced (TMDPB) association
scheme, defined among the effects up to /-factor interactions, which are useful
for clarifying the algebraic structures of 2m-BFF designs of resolution 2/-f 1.
The concept of MDPB association schemes was first introduced by Bose and
Srivastava [3] in relation to the analysis of fractional designs. Using the decom-
position of the TMDPB association algebra 21 into its two-sided ideals, Yamamoto,
Shirakura and Kuwada [42] have obtained an explicit expression for the charac-
teristic polynomial of the information matrix Mτ of a 2m-BFF design Tof resolu-
tion 21+ 1. (This result includes that of a 2m-BFF design of resolution V (1 = 2)
given by Srivastava and Chopra [35].) It is used for comparing 2m-BFF designs
of higher odd resolution by popular criteria such as minimizing the trace, determi-
nant or largest root of Mf 1. Indeed, Shirakura [23] has presented optimal
2m-BFF designs of resolution VII (/ = 3) with respect to the trace criterion for each
6^m^8 and for the reasonable number of N assemblies. On the other hand,
the study of balanced designs of even resolution is much more rare. For work
on such designs, see Shirakura [24], Srivastava and Anderson [30, 33]. Particu-
larly, by use of the properties of the TMDPB association algebra 9ί, Shirakura
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[24] has obtained a general result that some B-arrays of strength 21 yield 2'"-BFF
designs of resolution 21.

This paper will make further deep investigations on 2m-BFF designs of odd
or even resolution on the basis of the above mentioned results. 2W-BFF designs
derived from B-arrays of strength 21 will be characterized. This paper thus con-
sists of three parts. In Part T, the algebraic structures of 2m-BFF designs are dis-
cussed. In Section 1, fractional 2m factorial designs of resolution 21 or 2/+1 are
treated. In Section 2, 2m-BFF designs of resolution 21 or 2/+1 are defined. A
relation between a 2W-BFF design of resolution 2/+ 1 and a B-array of strength 2/,
m constraints and index set {μ0, μ,,..., μ2J is also given. Section 3 gives defini-
tions of an / + ! sets TMDPB association scheme and its relationship algebra
9T. Furthermore it is observed that S2ί called the /+ 1 sets TMDPB association
algebra is decomposed into the direct sum of / + ! two-sided ideals 91 ̂  08 = 0, 1,
..., /). Section 4 presents the irreducible representation Kβ of the information
matrix Mτ for a B-array T of strength 21 with respect to each ideal %lβ. For
later use, explicit expressions for Kβ are given for each case 1 = 2 and 3. As wil l
be seen, many of the results in this part have been already established by the
authors [41, 42]. For clarification of this paper, however, we shall recall them.

In Part II, optimal 29-BFF designs of resolution VII with respect to the trace
and determinant criteria are presented for any given N assemblies with 130^N
^150. For this purpose, Section 5 gives explicit expressions for the trace and
determinant of M~Γ

{ for a 2m-BFF design T of resolution 2 / + 1 . These can be
obtained from the characteristic polynomial of MΊ , due to [42]. As a by-product,
the existence conditions for 2"'-BFF designs of resolution 2/4-1 or B-arrays of
strength 21 are also given in terms of the m and μ, (/ = 0, 1, . . . ,2/) . Sections
6 and 7 deal with constructions of B-arrays of strength t. Simple arrays in
Section 7 have been introduced by Shirakura [22], as special cases of B-arrays.
In Section 8, the required designs are given with the covariance matrices of the
estimates and other useful informations.

In Part III, 2W-BFF designs of even resolution derived from various B-arrays
of strength 21 are investigated. Section 9 deals with 2m-BFF designs of resolution
21 obtained from B-arrays of strength 21 with index μf = 0, which are called St

type 2W-BFF designs. For the case / = 3, Section 10 presents optimal 53 type
2m-BFF designs with respect to the generalized trace (GT) criterion, due to [24],
for m = 6, 7, and for every value of N within a certain practical range. Note that
the optimal S3 type 28-BFF designs have been already presented by [24]. As in
Section 8, the covariance matrices of the estimates and other useful informations
are also given for such designs. In Section 11, alias structures of /-factor inter-
actions in Sj type 2"'-BFF designs and their estimability derived from these struc-
tures are discussed. Section 12 shows that there exists a 2W-BFF design of
resolution IV with the minimum number of assemblies N = 2m. It can be obtained
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from a B-array of strength 4 with μ2 = 0. Section 13 shows that some 2m-BFF
designs of resolution 21 can be also obtained from B-arrays of strength 21 with

κι-β,ι-β — §^ where κl

β~
β>l~β (β = 0, 1,...,/) are the last diagonal elements of

Kβ. Such designs are called S£βl9 j92,.. , ft.) tyPe 2m-BFF designs if ic^ '"^1

= κiβ-β2,ι-β2 = ... = κiβ-βr,ι-βr = Q ̂  Ki-*,i~* ^Q for α^ft. For given N as-

semblies, there are a large number of possible S£βί9...9 βr) type 2m-BFF designs.
A criterion for comparing these designs is also given which is called the partial
generalized trace (PGT) criterion. In Section 14, for the case / = 3, optimal
S3(β!,..., βr) type 2m-BFF designs with respect to the PGT criterion are presented
for m = 6, 7, 8, and for desirable values of N.

Part I. 2m-BFF designs and their algebraic structures

1. Fractional 2m factorial designs

Consider a factorial experiment with m factors /ι,/2,. »/m» eacrι at two

levels (i. e., a 2m factorial design). An assembly (or treatment combination) will

be represented by OΊ,./2,. ,./m) where jt9 the level of the factor ft, equals 0 or 1.
There are 2m assemblies in all. Consider the observations y(jί9 j2>-">Jm) cor"

responding to assemblies ( j ί 9 72,...,7m) anci tlιeir expectations η(Jι,J29 ' >Jm)
= Exp[Xι/1,y2,...,7m)]. It is well known (cf. [41]) that the various factorial
effects can be expressed as linear combinations of all expectations η ( j ί 9 72,. - > jm)>
i.e.,

(1.1) θ(βl, ε2,..., em) = -L- . .Σ . dίlιl*;:χk η(ji9 y 2 f . . . , ym)
Jl,J2, ,Jm

for εr = 0, 1; r = 1, 2,..., m,

where

Here d0(0) = (ί1(0) = ί/1(l) = l and ί/0(l)=— 1. In particular the general mean
is represented by 0(0, 0,..., 0) and the main effect of the factor ftί is represented by
Θ(εi9 ε2,...,βm), where είt = l and εr = 0 for rΦt^ The two-factor interaction of
the factors ftl and ft2 is represented by Θ(εl9 ε2,..., εm), where είl = εf2 = l and
εr = 0 for r^tί9 t2. In general the fc-factor interaction of the factors /fl,/ί2,...,/ffc

is represented by Θ(ε1? ε2,..., εw), where είl=εί2 = = είk = l and the remaining εr

are all zero.
Let
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r =
y(0,...,0, 1)

Lκ(i,..., i, DJ

and θ =

0(0,...,0,0)
0(0,. ..,0, 1)

.0(1,...,!, 1)

be respectively the 2m x 1 vectors of all observations and effects in the binary
order. From (1.1), θ can be expressed in the following form:

(1.2)

where

Here

D(m) = D <g> D i

D =

D (m times Kronecker products of D).

Γ</0(0) </ι(0)Ί

«/ι(0 J

Note that D(m) is an Hadamard matrix of order 2m. Thus D(m)D'(m) = 2W 72m, where
Ip denotes usually the identity matrix of order p. From (1.2), we thus have

(1.3)

or

(1.4) Σ
ε1,ε2,...,ε

For simplicity we shall write θψ = 0(0, 0,..., 0) and Θtίt2...tk — θ(εί9 ε2,..., εm) if
e f j —Bt2 = " =εtk

= 1 anc^ εr = 0 for r^ ί l 9 ί2» » ^ Then (1.4) reduces to the follow-
ing:

(1.5) η(jί9J2,...JJ = Σ djtί. djtkθt,.,k

where mk denotes the class of all subsets of {1, 2,..., m} with cardinality fe and
dj = 1 or — 1 according as 7 = 1 or 0.

The formula (1.3), (1.4) or (1.5) is used as a statistical linear model in a 2m

factorial design. For any fixed integer / (l^/gm/2), we shall assume a general
situation where (/ + l)-factor and higher order interactions are negligible (i.e.,
0ίlί2...fk = 0 for /c^/ + l). (Throughout this paper, note that we are considering
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such a situation.) The number of unknown effects, therefore, is v / = l + ί T

+ ( ™ )"*" '" +( 7 ) and the vector of these effects is written as

(1.6) θ' = (0Φ; Θ19 02,..., Om; 012, 0 I 3,..., 0,,,-,,,,; ; 012...,,..., 0M-l+ι...J

= (^;{β ί,};{θrIι2}; ; W 1 r r . r,})
For later use, we shall provide the following vectors :

*Ό = ({0,,}; {<W; ; {0,,,,.,,-J), (ixO^-i)),

(1.7) *', =(0,:0{>), (Ixv,-!),

i.e., #' = (#1 : 02)
 = (0</»: Θ'Q: θ'2\ From (1.5), we can obtain the following model

for the expectation of the observation corresponding to an assembly OΊ,72, ,

7m):

0.8) lUlJ2,..;Jj

Let T be a suitable set of N assemblies (called a fraction) in which any given
assembly may not occur or occur once or more times. Then Tcan be considered

as a (0, 1) matrix of size mxN whose α-th column (/ια\/2α)> >./ίiια))' denotes
the α-th assembly for α = 1 , 2, . . . , N. Let yτ be the N x 1 observation vector whose

α-th element is y(/ια), /2α)> »7'ίnα)) and further consider the N observations
in yτ as independent random variables with common variance σ2 (>0). From

(1.8) yτ can be expressed as

Exp [ jr] = ET0,
(1.9)

where Eτ is the N x vf design matrix of T whose elements of the first column cor-
responding to the general mean θφ are all 1 , and whose elements of α-th rows

corresponding to an effects 0,,,,...,,, are d^d .>{*)••• d ,-<*).
l 2 k J t i J t 2 *k

The concept of estimable functions of θ will be stated in the following defini-
tions :

DEFINITION 1.1. A pxl vector ψ is called a parametric function of θ

if each element ofψ is a linear function of unknown effects 0ίlίr..fk (k^l) with
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known constant coefficients, in other words, ifψ is such that

(1.10) ψ = C0,

where C is a p x v, matrix with known constant elements.

DEFINITION 1.2. A parametric function ψ of 0 is called an estimable func-

tion (or, simply, estimable) if each element of ψ has an unbiased linear esti-
mate under the model (1.9), in other words, if there exists a px N matrix A of

constant elements such that

Exp [Ayτ~\ = ψ,

identically in Θ. Also Ayτ is called an unbiased estimate ofψ.

DEFINITION 1.3. For any given fraction T and estimable function ψ,
Λ

its unbiased estimate ψ is called the best linear unbiased estimate (BLUE)

°fψ tf the U'th element of ψ has a minimum variance in the class of all unbiased
linear estimates of the u-th element of ψ for each α = l , 2,..., p.

For the observation vector yτ and design matrix Eτ, consider the following

equations for a v, x 1 vector 0*:

(1.11) MT0* = E'TyT,

where MT = E'TET called the information matrix. These are so called the normal

equations.

THEOREM 1.1 (Gauss-Markov Theorem). For any estimable function ψ
Λ

= C0, its BLUE ψ is unique and given by

ψ = CO*,

where θ* is a solution of the normal equations (1.11).

Of course, the BLUE ψ depends on a fraction T. By matrix theory, there

exists always a solution 0* of the normal equations (1.11) and it is in general not
unique for a given T. However Theorem 1.1 shows that for any two solutions

θ\ and θ\ of the normal equations (1.11), ψ = C0^ = C0% holds.
As a means of classifying fractions, Box and Hunter [4] introduced the

term "resolution." First we shall define a fractional 2m factorial (briefly,
2m-FF) design of odd resolution.

DEFINITION 1.4. A fraction T is called a 2m-FF design of resolution 2/+1
if θ itself is estimable, i.e., if ψ = CΘ, where C = / v /, is an estimable function of

θ.
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From the model (1.9) and Definition 1.2, it is easy to see that Tis a 2m-FF
design of resolution 2/+1 if and only if its information matrix is nonsingular.
From Theorem 1.1, furthermore, it follows that for a 2"I-FF design T of resolution

2/+ 1, the BLUE θ of θ is given by

(1.12) θ= VτE'τyτ,

^where Vτ = Mγl. Note that θ is a unique solution of (1.11). In addition it can be
^

easily shown that its covariance matrix Var [0] is given by

(1.13) Var[0] = Vτσ
2.

From the nonsingularity of Mτ and the model (1.9), we can easily prove the
following

THEOREM 1.2. Let The a 2m-FF design of resolution 21+1. Then the num-
ber of distinct assemblies in Tmust be at least v/.

Next we shall define a 2m-FF design of even resolution.

DEFINITION 1.5. A fraction T is called a 2m-FF design of resolution 21
if 6Q given in (1.7) is estimable.

In a 2m-FF design of resolution 2/, in general, the general mean θφ and
/-factor interactions themselves are not estimable, but some linear functions
of these effects are estimable. These functions determine alias structures of
θφ and Θtίt2...tl. In 2m-FF designs of even resolution, it is very important to
investigate such alias structures (see Sections 11-13). It is well known (see, e.g.,
Scheίfe [21]) that Γis a 2m-FF design of resolution 21 if and only if there exists
a matrix X of size pxN such that X£τ = [0pxl, /p, Opxq]9 where p = v / _ 1 — 1

and q = ( *? j. The symbol Op*q denotes the p x q matrix whose elements are all

0. In this case, by considering C — XET in Theorem 1.1, we obtain the BLUE
A

ΘQ Of 00,

00 = XETΘ*.

For general fractional experiments (i.e., fractional sm or sί x s 2 x ••• xsm

factorial designs), the concept of the term "resolution 21 or 2/ +1" can be similarly
defined but we shall not consider it here. As compared with designs of odd resolu-
tion, in general, it is very difficult to obtain those of even resolution. For earlier
work on designs of resolution IV, see, e.g., Anderson and Srivastava [1], Margolin
[16, 17], Shirakura [24], Srivastava and Anderson [30, 33], Webb [39].
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2. 2m-BFF designs and B-arrays of strength 21

First consider a 2m-FF design T of resolution 21 + 1 and the co variance matrix

Var [0] for the design T.

DEFINITION 2.1. T is called a balanced fractional 2m factorial (2m-BFF)
>s

design of resolution 21+ 1 if the covariance matrix Var [0] is invariant under any

permutation of m factors.

REMARK. It has been observed in [41] that Definition 2.1 is equivalent to
one of the following three statements : (i) For a design T(P) obtained from T by

letting Γ(P) = PT, where P is any permutation matrix of order ra, Mγ1=
-A. -A. ^

holds, (ii) for any two estimates 0fl...fM and β^...^ in the BLUE 0,

Cov[0fl...,M, 0,,..̂ ] = Cov[3τ(ίl...fu), δτ(fV.rv)],

where τ is any element of the permutation group |τ; τ = ( ,~^ τ(2) ' *τT ))( '

and (iii) Cov [0ίr..ίu, 0fl...f J is a function of 11,1; -and K^,,.., Uθ{f.Ί, * f'*}.l

(or \ { t l 9 . . . 9 t u } ( ] { t ' l 9 . . . 9 f ϋ } \ ) 9 and Var [0fl...ίu] is only of M, where the symbols

|S| and S1QS2 denote respectively the cardinality of the set S and the symmetric
difference of the sets Sί and S2, i.e., 51©52 = S1 U S2-S1 n S2.

Now we define a balanced array ("partially balanced" array, in the termi-

nology of Chakravarti [5]) of strength t (with 2 symbols), which has a close rela-
tionship with a balanced design considered in this paper.

DEFINITION 2.2. A (0, 1) matrix T of size m x N is called a balanced array

(B-array) of strength ί, size N, m constraints and index set {μ0, μl9...,μt} (or

indices μi (i = 0, 1,..., ί)) tffor every t-rowed submatrix T* of Γ, every vector with
weight (or number of nonzero elements) j occurs exactly μj times (y = 0, 1,..., t)

as a column of T*.

For the B-array defined above, it is easily shown that N= Σy=o( )/f/ Thus

the term "size" will be omitted if not necessary.

Let ε(ίi •••*„; *i •••*'„) be the element of an information matrix MT = ETE'T
in the cell corresponding to (ίr ίM; t\~ t'v) for θtί...tu and θt>...t>v in θ. Then the

following two theorems have been established by Yamamoto, Shirakura and
Kuwada[41]:

THEOREM 2.1. Let The a 2m-FF design of resolution 21 + 1. Then a neces-
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sary and sufficient condition for Tto be balanced is that the information matrix
Mτ has at most 2/+1 distinct elements y t (/ = 0, 1,..., 21) such that

7i ^(ίi f,,; >'rO '/ l { f ι , »> OΘOΊ,..., f i l l = '•

THEOREM 2.2. A necessary and sufficient condition for Mτ to be expressible
by such elements γt is that T is a B-array of strength 2/, m constraints and index
set {μ0, μ1,...,μ2J. A connection between the elements γt of Mr and the indices
μj of a B-array T is given by

(2 2) ^
for all ϊ = 0, 1,..., 21.

Throughout this paper we assume ( ? ) = 0 if and only if b>a^Q or fc<0.

Next we shall make the definition of a 2m-BFF design of even resolution.

DEFINITION 2.3. A 2m-FF design T of resolution 21 is said to be balanced
Λ*

if the covariance matrix Var[00]/0r Tis invariant under any permutation of m
factors.

In Part III, a 2m-BFF design of even resolution will be discussed in detail.
A 2m-FF design of resolution 2/4-1 (or 21) is said to be orthogonal if the

covariance matrix Var [θ~\ (or Var [00]) is diagonal in this design. A B-array of
strength f, size N9 m constraints and index set {μ0, μ1?..., μj reduces to an or-
thogonal array with parameters (N, m, 2, t) of index μ when μ0 = μ1 = =μf

( = μ, say) (see Raghavarao [19]). It is well known (see, e.g., [41]) that an or-
thogonal array with parameters (AT, m, 2, 21) (or parameters (N, m, 2, 21 — 1))
of index μ is equivalent to an orthogonal fractional 2m factorial design of resolu-
tion 2/+1 (or 21). However orthogonal arrays with parameters (JV, m, 2, t)
of index μ are available only for the special numbers N = 2rμ and the possibility
of the existence of such arrays is in general very small. In such a sense, the class
of balanced designs arises naturally as the next wide class to be looked into.

3. TMDPB association schemes and TMDPB association algebras

As a generalization of partially balanced association schemes, multidimen-
sional partially balanced association schemes have been first introduced by Bose
and Srivastava [3]. Subsequently the theory has been developed in Srivastava
and Anderson [31, 32], Yamamoto, Shirakura and Kuwada [41], Yamamoto
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and Tamari [43].

Consider p mutually disjoint non-null finite sets of objects St, S2,...,Sp

with IS^n,., each. Suppose that a relation of association is defined for each
ordered pair of objects xia e St and xjb e SJ9 and that x^ is called the α-th associate
of xίa for some α belonging to a set of association indices Π(i'J). As in the case
of partially balanced association schemes, every object is called the zeroth associate
of itself and QφΠ(i l) is assumed. The following definition is due to [41]:

DEFINITION 3.1. The relation of association defined among the sets Sl9

S2,..., Sp is called a p sets multidimensional partially balanced (MDPB) associa-
tion scheme if the following conditions are satisfied:

( i ) The relation of association is symmetrical, i.e., if xjb is the u-th as-
sociate of xia9 then the xia is also the a-th associate of xjb.

(ii) With respect to any xiaεSh the objects of SJ9 distinct from xία, can
be divided into n^*^ distinct classes and the number of objects in the ct-th
associate class S/α; xία) is n^' 7*. The numbers n ( / > j ) and ntf ^ are inde-
pendent of the particular object xia chosen out of St.

(in) Let Sh Sj and Sk be any three sets where they are not necessarily
distinct. Consider the sets Sk(β; xia) and Sk(y9 xjb) where xiaeSι and xjΊjeSj
are the a-th associates. Then the number of objects common to Sk(β'9 xίa) and
Sfc(y; xjb) is p(i,j, α; fc, /?, y) which depends on the pair (x/α, xjb) and Sk only
through ί, j, α, /c, β and y.

Note that the condition (i) implies n(i>j) = nu>1) and p(i, j9 α; /c, β, y) =
p ( j , j, α; /c, y, β), and that the number n(j>^ — 1 can be consistently defined for all i.

Now let S0, S1? S2,..., and Sl be / + ! sets of effects {θφ}9 {0,J, {0ίlί2},...,

and {θflfr..fl}, the cardinalities of these sets being 1, (™\ (^), ., and (̂ \

respectively. Suppose a relation of association is defined among these sets
in a way such that θtl...tu e Su and 0 .̂..,^ 6 Sv are the α-th associates if

(3.1) lί'iv, U Π {ίi,..., t'v}\ = min(M, ϋ)-α,

where min(w, v) denotes the minimum of the integers u and v. Then the follow-
ing theorem has been established by Yamamoto, Shirakura and Kuwada [41]:

THEOREM 3.1. Among the J + l sets of effects {θφ}9 {θtί}9 {0fl,J,..., {θfl...fl},
the relation of association defined by (3.1) is an l+l sets MDPB association
scheme with parameters

{0, 1,..., min(w, v)} if u ^ v9

{1, 2,..., u} if u = Ό,
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{ min(w, t;)H-l if u φ v,

u if u = v,

n(u,v)=ί w V m-u \
* \ min(ί/, I?) — α J\ v-min(u, t/) + α / '

D(U v o r w β v)«
mlll(^) γmin(ιι,!;)-αV ι;-min(ι/f/ > ( κ , f > , α , w , P , y > - . fcLo ^ fc Λ min(t/, w)-j3-

/ t -minO, ι;) + α V m-w-t; + min(w, i?)— α \
\ min(ι?, w) — γ — k )\ w — min(w, w) + β — min(t;, w) + γ + A: / "

The association thus defined is called an ί+1 sets triangular type MDPB
(TMDPB) association scheme. As seen from Yamamoto, Fujii and Hamada
[40], it can be regarded as a generalization of triangular series of association
schemes. To investigate the algebraic structure of an /+ 1 sets TMDPB associa-

tion scheme, first consider the (^)x(^) matrices A(

a

u v)= 11 :̂"̂ . α IK (« = 0,

1,..., min(w, v); w, ι? = 0, 1,..., /), called the local association matrices. Each
matrix A(

Λ

u*υ) is defined as follows:

, , Γ 1 if 0f'...f' is the α-th associate of θfl...f ,
«' ", . .

0 otherwise.

From (3.1) and Theorem 3.1, we have

(3.3) Σ
α=0

min(w,t?)

£
α=0

where GpXq denotes the /? x f̂ matrix whose elements are all 1 and, particularly,
jp = GpXί. Next consider the ordered association matrices D(

Λ

u>v) of size v z x v z

obtained in a way such that every matrix has (/+1)2 submatrices M(w s) of size

(w) x(T) ^n *e w"^ row ^ocίc anί^ s"^ c°lumn block for w, 5 = 0, 1,..., /,

and that all but M(u v) = A(

Λ

u v) are zero matrices, i.e., M(w s) = O,m. ,m. for
\\v)*\s)

(w, S)T^(M, t?). Here OpXq denotes the pxq matrix whose elements are all 0.
Then, from (3.3) we have
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(3.4)

I I m i n ( u , y )

Σ Σ Σ
u=0 y=0 α=0

α=0

where <5W4=1 or 0 according as w = s or not. The association matrices B(

Λ

u>v)

which represent the relation of association of an / + 1 sets TMDPB association
scheme can be defined as follows :

if
(3.5)

D(

Λ

u>v) if u = v.

The algebra 9I = {jB<">y) |a = 0, 1,..., min(ιι, ϋ); O^M^t;^/} generated by

symmetric matrices B(

Λ

u>v) is called an /+! sets TMDPB association algebra.
The following theorem is due to [41] :

THEOREM 3.2. The /-hi sets TMDPB association algebra 91 is a semi-
simple, completely reducible matrix algebra. It can be also represented by the

linear closure [D^»l')|α = 0, l,...,min(ιι, f>); u, t? = 0, 1,..., /] of all (ί+l)(I + 2)
(2/ + 3)/6 ordered association matrices D(

Λ

u v).

Now consider the ^ x ^ matrices Aγ o}*, (]5 = 0, 1,..., min(ιι, r); 11,

ί? = 0, 1,..., /), which are linearly linked with the association matrices A(

Λ

u>v) by
the following (see [27], [42]):

(3.6) A<a

tt v) = Σ zfev)A(f>rt* for 0 ̂  α ̂  u
M=0

(3.7) 4"^)s = Σ ^fί.β)4" p) for 0 ̂  j8
α=0

(3.8) "̂•")* = (̂ " u)*)' for M > w,

where
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(u>v)

_

m_u x
(T. ιn\(3. W)

Here ^ = ^ - g ^ ! j • Then the matrices A(

β

u v)* have the following pro-

perties :

(3.11)

(3.12) ^».">* = c^'"'^"'"^^!)"'^ for M ^ t),

where

Let D(βu v)* be the matrices obtained by replacing the only nonzero submatrix

A(

β

u o) of D{

β

tt v} by A^u 'y ) t t. From (3.6)-(3.1 1), we have

(3.13) D(

a

u υ) = Σ zfc^DΫ^* for 0 g α ̂  u ^ ι;,

(3.14) D(

β

tt v)* = Σ zβιί υ}D(au'v) f°r 0 ̂  β ̂  u ̂  v,
α=0

, ,
(3.15) Σ Σ^"'u)* =

-° ' ° I diag [/„,.„, 0PfcXί,J if 1 g fc ̂  /,

where p f c=Σi=ό(ι-i), and

(3. 16)

From Theorem 3.2. and (3.13)-(3.16), the following theorem can be established

(cf. [42]):

THEOREM 3.3.
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(i) The /-M sets TMDPB association algebra 91 is represented by the
linear closure of all (/-f l)(/ + 2)(2/ + 3)/6 matrices D(

β">v}*, i.e.,

81 = [D<«.">*|j8 = 0, 1,..., min(tι, i;); 11, ϋ = 0, 1, .., /] .

(ii) Let 910 be the matrix algebra generated by (/ — β-hl)2 matrices D(

β

u v)*

for each β = 0, 1,..., /, i.e.,

then 9(0 is the minimal two-sided ideal 0/91 and

(iii) 77? e algebra 91 is decomposed into the direct sum of / + ! ic/eα/s

(iv) £αc/t Weα/ 51̂  //as D(

β

u v)* (u, υ = β, j 8 + l , .., /) as ίϊs fcas/s anrf it is
isomorphic to the complete (I — β+ 1) x ( / — β+ 1) matrix algebra with multi-

,. .. ,
pltcιtyφβ =

This theorem implies that for any matrix B ( = ΣJ=oΣ{ΞoΣi=o4 f < / ^i M i ϋ ) *»
say) belonging to 9ί, there exists a vέ x v/ orthogonal matrix P such that

(3.17) F5P = diag[/l0;/lJI^1;..s^.,JJ,
0 I Φ^

where /i^ are the (l — β+ l ) x ( l — β+ 1) matrix with (/, 7) elements λfcJ. The
matrix X^ is called the irreducible representation of B with respect to each ideal

910, for which we shall use the following notation:

W:B - > Λ .

4. The irreducible representations of the information matrices for B-ar-
rays of strength 21

Now consider a B-array T of strength 2/, m constraints and index set {μ0»

A ^ I J J J^zJ Further consider the information matrix Mτ for the β-array Tas a
design. In this section we shall obtain the irreducible representations of MΓ

with respect to ideals 91 .̂ They will occur in later discussions frequently.

From Theorem 2.1 and (3.1), it is easy to see that if two effects 0ίr..fl4 and

θt^...t v are the α-th associates, then
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where ω=|M —0|H-2α, yt are given in (2.1) and ε(fι •••*„; *Ί •••*'„) is the element
of Mτ corresponding to θtl...tu and θ^...^. From the definition of association

matrices D(

Λ

U>V\ therefore, Mτ can be expressed as

I I min(u,t;)
\r χ-< -̂» r̂-t τ\\u v )
MT = 2- 2- 1- ΊωD*

u=0 v=0 α=0

Hence it follows from Theorem 3.2 that the information matrix Mτ belongs to the
/+! sets TMDPB association algebra 31. From (3.13) Mτ can be also expressed

as

(4.1)

Here

(4.2)

I l-β l-β
i,β+j)»

β + i

α=0
for

o ̂  β ̂  /,

where z^'y) are given in (3.9). From Theorem 3.3, therefore, we can obtain

the (l-β+l)x(l-β+ΐ) symmetric matrices Kβ ()5 = 0, 1,..., /) such that for the
B-array Γ,

where

(4.3)

KP,

κϊ t-'

In particular the matrices Kβ for the cases 1 = 2, 3 are important. Therefore
explicit expressions of Kβ for 1 — 2, 3 are presented in the following example:

EXAMPLE 4.1.
(i) The case 1 = 2.

(3x3)

(Sym.)
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(2x2)

Ύo-y2

L (Sym.)

where

yί

73 = μ4-μ0~2μ3-

(ii) The case 1 = 3.

(4x4)

Jo

( .*,_ 1

-̂

_ 1 \ 1/2

(Sym.)

(a)"2-

K, =
(3x3)

yϋ-y2

(Sym.)
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(72-74)

v 1 / 2 ,

K =2

_ (Sym.) 70 + (in-7)y2 -(2m-II)y4 + (/w-5)y 6
(2x2)

where

7o =

7ι ==^6-

72 =

73 = /*6-/*0-30/4-//2), 74 = μ6+μ0-2(μ5 +/*!)-- 0/

7s = /*6-/*o-

Part II. 2"'-BFF designs of odd resolution and their optimalizes

5. Various properties derived from irreducible representations of the in-

formation matrices of 2m-BFF designs of resolution 21+ 1

For a B-array Tof strength 2/, m constraints and index set {μ0, μ1 ?..., μ2ι},

we have observed in Section 2 that Tis a 2m-BFF design of resolution 2/+ 1 if and

only if its information matrix MΓ is nonsingular. We now proceed to consider

the characteristic polynomial of Mτ of a 2m-BFF design of resolution 2/4- 1 which

will make it possible to investigate the balanced designs of higher resolution.

Since 7V / e 91, if follows that

From Theorem 3.3, we have the following theorem (cf. [42]):

THEOREM 5.1. The characteristic polynomial Ψ(λ) of the information

matrix Mτ of a 2m BFF design T of resolution 2/+ 1 is given by
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(5.1) Ψ(λ) = det(MΓ-λ/Vl) = Π {det(X,-λ//_,+ 1)}*/',
β = 0

where det( • ) stands for the determinant of a matrix.

From this theorem, we can easily establish the following:

THEOREM 5.2. Let The the design of Theorem 5.1. Then

(5.2) tτ(Vτ) = tr(M^) = Σ <

(5.3) det(!/Γ) = detίMj1) = Π
β=o

where t r ( . ) stands for the trace of a matrix.

From (1.13) we may note that for any 2m-FF design T of resolution 21+ 1,
tr(KT) is proportional to the average of the variances of all normalized linear
functions of the effects θtίtr..tk(k^l). On the other hand, det(Fr) is propor-
tional to the volume of the ellipsoid of concentration (see Cramer [11]). That
is, it corresponds to the volume of the region within which the true parametric
point may lie with a certain probability. In such a sense, a design T is said to
be optimal with respect to the trace or determinant criterion if it minimizes
t r ( V Y ) or det(K7), respectively. It is well known that in the class of all 2m-FF
designs of resolution 2/4- 1 with N assemblies, an orthogonal design is optimal with
respect to the above two criteria. For studies on optimal designs using various
criteria, see, e.g., Hedayat, Raktoe and Federer [13], Kiefer [14, 15], Raktoe and

Federer [20], Shirakura [25], Srivastava and Anderson [30, 33].
Let T be the matrix obtained from Tby interchanging symbols 0 and 1. T

is called the complement of T. It is easy to see that if T is a B-array of strength

21 with indices μh then Γis that of strength 21 with indices βi = μ2i-ι (ί = 0, !>•••»
21). Furthermore if T is a 2m-BFF design of resolution 2/+1, then Tis also so.
Therefore T is called the complementary balanced design of T.

THEOREM 5.3. For a 2m-BFF design T of resolution 2/+1 and its com-
plementary design Γ,

(5.4)
= det(KΓ).

PROOF. This follows immediately from Theorem 3.2 in Shirakura and
Kuwada [26].

As will be seen later, this theorem is useful for finding optimal 2'"-BFF
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designs of resolution VII with respect to the trace and determinant criteria. It
may be remarked that (5.4) holds for more general fractional designs (see
Srivastava, Raktoe and Pesotan [38]).

From the definition of balanced designs, it follows that T is a 2WI-BFF design
of resolution 2/ f l if and only if KΓe2I. Thus it is clear that the covariance

* / / _ μ 3 \
matrix Var[0] = σ2 Vτ has at most ί ^ J distinct elements. Also we have

2ί/,:Var[£] >σ2Kj*.

Using the inverse matrices Kj1, Shirakura and Kuwada [27] have obtained ex-
plicit expressions for all the distinct elements of Vτ. That is, let κβ

ίtj be (i,j)
elements of Kβ

l and let 7<« »> be the element of Vτ corresponding to θtl...tu

and θt'ίt..t'o which are the α-th associates. Then we have

THEOREM 5.4. For a 2m-BFF design of resolution 2/4-1,

(5.5) rίu °} = Σrt-β.v-βzfav) for O ^ α ^ i i ^ i ; ^ / ,

where zβ

(ίtV) are given in (3.10).

Following a usual procedure in the calculation of Var[0], tr(Var[0]) and

det(Var[0]), we have to calculate the inverse of a large V j X V j (v|=l+ί ?*J

H—+ (T)) matriχ Mτ. However the expressions of (5.2), (5.3) and (5.5)

imply that we have only to calculate the inverse of at most (/+1) x (/+1) matrix,
i.e., K0. Note that the sizes of matrices Kβ do not depend on the number of m
factors. For more explicit expressions of V(

Λ

n>v) for the cases / = 2, 3, see [27],
In the following discussion we shall investigate some combinatorial proper-

ties which are useful for obtaining 2m-BFF designs of resolution 2/4-1. Further
deep investigations will be discussed in Sections 6, 7 and 8.

The matrices Kβ are obviously dependent on the constraints m and indices
/^(i = 0, 1,...,2/) of a B-array T. The information matrix Mτ is in general
positive semidefinite. From (5.1), we can establish the following theorems:

THEOREM 5.5. Let T be a B-array of strength 2/, m constraints and index

set {μ0, μlv.., μ2ι} Then a necessary condition for the existence of T is that
every matrix Kβ (/? = 0, 1,..., /) zs positive semidefinite.

THEOREM 5.6. Consider the B-array T of Theorem 5.5. Then a necessary
and sufficient condition for T to be a 2m-BFF design of resolution 2/4-1 is that
every matrix Kβ is positive definite.

From (2.1), (2.2), (3.9) and (4.2), after some calculations, we can express the
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elements of Kβ in terms of the m and μ, (ί=0, 1,..., 21). For example

(5.6) X, = /c,°.° = 22ίμ,,

(5.7a) κW = 2"-*(μl+l+μl-1+2μύ,

(5.7b) K?J} = >φ? = 22<-2(>n-2/+2)i/2(μ/+1-μ ί_1),

(5.7c) »φ}=22'-2{(m

(5.8a) K?^ = 22<-4{μ,+2+μ(_2+4(μί.M+μί_1)

(5.8b) K?^ = φg = 2

(5.8c) K/^i = K?^ = 2

(5.8d) /c,UJ = 22'-*{(m

(5.8e) KM = K/^2 = 2

(5.8f)

From (5.6)-(5.8), we thus have as immediate corollaries of Theorem 5.5 and
5.6 the following:

COROLLARY 5.7. A set of necessary conditions for the existence of the
B-array T of Theorem 5.5 is that the following inequalities hold:

(5.9) μ, ^ 0,

(5.10a) (m-2/+2)(^+1+^_!) ^ 2(m-2l)μι,

(S.lOb) (m-2/ + 2)μ/+1μ,_1+(μ/+1μί + μ,μί_1) ^ (m-20μ?,

(S.lla) (m-2/ + 4)(μ/+2+μ(_2) + 4(μ/+1+μ(_1)^2(m-2/)μ, for 1^2,

,_1) for 1^2.

COROLLARY 5.8. A set of necessary conditions for the B-array of Theorem
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5.5 to be a 2m-BFF design of resolution 2/4- 1 is that the inequalities (5.9)-(5.11)
hold with strict inequality in each case.

From the rest of elements of Kβ9 we can obtain results similar to Corollaries
5.7 and 5.8. However they are very complicated and will make this paper unduly
lengthy.

6. Existence conditions for B-arrays of strength t

For a (0, 1) matrix T of size mxN, let τ(ί l 5 / 2 > » h* T), (Irgfc^m), denote
the number of times the vector v occurs as a column of T where v contains 1
exactly at the /rth, /2-th,..., /fc-th positions and 0 elsewhere. In particular τ(φ\ T)
denotes the number of times the vector of weight 0 occurs as a column of T.

Whenever no emphasis on T is needed, we shall simply write τm(il9 ϊ'2> > **)
= τ(/1, ϊ'2,. » ikl T). The following two theorems are due to Srivastava [29]:

THEOREM 6.1. A necessary and sufficient condition for the existence of a
B-array T of strength t,m = t+l constraints and index set {μθ9 μl9...9 μt} is
that there exists an integer d such that

l < 2 r < ί + l <? = 0

(6.1) - -

d^φί2= min {Σ(-l)%}.
0£2r£t 9=0

Also if there exists an integer d which satisfies (6.1), then

τ'+1('Ί. i2. » **)= Σ(-l)*+%-ι+(-l)*d for l ^ f c ^
q=l

(6.2)

THEOREM 6.2. A necessary and sufficient condition for the existence of a
B-array T of strength t, m = t + 2 constraints and index set {μ0, μ l s..., μt} is
that there exist integers d and dι (/=!, 2,..., ί + 2) such that

(a) ψu^di^ψ^,

d^ιl/2l= max {0, 2r±\-\Yqμ2r-ι-q
2£2r£t+2 q = 0

(6 3) /w + max (Σ <U},
V > < eSOi α=0

= min
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2r+l
+ min ( Σ dj}9

U l ..... i 2 r + l ] e g ϊ M r + ι

 α = 0

where Wll denotes the collection of all subsets of {1, 2,..., ί f 2} w/ίΛ cardinality
k. Also if there exist integers d and dt which satisfy (6.3), then

τ'+ 2(/,,/ 2,..., /,)= Σ:(-i)«+ 1«Λ-ι-, + (-i)4+1 Σ4.+(-i)*d
4=0 α = l

(6.4) /or l ^ / c ^ f + 2,

τ*+2(φ) = d.

DEFINITION 6.1. For two (0, 1) matrices T± and T2 of size mxN, 7\ is

said to be isomorphic to T2 if there exist the permutation matrices Ql and Q2

of size mxm and NxN, respectively, such that QιT1 = T2Q2 holds.

From (6.2) and (6.4), we can easily prove the following two corollaries:

COROLLARY 6.3. The number of nonisomorphic B-arrays of strength ί,
m = ί+l constraints and index set {μ0, μ l v.., μt] is equal to that of integers d
satisfying (6.1).

COROLLARY 6.4. The number of nonisomorphic B-arrays of strength t,
m = t + 2 constraints and index set {μ0, μ1?..., μj is equal to that of sets {d, dί9

d2,..., dt+2} such that d and d{ satisfy (6.3a, b).

Tn Theorem 6.2, without loss of generality, we can assume d1^d2^-"'^dt+2.
Thus we have the following

COROLLARY 6.5. A necessary and sufficient condition for the existence of
a B-array T of strength t, m = t + 2 constraints and index set {μ0, μ l5..., μj is
that there exist integers d', ά\ (i = l,..., t + 2) such that

(6.5) d'^ψ'21= max {0, ̂  (-Vqqμ2r~ι-q+ Σ d'Λ ,
q=l i=l

^'22= mn
0^2r^ί+l q=2

As a generalization of Theorem 6.2 and 6.3, we now prove the following theo-

rem:

THEOREM 6.6. Let 9Dΐ£ be the collection of all subsets of {1, 2,..., f + 3}
with cardinality k and let 50 °̂ be that of {1, 2,..., * + 3}-{i}, ( l^ igf + 3).
Then a necessary and sufficient condition for the existence of a B-array T of
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strength t, w = ί + 3 constraints and index set {μ0, μ l5...,μ f} is that there exist
integers d, dt and ditj (ί, ;' = 1, 2,..., f + 3; i< j) such that

(a) ^u ^ dίtj ^ ψ129

(6.6) (b) WlZdtZWl for i = l,2,..., f + 3,

(c) ψ3ί^d^ ψ32,

where

<ft«i- max {0,2Σ1

2^2r^ί+2 9=0

(6.7)

= min {Σ(-

ψ3ί = max

(6.8)

= mn ( ( - ! ) « -f + (#2r+1), min
β=0

k k_„, _ v r •'en i •> Ί( ί ) _^_ __ r -̂(
max \ 2* " i , / α j » ^i == mm \ y.

- max Σ </ι..ι
« ί=l

= min {Σ^i.- Σ dimιlt}.
(ί, ..... i

i/ ί/iere exisί integers d, dt and dt>J satisfying (6.6a, b, c), then

τ'+'OΊ, /2,.. .,/,) = "i1 (-!)«( * WL, + (-!)* Σ </ι..ι,,.o V 2 y β<Γ1

(6.9) k

+ (-l) f c + 1Σrfi. + (
α=l

= d.

PROOF. Let T^ and T<' ^ (i, j = l, 2,..., ί + 3; i< j) be (ί + 2)xN and
(ί+l)xJV matrices obtained from Tby omitting the Mh row and the ί-th and
j-th rows, respectively. Let d, and dtj be the numbers of column vectors with
weight 0 of T<'> and T '̂ ,̂ respectively. If T is a B-array of strength ί, then
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and T(ί>jΊ are also of strength t. Thus from Theorem 6.1 and 6.2 it follows
that for the B-array T(ί), the integers ditj and dt must satisfy (6.3a) and (6.3b)
(or (6.6a) and (6.6b)). For such integers d^ and ditj, therefore, a necessary and
sufficient condition for the existence of a B-array T with indicated indices is

equivalent to that there exist nonnegative integers τ(iί9 i2,.. > ik) sucn that tne

following equations hold :

+ τ(i3) + d = μ0,

in general, for all permissible /c,

where d = τt+3(φ) and τ(ίl5 ι2» -••> )̂ = τί+30ι> ^j j lfc) From these equations,
it can be easily proved by induction on k that (6.9) hold. The condition (6. 6c)

is equivalent to that d^O and τ ( ί ί 9 i2,..., ik) = ® f°r a^ distinct integers il9 i2,. .,
ik with 1 ̂  ίk g ί + 3 and 1 ̂  /c ̂  ί + 3. This completes the proof.

From (6.9), we have

COROLLARY 6.7. The number of nonίsomorphic B-arrays of strength ί,
m = ί + 3 constraints and index set {μ0, μ l v..,μ f} is e^fwfl/ ίo ί/iαί of sets {{ditj}9

{di}9 d} such that (6.6a, b, c) hold.

For a (0, 1) matrix T of size mxN, let z£ (O^g^ra) be the number of

columns in T which are of weight q. Then the following theorem has been given

in [29]:

THEOREM 6.8. Let T be a B-array of strength t, m constraints and index
set {μ0, μlv.., μf}. Then the nonnegative integers zj must satisfy the follow-
ing equations:

DEFINITION 6.2. ^4 B-array with m constraints is said to be "trim" if
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DEFINITION 6.3. A 2m-BFF design of resolution 21+1 is said to be trim
if it is a trim B-array of strength 21 and m constraints.

7. Simple arrays with parameters (m; 209 219...9 λm)

Let Ω(k; m), (0^/c^m), be the (0,1) matrix of size m x ( *? ) whose columns\ K /
are all distinct vectors with weight k.

DEFINITION 7.1. A matrix obtained by juxtaposing each Ω(k; m) λk

(fc = 0, 1,..., m) times, i.e.,

[Ω(0; m): : Ω(0; m): Ω(l; m): : Ω(l; m): : Ω(m; m): : Ω(m; m)]
Aί Γ i A ^

is called a simple array (S-array). The numbers (m; A0, λl9...9 λm) are called
the parameters of the S-array.

Each Ω(k'9 m), of course, is an S-array with λk = l. Also it can be easily

checked that it is a B-array of strength t with indices ( *?~ . J (ϊ = 0, 1,..., t).

Thus we have

THEOREM 7.1. An S-array with parameters (m; λ0, λί9..., λm) is a B-array

of strength t, m constraints and indices ^i=ZkI=o( */!Z Mfc (i = ̂ » !»•-•» O

Now we shall investigate some conditions for B-arrays to be S-arrays. From
the definition of a B-array, we can easily prove the following:

THEOREM 7.2. A B-array of strength t, m = t constraints and index set
{μ0, μl9...9 μt} is an S-array with parameters (t; λ0 = μ0, λί=μ1,..., λt = μt).

We now prove

THEOREM 7.3. A B-array of strength t, w = ί + l constraints and index
set {μ0, /*!,..., μt} is an S-array with parameters (ί+1; λ0, λί9...9 λt+1), where
λ0 = τt+1(φ) and λk = τt+l (il9 /2,..., ik) given in (6.2).

PROOF. The proof follows from the fact that each τ ί + 1(ϊ l 5 z'2,.. , **) in (6.2)
depends on distinct integers il9 i2,. .9 ik °nly through k.

COROLLARY 7.4. Let T be a B-array of strength t, m constraints and

index set {μ0, μ l 9...,μ f} and let Γ(ί) (i = l, 2,..., m) be matrices obtained from
Tby omitting i-th rows. If every T(ί) is equivalent to an S-array with parame-

ters (m-l ^λl,...,^.,) such that μ j = Σ , 1 ^ m

k hold for j = 0,
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1,..., ί, then T is also an S-array. Its parameters are given by

λ0 = τ(φι T),

λk = Σ(-l)k+^;-ι+(-l)% far I g / e g m .
4=1

PROOF. From assumption, T is of strength m — 1, m constraints and index
set (Λ/o, AΊ,..., Λ4_ t } . This completes the proof, because of Theorem 7.3.

THEOREM 7.5. Let The a B-array of strength t, m = t + 2 constraints and in-
dex set {μ0, μί9..., μt}. If

zί+2 = o for some k with 1 ̂  fc <Ξ ί + 1,

where z[+2 is the number of columns of T which are of weight k, then T is an S-
array with parameters λ0 = τt+2(φ\ λk = Q and λr = τt+2(il9 i2,...9 ir), (l^r

), given in (6.4).

PROOF. It is clear that z£+2=0 implies τ ί+2(ί l f ΐ2,..., **) = 0 for all distinct
elements iί9 i2,..., ik of {!» 2,..., ί + 2}. From (6.4), therefore, the value of
ΣS=ι^i« depends on k only. This shows that dl=d2 = ~ = dt+2 Again from
(6.4), this implies that τ ί+2(/1, i2,..., ϊr) depend on i l 9 i2,..., ir only through r.
This completes the proof.

COROLLARY 7.6. Consider the B-array T of Theorem 7.5 with ί = 6, m = 8
and μ3 = l. Then T is an S-array with λ3 + λs = l and Λ4 = 0.

PROOF. Without loss of generality, we assume that T is a trim B-array.
Therefore, after some calculation of (6.10), we have

zf + zf = 56(-
(7.1)

where Po==j"o + Aί6» Pι=^ι+A ί5 and P2= =A ί2 + Aί4 From (7.1), it is clear that
0^4 — 3ρ2 + 2pί— Po^l holds. Now assume that 4 — 3p2 + 2p t— p0 = l holds.
Then z| = 35 and z| + z|=0. From Theorem 7.5, T is an S-array, so that z|
= ( 4 Γ*. This implies a contradiction. Hence we have 4 — 3p2 + 2p1H-p0 = 0,

that is, z| + z| = 56 and z| = 0. Again from Theorem 7.5, it follows that T is

an S-array with zf + zf =f ^ J(A3 + /15) = 56 and A4 = 0. This completes the proof.

THEOREM 7.7. A B-array T of strength t, m (^ί + 2) constraints and index
set {μ0, μί9...9 μt} with μr = 0(0^r^ί) is an S-array with parameters (m; λθ9

A!,..., A r _! , 0,..., 0, λ m + Γ _ f + j , ' . . , λw) wΛίcΛ sαίis/>
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(7.2)

for i = 0, 1,..., ί-r-1

Note that for two cases μ0=0 and μr=0, the parameters of the S-array take

the form of (m; 0,..., 0, Λm_ ί + 1,..., λm) and (m; A0> , Λ -ι» 0,..., 0), respectively.
First we shall prove the following two lemmas :

LEMMA 7.8. Consider the B-array T of Theorem 7.7. Then the weight q
of a column of T must satisfy q<r or q>m + r — t.

PROOF. Assume that there exists a column vector of T with weight q satisfy-
ing r^q^m + r — t. Then we can obtain a f-rowed submatrix Tf of Tsuch that
a column vector with weight r occurs in T*. This implies μrτ^0, a contradiction.
This completes the proof.

In view of Lemma 7.8, the B-array Tof Theorem 7.7 can be expressed without
loss of generality as

where T(q) is a submatrix of T whose columns are only of weight q.

LEMMA 7.9. Consider the B-array T of Theorem 7.7. Then the sub-
matrices [Γ(0): •••: T(r_υ] and [Γ(m+r_ί+1): •••: T(m)] are also B-arrays of
strength t and m constraints with index set {μ0,..., μ r_ι, 0,..., 0} and {0,...,0,
μr+1,...,μ,}, respectively.

PROOF. The number of times any column vector of weight q (Q^q^r—1)
occurs in any ί-rowed submatrix of T does not depend on T(w+r_ί+1),..., T(w).
Thus [T(0): •••: T(r-ί)~\ is a B-array of strength ί, m constraints and index set
{μ0, μ lv.., μ r _ l 5 0,..., 0}. Similarly it can be shown that [T (m+Γ_ f+1): •••: T(m)]
is a B-array with the indicated index set.

PROOF OF THEOREM 7.7. We prove by induction that every T(q} (<?=0,
1,..., r— 1) is an S-array. From Lemma 7.9, the index set of the B-array [T(0): ••• :
T(r _ ! )] is given by {μ0, . . . , μr _ x , 0, . . . , 0} . Furthermore it is found that the number
of times a vector with weight r — 1 occurs as a column of this array depends on
T(r_1} only. Let v be the column vector of T(r-l} which contains 1 exactly at
fj-th,..., zr-ι th positions and 0 elsewhere. Then in a ί-rowed submatrix of
T^-i) which includes ij-th,..., iV-i-th rows, the column vector corresponding to

v must occur exactly τ(ίlv.., ir-ι°9 7(r-i)) times. From the definition of a B-
array, it follows that τ(iί9..., i r-i; T(r.1))=μr_l9 that is, it does not depend on the
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ί^-th,..., ϊ r_ι-th positions of v. This shows that r(r_1} is an S-array with λr^ί

= μ r_1. Assume that [Γo +1): Tu+2y '"'• T(r-ιΐ\ is an S-array. Then, since it
is a B-array of strength t from Theorem 7.1, it is clear that [Γ(0): •••: T^ )] is also

a B-array of strength t and its index set takes the form of {μ'0,..., μ}, 0,..., 0}.
From an argument similar to the above, it follows that T(j} is an S-array with
λj = μrj. This proves that [T(0): •••: T(r_1}] is an S-array. In the same way, it
can be shown that the B-array [T(w+r_ ί+1): •••: Γ(m)] is also an S-array. Clearly

the relation (7.2) follows from Theorem 7.1. This completes the proof of Theo-

rem 7.7.

Finally we shall prove the following

THEOREM 7.10. A necessary and sufficient condition for a B-array T of
strength ί, m constraints and index set {μ0, μί9..., μt} to be an S-array is that

there exist intergers dt+i, dί+2,..., dm such that for each s = t9 ί+1,,.., m— 1,

ds+1 ^ ψ<{\ = max {0, ̂ (- l)*μ },
1^2r^s+l 4=0 *

(7.3)

ds+ί ^<A(ι*2 = min { Σ (
0£2r^s q=0

where

/4=>/c for fc = o, !,...,*,

(7.4) μ*0

+1 =ds+ί,

μsk+l= Σ(-l)k+qμs

q-ι+(-l)kds+ί for k = 1, 2,..., s + 1.
q=i

If there exist integers dl satisfying (7.3), then the parameters of the S-array

are given by (m; A0 = ^o> Λ<ι=μT> > ^m = Mm).

PROOF. Let TJ be a j-rowed submatrix of T. If T is an S-array, then for

each s = t, ί+1,..., m — 1, Ts+1 is also an S-array and a B-array of strength s.

Denote its parameters and index set by (j + 1; μS*"1, μϊ1"1,..., μSi) and {μs

0,
μs

1,...,μ*}, respectively. Particularly μί = μfe for fc = 0, 1,..., t. From Theorems

6.1 and 7.3, it is clear that a connection between the parameters μf+1 and the
indices μf is given by (7.4). This implies that there exists an integer ds+i satisfy-

ing (7.3) for each s = t, ί+1,..., m-1. Conversely let dt+1, dί+2,..., dm be
integers which satisfy (7.3). Then from Theorems 6.1 and 7.3, we can construct

S-arrays Tί+1, Tf+2,,.., Tm in sequence. Let Γ=Γm, then T is clearly a B-
array of strength t and m constraints with the given index set.

As an immediate corollary to the above theorem, we have
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COROLLARY 7.11. The number of nonisomorphic S-arrays which are
equivalent to a B-array of strength t, m constraints and index set {μ0, μ l9...,
μf}, is equal to that of sets {dί+1, dt+2,...9 dm] satisfying (7.3).

In Theorem 7.10, note that there may be B-arrays of strength t and m con-
straints with the same index set which are nonsimple, even if there exist integers
dl satisfying (7.3). However it may be seen from [7-10, 23, 34, 37] and Section
8 that the possibility of the existence of such B-arrays is very small within a certain
practical range of N for f = 4, 6. In such a sense, Theorem 7.10 is very useful
for constructing 2m-BFF designs of resolution V or VII.

8. Optimal 29-BFF designs of resolution VII with 130 ̂  N^ 150

Now we shall consider 29-BFF designs of resolution VII with N assemblies
satisfying v, (=130)^AΓgl50. Two criteria, the trace and determinant criteria,
will be used for comparing these designs. As mentioned in Section 5, the two
criteria are based on the amounts of (5.2) and (5.3), respectively.

First we proceed to consider trim B-arrays (or trim designs) T* (see Defini-
tions 6.2 and 6.3) of strength ί = 6, m = 9 constraints, size N and index set {μ0,

μι» »μ2/} To avoid repetition, suppose that such trim B-arrays T* are con-
sidered throughout this section. Further suppose that simply zq = z% for # = 1,
2,..., 8. Then it follows from Theorem 6.8 that for a trim B-array T*,

(a) 28z1 + 7z2 + z3 = 84μ0,

(b) 28z1+21z2 + 9z3 + 2z4 = 252μ1?

(c) 7z2 + 9z3 + 6z4 + 2z5 = 252μ2,

(8.1) (d) z3 + 2z4 + 2z5 + z6 = 84μ3,

(e) 2z4 + 6z5 + 9z6 + 7z 7 = 252μ4,

(f) 2z5 + 9z6 + 21z7 + 28z8 = 252μ5,

(g) z6 + 7z7+28z8 = 84μ6,

As in Section 7, define Po = μ0 + μ6> Pι=^ι+^5 and ^2=^2 + ̂ 4- From (8.1),
after some calculations, we obtain

THEOREM 8.1. For a trim B-array T*9 the following hold:

(a) yi = -16μ3 + 15/?2-12p1+7p0 ^ 0,

(b) >'2
(8.2)
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(c) y3 = 28(-7//3 + 6p2-3p1+po) ^ 0,

(d) y4 = 14(10μ3-6p2 + 3Pl-p0) ̂  0,

where yi = zί + z8, .y2 =

THEOREM 8.2. For a trim B-array T*,

(a) N ^ 42μ3,

( b ) Λ ^ -

(8.3)
(c) N^9

(d) p^yμ3.

PROOF. It follows from (8.2a, b, c) that ρ0 + 6ρί^(2l-9β)ρ2 + (12β
-26)μ3 holds for β^6/5. Since N = pΌ + 6p1 + 15p2 + 20μ3, we have N^9(4
-β)p2 + 6(2β-l)μ3 for β^6/5. The inequalities (8.3a, b) can be obtained by
taking β = 4 and β = 6/5, respectively. From (8.2b, c), also p04-15p2^3p1

4- 19μ3. Similarly we have (8.3c). The inequality (8.3d) can be easily obtained
from (8.2a, b, c).

THEOREM 8.3. For a trim B-array Γ*, μ3^4 implies A/^168.

PROOF. This follows immediately from (8.3a).

THEOREM 8.4. Let T* be a trim 29-BFF design of resolution VII. Then
μ 3^l and /?2>6/5μ3 hold.

PROOF. This follows immediately from (5.9), (5.10a) and Corollary 5.8.

Now we are interested in the designs with N^ 150. In view of Theorem 8.3
and 8.4, we can restrict only to B-array s with 1 gμ3^3. In the following discus-
sions, we shall make further investigations on trim B-arrays (or trim designs)
for each case of μ3 = l, 2, 3. In each case T< f ) and z(

fc° (ί = l, 2,. ..,9; k = 0,
1,..., 8) denote a B-array obtained from T* by omitting ί-th row and the number
of columns of weight k in T(ί), respectively.

(a) The case μ3 = l.

THEOREM 8.5. Let T* be a trim 2g-BFF design of resolution VII with
μ3 = l and N^150, then 5;>p2Ξ>2, 12^p^l and 6ρ2-3p1 + p0 = 10 (i.e.,
j;4 = 0) hold,
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PROOF. The first two inequalities follow from Theorems 8.2 and 8.4.
Clearly T( ί ) is of strength 6 and 8 constraints with μ3 = l. From Corollary
7.6, therefore, T(ί) is also an S-array with a parameter Λ,4

ί} = 0 for each i = l,
2,..., 9. Since λ(

k

l) is the number of times Ω(k; 8) occurs as submatrices of T(ί),
it is found that z4 = z5 =0. This completes the proof.

THEOREM 8.6. Consider the B-array T* of Theorem 8.5. Then T* is an
S-array with (λ0 = λ4 = λ5=λ6 = λ9 = Q, ^3 = 1) or (A0 = A3 = ̂ 4 = /15=A9 = 0, λ6 = l).

PROOF. From Theorem 8.5, J4 = 0 holds. Hence it follows from (8.2c, d)
that z3 + z6 = 84 holds. Again consider a B-array T(ί). By Corollary 7.6, it is
shown that T(ί) is an S-array with λ(

4° = 0 and λ(

3

i} + λ(

5° = I for each i = l,

2,,.., 9. Since λ(l) are nonnegative integers, λψ = l or 0 according as Λ(

5

ί)=0

or 1. If λ(3° = l and 4° = 0 for some *'» then we shall show that λψ = l and
λ(

5

J) = 0 for all j=l9 2,..., 9. It is easy to see that z4 = 0 and 4° = 1 impty
^3 = ̂ 3ί) = 56. Now suppose there exists an integer j such that A3

7 )=0 and

^^ = 1. Then z5 = 0 and ^} = 1 imply z6 ̂  zί^ = 56. Thus z3 + z6^112
must hold. It contradicts z3 + z6 = 84. This shows that if Λ,3° = l and λ^=Q,
then z3 = 84 and z6 = 0 hold. As in Section 7, therefore, Γ* can be expressed
without loss of generality as

Γ* = [Γ(1): T(2): Γ(3): Γ(7): T(8)] .

It is clear that the number of times a column vector of weight 3 occurs in any
6-rowed submatrix of Γ* depends on Γ(3) only. This implies that Γ(3) itself must
be an S-array with A3 = l. Since it is also a B-array of strength 6, the submatrix
[Γ(1): T(2): Γ(7): Γ(8)] must be of strength 6. Its index set takes the form of
{μ'o, μ'1? μ'2, μ3=0, μ4, //'5, μ'6}. From Theorem 7.7, it follows that this sub-
matrix is an S-array. Hence T* is an S-array with λ0 = λ4 = λ5 = λ6 = λ9 = 0, λ3 = 1 .
In the same way, we can show that T* is an S-array with A0 = A 3 =A 4 = A 5 = A 9 = 0,
λ6 = 1 in the case when /ί(

3° = 0 and A(

5° = 1 .

(b) Thecaseμ3 = 2.

THEOREM 8.7. Let T* be a trim 29-BFF design of resolution VII with

μ3 = 2and JV^150. Then 5^p2^3 and S^p^l hold.

PROOF. This follows from Theorems 8.2 and 8.4.

THEOREM 8.8. There does not exist any trim B-array T* with μ3 = 2,

PROOF. In this case p^6 and p^3 imply N>150 and y2= ~4(14-f-5p0)
<0, respectively. Thus the cases (i) pι=5 and (ii) Pi=4 are considered. In
the case (i), (8.2a, b) reduce to
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yι = 7p0-17 £ 0, y2 = 4(16-5Po) ̂  0.

This shows that p0 = 3 must hold. For a trim B-array T* with p2 = 5, pί = 5 and
Po = 3, consider Γ^> and its trim B-array Γ<''>* for ί = 1, 2,..., 9. Then the index

set of TW* takes the form of {μ#\ μ l5..., μ5, μ^}, where 0^μ(

0

f) + μ(

6

ί} ( = p(

0

0, say)
^3. From Theorem 6.8,

-2) £ 0, z(

2'> + z(

6'> = 28(4-p<0'>) £ 0,

</>-l) ̂  0, z(

4° = 35(3-p^) ̂  0

hold for i=l , 2,..., 9. If p(o° = 2, then z^zV^O and z^> = 35. From Theo-

rem 7.5, however, z(

4° must be a multiple of ( * j = 70. This implies a contra-

diction. On the other hand, ρ(

0

0^l implies z^ + zV^O. After all p(

0

/) = 3
(i.e., z(

4° = 0) for all i = l, 2,...,9. Hence y4 = 0 holds. However it contra-
dicts y4 = 28 in (8.2d). Next consider the case (ii). Then similarly (8.2a, b)
reduce to

yi = 7p0-5 ^ 0, y2 = 4(l-5p0) ^ 0.

Clearly there does not exist any nonnegative integer p0 satisfying the above
inequalities. This completes the proof.

THEOREM 8.9. There does not exist any trim B-array T* with μ3 = 2, p2 = 4
and 128 ̂ N^ 150.

In view of Theorem 1.1, note that a 29-BFF design of resolution VII can not
be obtained from a trim B-array with N< 128 (or a general B-array with N < 130).
To prove the theorem, we need the following three lemmas:

LEMMA 8.10. // there does not exist a B-array of strength 6 and m con-

straints with index set {μo + αo + α^ra-ό), μι+α l 9 μ2, μ3, μ4, μ5 + α2, μβ + α3
+ α2(m —6)}, where 0^(1 = 0, 1, 2, 3) are nonnegative integers, then there does
not exist any B-array of strength 6 and m constraints with {μ0, μί9 μ2, μa, μ4,

μ5> μβl

PROOF. Suppose that there exists a B-array T of strength 6 and m con-
straints with index set {μ0, μ1,...,μ6}. Further consider a matrix obtained by

juxtaposing the array T and an S-array with parameters (m;/I 0 = αo? ^ι=αι»
0,..., 0, Λm-ι=α2, ^m — ̂ 3)' From Theorem 7.1, it is clear that this matrix is a
B-array with the indicated index set. This implies a contradiction.

LEMMA 8.11. There does not exist a B-array of strength 6 and 9 constraints
with index set {10, 4, 2, 2, 2, 3, 8}.
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PROOF. This follows immediately from Theorem 6.6.

LEMMA 8.12. There does not exist an S-array corresponding to a B-array
of strength 6 and 9 constraints with μ3 = 2 and ρ2 = 4.

PROOF. Consider an S-array with parameters (9; λθ9 A l v . . , λ9) such that

y 7 = μ4,

where μ2 + μ4 = 4. It is easy to see that there do not exist nonnegative integers
λi satisfying the above equations. This completes the proof, because of Theorem
7.1.

PROOF OF THEOREM 8.9. p^l and P l^3 imply N>150 and JV<128
respectively. For 4^p^6, by using Corollary 6.5, we can construct B-arrays
of strength 6 and 8 constraints. Furthermore, in view of Corollary 7.4 and
Lemma 8.12, among these B-arrays we can select ones which will be of strength
6 and 9 constraints. The following is a list of index sets of such B-arrays: (i)

When μ2 = μ4 = 2 and P l=6, (μ0, /*ι, μs, ^6) = (9, 4, 2, 1), (8, 4, 2, 2), (7, 4, 2, 3),
(6, 4, 2, 4), (5, 4, 2, 5), (7, 3, 3, 3), (6, 3, 3, 4), (5, 3, 3, 5), (8, 4, 2, 1), (7, 4, 2, 2),
(6, 4, 2, 3), (5, 4, 2, 4), (6, 3, 3, 3), (5, 3, 3, 4), (7, 4, 2, 1), (6, 4, 2, 2), (5, 4, 2, 3),
(5, 3, 3, 3), (4, 3, 3, 4), (ii) when μ2=μ4 = 2 and Pl =5, (μ0, μ1 ? μ5, μ6) = (6, 3,
2, 1), (5, 3, 2, 2), (4, 3, 2, 3), (3, 3, 2, 4), (5, 3, 2, 1), (4, 3, 2, 2), (3, 3, 2, 3),
(4,3,2,1), (3,3,2,2), and (iii) when μ2 = μ4 = 2 and Pl =4, (μ0, μ1 ? μ5, μ6)
= (3, 2, 2, 1), (2, 2, 2, 2). From Lemmas 8.10 and 8.11, however, it is found
that there do not exist B-arrays of strength 6 and 9 constraints with the above
index sets. For example, we shall show that there does not exist any B-array with
{9,4,2,2,2,2,1}. In Lemma 8.10 consider α0 = l, 0^=0, α2 = l and α3 = 4.
Then it follows from Lemma 8.11 that this array does not exist. This com-

pletes the proof.

THEOREM 8.13. There does not exist any trim B-array Γ* with μ3 = 2,

p2 = 3 and 128 ^Wg 150.

PROOF. Clearly P l^8 and P l^5 imply N>150 and JV<128, respectively.

If Pl=7, then (8.2b, c) reduce to

y2 = 4(88 - 5Po) ̂  0, y3 = 28(Po - 17) ^ 0.

Thus PQ = \! (i.e., >'3 = 0) holds. As in Theorem 8.8, consider a trim B-array
T(ί)*. Then from Theorem 6.8,
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(

0<>-ll) ̂  0, z(

4° = 35(13 -p^) ̂  0

hold for ι = l, 2,..., 9. From Theorem 7.5, therefore, ρ(

0° = ll (i.e., 2^ = 2^=0)
must hold for all i. Furthermore this implies J4 = 0. It contradicts y4 —
14(23 — PQ) 7^0 in (8.2d). In the same way, it can be shown that there does not
exist Γ* with Pi = 6. This completes the proof.

In consequence of Theorems 8.7-8.13, it is found that there does not exist
any trim B-array with μ3 = 2 and 128 ̂ N^ 150.

(c) The case μ3 = 3.

THEOREM 8.14. Let T* be a trim 29-BFF design of resolution VII with
μ3 = 3 and 128 ̂ Λf^ 150. Then p2 = 4, 3^px^2 and 3p1=p0 + 3 (i.e., y4 = 126,

^2 = ̂ 3 = 0, 3Ί=9(pι-l))ΛoW.

PROOF. From Theorems 8.2 and 8.4, we have p2 = 4 and S^p^l. The
remaining equalities follow from (8.2b, c, d). Now assume P! = I. Then p0 = 0
and N = 126. It gives a contradiction.

THEOREM 8.15. The B-array T* of Theorem 8.14 is an S-array with
parameters λ0 = λ2 = λ3 = λ6 = λΊ=λ9 = 0 and λ4 + λ5= 1.

PROOF. As in Theorem 8.6, from Theorem 8.14 we can consider T* as the

following form :

T = C^(l): ^(4): ^(5)' 7(8)J

The number of times a column vector with weight 1 occurs in any 6-rowed sub-
matrix of T* depends on T(1) only. This shows that T(1) itself is an S-array with
λ1=μ0/3. Therefore the submatrix [T(4): T(5): T(8)] must be a B-array of

strength 6 and its index set takes the form of {μ'0 = 0, μΊ, μ2> μa = 3, μ4, μ5, μ6}

From Theorem 7.7, this submatrix is an S-array. Since y4 = 126 = ί ^ )(A4 + A5),

T* is an S-array with the indicated parameters.

COROLLARY 8.16. There does not exist any trim B-array with μ2 = μ4 = 2,

PROOF. This follows immediately from Theorems 7.1 and 8.15.

From the above results, we can easily construct trim B-arrays with 128^ N
<Π50. Furthermore it is found that all the B-arrays obtained are fortunately
S-arrays. General B-arrays can be easily obtained from trim B-arrays by adding
column vectors, each being of weight 0 or 9. Among all the B-arrays for each



252 Teruhiro SHIRAKURA

TABLE 8.1 Optimal 29-BFF designs of resolution VII with respect to the trace cri-
terion

N μ
0

*130 4

*131 4

*132 4

133 4

*134 5

135 5

*136 6

137 6

138 7

*139 7

*140 7

*141 7

*142 7

143 7

144 7

145 8

146 8

147 9

148 10

*149 10

*150 10

AΊ

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

6

6

6

^2 A*3

3 1

3 1

3 1

3 1

3 1

3 1

3 1

3 1

3 1

3 1

3 1

3 1

3 1

3 1

3 1

3 1

3 1

3 1

3 1

3 1

3 1

μ* μs

1 3

1 3

1 3

1 3

1 3

1 3

1 3

1 3

1 3

1 3

1 3

1 3

1 3

1 3

1 3

1 3

1 3

1 3

1 3

1 3

1 3

μ

4

5

6

7

7

8

8

9

9

4

5

6

7

8

9

9

10

10

4

5

6

tr(F
Γ
)

1.60156

1.59277

1.58984

1.58838

1.58690

1.58599

1.58521

1.58458

1.58410

1.52246

1.51367

1.51074

1.50928

1.50840

1.50781

1.50732

1.50690

1.50657

1.49609

1.48730

1.48437

*o

0

0

0

0

1

1

2

2

3

0

0

0

0

0

0

1

1

2

0

0

0

*
1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

J,

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

*, J,
1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

*.
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

**
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

*T

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Λ
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

*,
1

2

3

4

4

5

5

6

6

1

2

3

4

5

6

6

7

7

1

2

3

This design is also optimal with respect to the determinant criterion.

TABLE 8.2 Optimal 29-BFF designs of resolution VII with respect to the deter-
minant criterion

N

133

135

137

138

143

144

145

146

147

148

μ.

5

6

7

4

8

8

9

9

7

7

μι

4

4

4

4

5

5

5

5

5

5

μ, μ,

3 1

3 1

3 1

3 1

3 1

3 1

3 1

3 1

3 1

3 1

μ* μ
5

1 3

1 3

1 3

1 4

1 3

1 3

1 3

1 3

1 4

1 4

μ.

6

7

8

6

7

8

8

9

6

7

tr(Kr)

1.58842

1.58614

1.58473

1.58630

1.50881

1.50792

1.50760

1.50700

1.51719

1.50596

J.

1

2

3

0

1

1

2

2

0

0

*
1

1

1

1

2

2

2

2

2

2

*,

0

0

0

0

0

0

0

0

0

0

*. ̂
1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

*.
0

0

0

0

0

0

0

0

0

0

Λβ *τ
0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

*.
0

0

0

1

0

0

0

0

1

1

*,
3

4

5

0

4

5

5

6

0

1
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TABLE 8.3 Covariance matrices for optimal 29-BFF designs of resolution VII

N μQ μl

130 4 4

131 4 4

132 4 4

133 4 4

133 5 4

134 5 4

135 5 4

135 6 4

136 6 4

μz μ, μ, μ5 μ6

3 1 1 3 4

3 1 1 3 5

3 1 1 3 6

3 1 1 3 7

3 1 1 3 6

3 1 1 3 7

3 1 1 3 8

3 1 1 3 7

3 1 1 3 8

J/(0,0)

0 '

0.017578

0.001519

0.014526

0.001316

0.013509

0.001248

0.013000

0.001214

0.013471

0.001224

0.012947

0.001185

0.012630

0.001162

0.012919

0.001170

0.012597

0.001145

K ° ° ' 2 ) (03)0 '

-0.001519

-0.000651

-0.001010

-0.000346

-0.000841

-0.000244

-0.000756

-0.000193

-0.000811

-0.000258

-0.000720

-0.000209

-0.000664

-0.000180

-0.000701

-0.000217

-0.000643

-0.000188

' 0
T/ (1,1)

0.017578

-0.001519

0.017565

-0.001533

0.017560

-0.001537

0.017558

-0.001539

0.017545

-0.001552

0.017542

-0.001555

0.017541

-0.001557

0.017534

-0.001563

0.017532

-0.001565

K° l l2)

1

0.001519

-0.000651

0.001553

-0.000617

0.001564

-0.000606

0.001570

-0.000600

0.001583

-0.000587

0.001589

-0.000581

0.001594

-0.000577

0.001600

-0.000571

0.001604

-0.000566

J/U.3)

F(l,3)

-0.001519

0.000651

-0.001499

0.000671

-0.001492

0.000678

-0.001489

0.000682

-0.001501

0.000669

-0.001497

0.000673

-0.001495

0.000675

-0.001501

0.000669

-0.001499

0.000671

K(2,2)

K(2,2)

0.011882

-0.000705

0.011797

-0.000790

0.011768

-0.000818

0.011754

-0.00832

0.011746

-0.000841

0.011730

-0.000857

0.011720

-0.000867

0.011717

-0.000870

0.011706

-0.000880

F(2,2)

F(2,3)

0.000380

0.000705

0.000295

0.000654

0.000267

0.000637

0.000253

0.000629

0.000244

0.000648

0.000228

0.000640

0.000218

0.000635

0.000215

0.000645

0.000205

0.000640

y(*.*ϊ
1 F|2'3>

-0.000380

0.000488

-0.000431

0.000437

-0.000448

0.000420

-0.000456

0.000412

-0.000437

0.000431

-0.000445

0.000423

-0.000450

0.000418

-0.000440

0.000428

-0.000445

0.000423

J/U.3)

J/(3.3)

0.011882

-0.000705

0.011851

-0.000736

0.011841

-0.000746

0.011836

-0.000751

0.011836

-0.000751

0.011831

-0.000756

0.011828

-0.000759

0.011829

-0.000758

0.011826

-0.000761

ypn
2 F<3'3'

0.000380

-0.000488

0.000349

-0.000519

0.000339

-0.000529

0.000334

-0.000534

0.000334

-0.000534

0.000329

-0.000539

0.000327

-0.000541

0.000327

-0.000541

0.000324

-0.000544
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TABLE 8.3 (continued)

N μ0 μι

137 6 4

137 7 4

138 7 4

138 4 4

139 7 5

140 7 5

141 7 5

142 7 5

143 7 5

143 8 5

144 7 5

μ* μs μ* μ& μ&

3 1 1 3 9

3 1 1 3 8

3 1 1 3 9

3 1 1 4 6

3 1 1 3 4

3 1 1 3 5

3 1 1 3 6

3 1 1 3 7

3 1 1 3 8

3 1 1 3 7

3 1 1 3 9

^(0.0)

0.012382
0.001128

0.012577
0.001135

0.012359
0.001117

0.020745
0.002094

0.017456
0.001424

0.014404
0.001221

0.013387
0.001153

0.012878
0.001119

0.012573
0.001099

0.012867
0.001117

0.012370
0.001085

κ°° 2;«,,3,
-0.000604
-0.000169

-0.000630
-0.000194

-0.000590
-0.000174

-0.001732
-0.000878

-0.001444
-0.000671

-0.000936
-0.000366

-0.000766
-0.000264

-0.000682
-0.000214

-0.000631
-0.000183

-0.000673
-0.000219

-0.000597
-0.000163

KVi->
0.017531

-0.001566

0.017528
-0.001570

0.017526
-0.001571

0.017342
-0.001419

0.014418
-0.001207

0.014404
-0.001221

0.014400
-0.001225

0.014398
-0.001227

0.014396
-0.001229

0.014397
-0.001228

0.014395
-0.001230

yn,2)

0.001607
-0.000563

0.001610
-0.000560

0.001614
-0.000556

0.001485
-0.000737

0.000902
-0.000400

0.000936
-0.000366

0.000947
-0.000355

0.000953
-0.000349

0.000956
-0.000346

0.000955
-0.000347

0.000958
-0.000344

^ 0

-0.001498
0.000672

-0.001502
0.000668

-0.001500
0.000670

-0.001450
0.000539

-0.000956
0.000346

-0.000936
0.000366

-0.000929
0.000373

-0.000926
0.000376

-0.000924
0.000378

-0.000927
0.000375

-0.000922
0.000380

^V>

0.011699
-0.000887

0.011698
-0.000889

0.011691
-0.000896

0.011852
-0.000727

0.011498
-0.000871

0.011414
-0.000956

0.011385
-0.000984

0.011371
-0.000999

0.011363
-0.001007

0.011364
-0.001005

0.011357
-0.001013

J/(2,2)

F(2,3)

0.000198
0.000637

0.000196
0.000643

0.000189
0.000640

0.000366
0.000674

0.000431
0.001007

0.000346
0.000956

0.000318
0.000939

0.000303
0.000931

0.000295
0.000926

0.000297
0.000935

0.000289
0.000922

J/" (2.3)

J/(2>3)

-0.000448
0.000420

-0.000442
0.000426

-0.000445
0.000423

-0.000383
0.000513

-0.000295
0.000356

-0.000346
0.000305

-0.000363
0.000288

-0.000371
0.000280

-0.000376
0.000275

-0.000367
0.000284

-0.000380
0.000271

F(3,3)

^(3.3)

0.011824
-0.000763

0.011825
-0.000762

0.011823
-0.000764

0.011700
-0.000789

0.011444
-0.000926

0.011414
-0.000956

0.011403
-0.000966

0.011398
-0.000971

0.011395
-0.000975

0.011396
-0.000974

0.011393
-0.000977

J/(3,3)

0.000323
-0.000546

0.000323
-0.000545

0.000321
-0.000547

0.000393
-0.000377

0.000376
-0.000275

0.000346
-0.000305

0.000336
-0.000315

0.000331
-0.000320

0.000328
-0.000323

0.000328
-0.000323

0.000326
-0.000326
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TABLE 8.3 (continued)
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N μ0 /<!

144 8 5

145 8 5

145 9 5

146 8 5

146 9 5

147 9 5

147 7 5

148 10 6

148 7 5

149 10 6

150 10 6

μz

3

3

3

3

3

3

3

3

3

3

3

/J3 μ4 μs μQ

1 1 3 8

1 1 3 9

1 1 3 8

1 1 3 10

1 1 3 9

1 1 3 10

1 1 4 6

1 1 3 4

1 1 4 7

1 1 3 5

1 1 3 6

17(0.0)
K U

F (0,l)

0.012556
0.001096

0.012348
0.001081

0.012545
0.001094

0.012199
0.001071

0.012334
0.001079

0.012183
0.001069

0.020674
0.002023

0.017415
0.001393

0.015872
0.001459

0.014364
0.001189

0.013346
0.001121

J / ( 0 , 2 )

f / ( 0 , 3 )

-0.000619
-0.000189

-0.000584
-0.000170

-0.000612
-0.000193

-0.000558
-0.000155

-0.000575
-0.000174

-0.000549
-0.000160

-0.001679
-0.000896

-0.001420
-0.000678

-0.001070
-0.000477

-0.000911
-0.000373

-0.000741
-0.000271

P C M )

K ( l , l )

0.014396
-0.001229

0.014395
-0.001230

0.014395
-0.001230

0.014394
-0.001231

0.014394
-0.001231

0.014394
-0.001231

0.014467
-0.001139

0.013364
-0.001103

0.014400
-0.001206

0.013351
-0.001117

0.013346
-0.001121

ru.i)
J/U.2)

0.000958
-0.000344

0.000961
-0.000341

0.000960
-0.000343

0.000962
-0.000340

0.000962
-0.000340

0.000964
-0.000338

0.000844
-0.000486

0.000696
-0.000316

0.000916
-0.000415

0.000730
-0.000283

0.000741
-0.000271

K(1.3)

F(l,3) .

-0.00925
0.000377

-0.000923
0.000379

-0.000926
0.000377

-0.000922
0.000380

-0.000924
0.000378

-0.000923
0.000379

-0.000991
0.000283

-0.000769
0.000244

-0.000941
0.000332

-0.000748
0.000264

-0.000741
0.000271

K (2,2)

y(*.»>

0.011355
-0.001015

0.011349
-0.001021

0.011350
-0.001019

0.011345
-0.001025

0.011344
-0.001026

0.011339
-0.001031

0.011420
-0.000907

0.011371
-0.000927

0.011343
-0.000984

0.011286
-0.001012

0.011258
-0.001040

J/(2,2)

K(2,3)

0.000288
0.000930

0.000281
0.000926

0.000283
0.000933

0.000277
0.000924

0.000276
0.000929

0.000272
0.000927

0.000438
0.000957

0.000448
0.001108

0.000361
0.000904

0.000363
0.001057

0.000335
0.001040

J/(2,3)

L^(2>3)
γ 2

-0.000372
0.000279

-0.000376
0.000275

-0.000370
0.000281

-0.000378
0.000273

-0.000373
0.000278

-0.000375
0.000276

-0.000302
0.000392

-0.000267
0.000312

-0.000355
0.000339

-0.000318
0.000261

-0.000335
0.000244

F(3.3)

J7(3.3)

0.011393
-0.000977

0.011391
-0.000979

0.011392
-0.000978

0.011390
-0.000980

0.011390
-0.000980

0.011388
-0.000981

0.011371
-0.000956

0.011298
-0.000999

0.011335
-0.000992

0.011268
-0.001030

0.011258
-0.001040

K(3,3)

^(3.3)

0.000325
-0.000326

0.000323
-0.000328

0.000324
-0.000327

0.000322
-0.000329

0.000322
-0.000329

0.000321
-0.000330

0.000389
-0.000219

0.000375
-0.000203

0.000353
-0.000256

0.000345
-0.000234

0.000335
-0.000244
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number ΛΓ = μ0-t-μ6 + 6(μ1+μ5)+15(μ2+μ4) + 20μ3 with 130^JV^150, we can
find the required optimal designs with respect to the trace and determinant criteria.
In view of Theorem 5.3, however, note that we may restrict our attention to B-

arrays such that (i) μ2>μ4 if μ2^μ4> (ϋ) Mi >μ5 if 1*2 = V* and μi ^μ5, or (iii) μ0

^μ6 if jU2=μ4 and μι=μ5. In Table 8.1, the optimal 29-BFF designs Γof resolu-
tion VII with respect to the trace criterion are given with the values of tr(KT)
and the parameters λt (ϊ = 0, 1,..., 9) of the corresponding S-arrays. Note that
the optimal designs are completely determined by knowing the values A f. Next
let us consider the optimal designs with respect to the determinant criterion. In
this case it is interesting that for N = 130-132, 134, 136, 139-142 and 149-150,
these designs are identical with the designs of Table 8.1, and moreover that for
the remaining values of N but JV = 138 and 147, these designs are the second-best
designs with respect to the trace criterion. These are given in Table 8.2 with
the values of tr(FΓ) and λt. By Theorem 5.4, we can easily obtain the distinct
elements V(

Λ

u>v} of Vτ for each optimal design of Tables 8.1 and 8.2. These are
given in Table 8.3.

Part III. ' 2m-BFF designs of even resolution derived from B-arrays of
strength 21 and their optimalizes

9. Sj type 2m-BFF designs and their optimality

Consider a B-array Tof strength 2/, m constraints and index set {μ0, μ1?...,
μ2/} such that the following condition is satisfied :

^0 for all β = 0, 1,..., /-I,
(9.1)

where Kβ are the (/-β+l)x(/-β + l) matrices given in (4.3). Note that a 2m-
BFF design of resolution 21 + 1 can be no longer obtained from such an array T,
since its information matrix Mτ is singular. The following theorem has been
established by Shirakura [24] :

THEOREM 9.1. Let T be the above B-array. Then T is a fractional design
in which

(a) Θ1 and ψβ = A(

β

l>»*02 (β = 0, !,...,/-!) are estimable where θl and

Θ2 are given in (1.7),

(b) the BLUE ψlp = (0\, fa)' of(θ'±, W is given by

(9.2) Ψiβ = XiβE'τyτ for β = 0, 1,..., /-I,

where
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i-i i-β-i i-β e N i-β i-βe N o

Xlβ=Σ Σ Σ κfjDΪ+l *+»*+Σ Σ KljD^1-"
α = 0 ι = 0 /=0 i=0 j = 0

(κ?>7. are (ί, j) elements of K β 1 ) ,

(c) ί/ie coυariance matrix Var[^J is invariant under any permutation of

m factors.

From Definition 2.3, the designs obtained in this theorem are a subclass of
2m-BFF designs of resolution 21.

DEFINITION 9.1. A B-array T of strength 2/, m constraints and index

set {μ0, μι,...,μ2ί} is called an St type 2m-BFF design if T satisfies Condition

(9.1).

* y/lμ 9\
It is easy to see that the co variance matrix Var[^j] has at most ( 3 )

distinct elements. By using the method similar to Theorem 5.4, we can obtain
the following

THEOREM 9.2. Let The an St type 2m-BFF design and consider the elements

y(utv)σ2 of Vaτ[01'] corresponding to θtί...tu and θt\...t'v \vhichare α-fft associates.

Then

(9.4) Vϊ * = ± Kt-β.v-βtfav) for Q£v£u£Ό£l-Λ9β = 0

where z^tV)
 are given in (3.10).

Now we shall state some combinatorial properties of Sf type 2m-BFF designs.
From (5.6), Kt = Q is equivalent to μz = 0. To construct Sz type 2m-BFF designs,
first of all, we must investigate B-arrays of strength 21 with μt = 0. From Theorem
7.7, we can establish

THEOREM 9.3. T is a B-array of strength 21, m constraints and index set
{μ0, μ l5..., μ2/} wίf/ι μ/=0 if and only if T is an S-array with parameters (m;

λ0,..., Vι> 0,..., 0, Am_ / + 1,..., λj, where

(9.5)

Q

COROLLARY 9.4. A necessary and sufficient condition for the existence of
the B-array of Theorem 9.3 is that the following inequalities hold:
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_

forallk = Q, 1,..., /-I.

PROOF. See Shirakura [22].

The following two theorems are due to [24].

THEOREM 9.5. Let T be an S, type 2m-BFF design. Then the number of

distinct assemblies in T must be at least vj =vl-φl=l

THEOREM 9.6. // there exists an St type 2m-BFF design T with N0 (^v/)
assemblies, then for N>N0, (N — N0 + l) nonisomorphic St type 2m-BFF designs
with N assemblies can be obtained from T.

THEOREM 9.7. A necessary condition for the existence of an St type 2m-
BFF design is that the following strict inequalities hold:

for 1 = 2.

PROOF. This follows from (5.7), (5.8f) and Condition (9.1).

THEOREM 9.8. Consider the case 1 = 2. Then there exist always S2 type
2m-BFF designs for any N (^vj=2m+l) assemblies.

PROOF. Consider an S-array T with parameters (m; A0 = l, A2 = l, 0,...,0,
Am_ j = 1, λm = 0). From Theorem 9.3, then Tis equivalent to a B-array of strength
4, size JV = 2m + l, m constraints and index set {μ0 = (m — 3), μ^l, μ2=0, μ3 = l,
μ4 = (m — 4)}. It is easy to check that the matrices K0 and K1 in Example 4.1, (i)
are nonsingular for the B-array T. This implies that Tis just an S2 type 2W-BFF
design with the smallest number v\ =2m + 1 of assemblies. Because of Theorem
9.6, the proof of this theorem is completed.

Now consider the case 1 = 3. In this case the smallest number is v^ =

+ 2ί ^ \ Consider an S-array T with parameters (m; A0 = 0, λί = l, A2 = l,

0,..., 0, Λ,m_2 = l, A m _ 1 =0, λm = l), which is identical with a B-array of strength 6,

size N = vJ, m constraints and index set {μ0

 = ( m^ )> Mι = ̂  — 5, μ2 = l> A*3 = 0,
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μ4 = l9 μs = m — 6, μ6=( m^~ J H- 1 } . Unlike the case 7 = 2, it is very complicated

to show that for a general number m, the array T satisfies Condition (9.1). How-
ever for each value of m within a practical range, we shall be able to show that T
satisfies Condition (9.1).

From Theorems 9.6, 9.8 and the above statements, we may say that for any
given AT, there are in general a large number of possible 5Z type 2m-BFF designs.
Among these, we must choose one which maximizes information in some sense.
For this purpose, Shirakura [24] has introduced the following amount for an 5Z

type 2m-BFF design T:

(9.6) Sτ= ΣΦβ^(Kβ^.
β — O

Let ̂ | be φβ x 1 vector whose elements are composed of φβ independent linear

functions in \φβ/( *? )[ ψβ. Then Sτ can be rewritten as

Sτ = tr (Var [^D/σ2 + Σ tr (Var [>|])/σ2 ,
β = 0

where +f is the BLUE of |̂. From (3.17), (4.1) and Condition (9.1), it is also
found that Sτ denotes the trace of a generalized inverse matrix of Mτ.

DEFINITION 9.2. For given N assemblies, an St type 2m-BFF design T is
said to be optimal with respect to the generalized trace (GT) criterion if T
minimizes Sτ.

10. Optimal S3 type 2m-BFF designs with m = 6, 7

In view of the previous section, we are interested in optimal St type 2W-BFF
designs with respect to the GT criterion for desirable numbers m and N^v/. In
this section, for the special case / = 3, the optimal designs will be obtained for

m = 6, 7 and for every N with v j ( = l + m + 2(^Λ)gΛΓ<v3 ( = l + ™+(™)

+ (?))• In this case, note that since there exist always 2m-BFF designs of resolu-

tion VII with N^v3 assemblies (see [23]), we need not consider S3 type 2m-BFF
designs for larger N. For the optimal designs for m = 8, see [24].

From Condition (9.1) and Theorem 9.3, first consider a B-array of strength
6, m constraints and index set {μ0, μl9 μ2, μ3 = 0, μ4, μ5, μ6}, and the correspond-
ing S-array with parameters (m; λθ9 λl9 λ2, Λ3=0,..., Λ w _ 3 = 0, Aw_ 2, λm_l9 λm).
From (9.5), we have
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(10.1) μ2=λ2, μ4 = Λn-2> μ5 = λm_l+

From Corollary 9.4 and Theorem 9.7, we can obtain the following

THEOREM 10.1. A necessary condition for the existence of an S$ type 2m-
BFF design is that the following inequalities hold:

(a) μ 2 ^ l , μ 4 ^l ,

(10.2) (b) μo+mSμ2*(m-Qμl9 μ, ̂  (m-6)μ2,

Now we shall prove

THEOREM 10.2. A necessary condition for the existence of an S3 type 2m-
BFF design with N<v3 is that the following inequalities hold:

(a) -~- ̂  (μ2 + μ*) for m *7,

(10.3)
(b) 3^(μ2 + μ4) for m = 7 .

PROOF. From (10.2b), it is easy to verify that μo-\-μ6 + 6(μΐ+μs)^.(m2 — m
- 30) (μ2 + μ4)/2 holds. Since N = μ0 + μ6 + 6(μί+μ5) + 15(μ2 + μ4) < v3, we have

v3 > (™ \μ2 + μ4). This shows that

Let w-hl = 3ί + r where 0^r^2. Since we are assuming m^6, we have ί^2.
Now we shall show that (10.3a, b) hold for each case r = 0, 1, 2. For r = 0, the
left hand side of (10.4) reduces to f + 6f/(9*2-9f+.2). Clearly r = 0 implies
m^8, so that /^3. It is easy to see that 0<6f/(9ί2-9ί+2)<l holds for ί^3,
Hence we have ί^(μ2 + μ4). For r=l, the left hand side of (10.4) reduces to
t + (3ί2 + 5ί + 2)/(9ί2 - 3ί). Since 0 < (3ί2 + 5t + 2)/(9ί2 - 3ί) < 1 holds for t ̂  2,
we have ί^(μ2+μ4). Finally consider the case r = 2. Then the left hand side

of (10.4) reduces to ί f (3:ί2+4ί + 2)/(9ί2 + 3ί). Similarly it can be shown that
0<(3ί2+4ί + 2)/(9ί2 + 3ί)<l holds for ί^3. Thus ί>(μ2 + μ4) for m^ll.
When m = 7, from (10.4) it is clear that (10.3b) holds. This completes the proof.

From the above results, we can easily construct S3 type 2W-BFF designs for
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TABLE 10.1 Optimal £3 type 2m-BFF designs

tn — 6 N

37

38

39

40

41

μ*

0

1

1

2

2

ι μι μz μι

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

μ* μ*

0 1

0 1

0 2

0 2

0 3

Sτ Ϊ0

1.20979 0

1.16667 1

1.15368 1

1.14619 2

1.14179 2

* **

1 1

1 1

1 1

1 1

1 1

*<

1

1

1

1

1

*. J.

0 1

0 1

0 2

0 2

0 3

m = l N

50

51

52

53

54

55

56

57

58

59

60

61

62

63

μ*

1

2

2

3

3

4

1

2

2

3

3

4

4

2

TABLE

m = 6 N

37

38

39

40

41

/«.

0

1

1

2

2

, μι μz μ*

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

2 1 1

3 1 1

10.2 Co variance

μι μz μ* μ5 μ*

1 1 1 0 1

1 1 1 0 1

1 1 1 0 2

1 1 1 0 2

1 1 1 0 3

μs μ*

1 1

1 1

1 2

1 2

1 3

1 3

2 1

2 1

2 2

2 2

2 3

2 3

, 2 4

2 1

Oy Λ O

1.43426 0

1.41425 1

1.40466 1

1.39952 2

1.39624 2

1.39388 3

1.15878 0

1.13936 1

1.12012 1

1.11531 2

1.11032 2

1.10804 3

1.10571 3 -

1.09260 0

matrices for optimal 58 type

K(0,0)

0.02833

0.02832

0.02800

0.02799

0.02788

F(o,n

0.00187

0-00195

0.00150

0.00152

0.00137

λl λt
1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

2 1

^5

1

1

1

1

1

1

1

1

1

1

1

1

1

1

λ6 λ7

0 1

0 1

0 2

0 2

0 3

0 3

1 0
1 0

1 1

1 1

1 2

1 2

1 3

1 0

2TO-BFF designs

K(0,2)

-0.00083

-0.00098

-0.00135

-0.00139

-0.00152

F(M)

0.03042

0.02995

0.02933

0.02926

0.02905

KiM).

-0.00083

-0.00130

-0.00192

-0.00199

-0.00220

yd'Z)

-0.00021

0.00065

0.00013

0.00027

0.00010

J^U.2)

-0.00021

0.00065

0.00013

0.00027

0.00010

F(2,2)

0.03250

0.03092

0.03049

0.03020

0.03005

F<2,2)

0.00125

-0.00033

-0.00076

-0.00105

-0.00120

F C2,2)

0.00125

-0.00033

-0.00076

-0.00105

-0.00120
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N μ0 μ5

50

51

52

53

54

55

56

57

58

59

60

61

62

63

1 2

2 2

2 2

3 2

3 2

4 2

1 2

2 2

2 2

3 2

3 2

4 2

4 2 ]

2 3 ]

I

I

1 1

1 1

1 2

1 2

1 3

1 3

2 1

2 1

2 2

2 2

2 3

2 3

2 4

2 1

0.02980

0.02742

0.02708

0.02645

0.02632

0.02604

0.03125

0.02979

0.02734

0.02673

0.02604

0.02573

0.02539

0.03097

0.00058

0.00019

0.00045

0.00036

0.00045

0.00041

0.00000

-0.00049

0.00000

-0.00012

0.00000

-0.00006

0.00000

-0.00028

-0.00376

-0.00266

-0.00235

-0.00206

-0.00195

-0.00181

-0.00446

-0.00384

-0.00279

-0.00253

-0.00223

-0.00210

-0.00195

-0.00419

0.05237

0.05231

0.05211

0.05210

0.05203

0.05202

0.04167

0.04150

0.04141

0.04138

0.04136

0.04135

0.04134

0.03939

j/α.n

-0.00666

-0.00672

-0.00692

-0.00693

-0.00700

-0.00700

-0.00521

-0.00537

-0.00547

-0.00549

-0.00551

-0.00552

-0.00553

-0.00515

J/(l,2)

-0.00231

-0.00213

-0.00237

-0.00233

-0.00241

-0.00239

0.00000

0.00021

0.00000

0.00005

0.00000

0.00002

0.00000

-0.00020

y(i 2)

0.00116

0.00134

0.00111

0.00115

0.00107

0.00109

0.00000

0.00021

0.00000

0.00005

0.00000

0.00002

0.00000

0.00047

F
(2,2)

0.02633

0.02582

0.02555

0.02541

0.02531

0.02525

0.02487

0.02460

0.02415

0.02404

0.02392

0.02386

0.02380

0.02432

y(2,2)

-0.00145

-0.00196

-0.00223

-0.00237

-0.00247

-0.00253

-0.00191

-0.00218

-0.00263

-0.00274

-0.00287

-0.00293

-0.00299

-0.00227

y(2,2)

0.00203

0.00151

0.00124

0.00110

0.00101

0.00094

0.00255

0.00228

0.00183

0.00172

0.00159

0.00154

0.00147

0.00238

each m ̂  6 and each N with v\^ N < v3. Among these, we can obtain the required

optimal design Tsuch that Sτ in (9.6) is a minimum. In Table 10.1, the optimal

designs for m = 6, 7 are given with the values of Λ0, λi9 λ2, λm_2> Λn-ι> ^m i*1

(10.1). The distinct 20 elements F^ υ) in (9.4) for the designs are also given

in Table 10.2. As in Theorem 5.3, for an Sl type 2m-BFF design Tand its com-

plementary design Γ, we have ST = ST. Thus it may be remarked that for the de-

signs in Table 10.1, their complementary designs are also optimal with respect to

the GT criterion.
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11. Alias structures of /-factor interactions in St type 2m-BFF designs and
their estimability

In this section we shall make certain investigations on alising of /-factor
interactions in St type 2m-BFF designs. It has been observed in Section 9 that
φβ = ̂ (βitι^02 QS = 0, !,...,/-!) are estimable in an St type 2m-BFF design T.

From (3.7) and (3.11), ψβ are such that
( i ) every element of ψ0 represents the mean of effects of /-factor interac-

tions, i.e.,

I 1 χ-ί f\

\ι
(ii) the elements of ψβ (jS^O) represent contrasts between effects of /-factor

interactions, i.e.,

j[γ)ψβ = 0 for β Φ 0,

(iii) any two contrasts, one belonging to ψΛ and other to ^^(α^jS), are
orthogonal, i.e.,

Ψ'zΨβ — 0 for α 7* β, and

(iv) there are φβ independent contrasts in each ψβ (jβ^O).

From the above statements, it is found that in allf ,™* j ( = φ0^ φl-\ μ

Φι-ι) independent linear functions of θtίtr..tl are estimable in the design T. How-
ever to observe the pattern of aliasing, a more simple expression for alias structures
of /-factor interactions is needed. We establish the following

THEOREM 11.1. In an Sl type 2m-BFF design,

(11.1) ψ = A(J-i l>02

is an estimable function of Θ2 where A\}~l l) is the local association matrix

of size (/ϋ lι) x(7) defined in (3 2) There are just ( jϋ? j) independent

linear functions of Θ2 in ψ.

PROOF. From (3.11) and (3.12), we have A(

β

l~l>l)*A(

β

l>l)* = A(

β

l~l l)*
_cα-ι,o^[θ-ι,/-ι)if^o-ι,o for au j5 = Q, 1,..., / — I . Hence the estimability of

ψβ (j? = 0, 1,..., /-I) implies that Σ^o^"1'7"1^^"1'0^ is estimable. Since
/ m \

ΣΛ=O^Λ l f ί" =Λι» where p — ( , , ), it is clear that φ is estimable. From~P " P ί' γ ^ _ i y

Π K\ anή /^ 1 1Λ A(l-1 ,lϊ Λ(l,l-l) — ̂  l-l ( ~(l-ί,l)\2 4(1-1,1-ίH From Π Q^{J.ΌJ dΠU ^J.ll^/, /IQ -"0 — 2-ιβ = Q\ZβQ ) **β * JΓΓU1Π \J. y)^
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β)*0 for all 0 = 0, 1,..., /-I, so that rank

rl)) = rank(X{/-1 'U{/ |-1))=(/.^1). This completes the proof.

EXAMPLE 11.1.
( i ) Consider an S2 type 2m-BFF design (/ = 2). Then 0'2=(0i2> 0i3> >

im, 023, . , 0m-ι«λ (l x (? ))> and rank(4(

0

1 2)) = m. tfr reduces to

012 + 023 + 024+'"+ 02

01m + 02m + 03m H ^^m-l

(ii) Consider an 53 type 2m-BFF design (/ = 3). Then Θ'2=(Θ123, θl24,...9

, 0134,-, βm-2»-ιJ, 0 x( ? )) and rank(^(

0

2 3>)=( ̂  ). tfr reduces to

0123 + 0124 + 0125 H ^012m

0123 + 0134 +0135+ ••*+013m

0124+ 0134 +0145+ ••*+014m

COROLLARY 11.2. For an St type 2m-BFF design Γ, the BLUE ψ of ψ is
given by

(11.2) $ = XίE'τyτ,

where X^ is the p*Vι matrix such that

vκι-β,oAβ

(P=( /*! ) «?=Σ?-o( fu?! ) and, particularly, [OpXO: X] = x).

PROOF. This follows immediately from (9.2), (9.3) and Theorem 11.1.
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REMARK. From Theorem 9.5, the rank of the information matrix Mτ

of an St type 2^-BFF design T is v/ = !+( ™ )+-+( /™2)+2( l-i )• Since

v / — v / _ 1 =ί ,^j ), from the design T we can not obtain more than f ,̂ \ j

independent linear functions of θtίtr..tl which are estimable. Therefore it follows
from Theorem 11.1 that any estimable function ψ* of Θ2 is completely determined
by ψ* = C*ψ, where C* is a matrix of appropriate size.

THEOREM 11.3. In an 5f type 2m-BFF design, no l-f actor interaction itself

is estimable.

PROOF. Assume that some /-factor interaction θtίtr..tl is estimable in this

design. Let t be the ( ™ j x 1 vector obtained from Θ2 by replacing θtί...tl with 1

and the remaining effects with Ό. Now we shall show that rank (/!)>( ι™ι )»

where A=\_A(^l~^:f]. Since A^~l^A(^1-^ is nonsingular, άei(A'A) =

det.ίxy-1-"^1-1-1 >)(!-«), where s = ί 'Aj/ '-1)(^(o|-1 I)^(

0

l |-1>)-1^(

0

|-1. |)f.

From (3.6), (3.9), (3.11) and (3.12), we have Kί-1'/)^'ί-1))-1 = Σ^U^cΓ1'0)"2

^(i-i.i-i)* and ^(^/-ι)^α-ι j-ι)^α-ι,o = (cα-ι,/))-2^(/,o* for ^=0, 1,...,

/-I. Since zjl

0-
1 1) = (4|-1 l))-1and Σ^o^ίlfl)* = ̂ )-4/'/)*, it is clear that

l-s=tr(« /Al /» / )*). From (3.7), therefore, (l-s)^O, so that det(A'^l)^0.

From matrix theory, it is found that there does not exist any ( / ^

vector x satisfying

This contradicts that 0fl...f| is estimable.

In view of this theorem, consider a situation where some of /-factor inter-
actions can be assumed negligible. By Theorem 11.1, we can easily prove the
following lemma:

LEMMA 11.4. In an Sl type 2m-BFF designer (^( ̂  \) l-factor interac-

tions themselves are estimable if the column vectors of A^1'1'^ correspond-
ing to these effects are independent, and if the remaining l-factor interac-
tions can be neglected.

Now let us consider an experiment with the special factor ftl such that every
/-factor interaction involving it can not be ignored. From properties of the matrix

^o~1>0

5 then we may suppose without loss of generality that it is the first factor

/!. Thus we denote the vector composed of all (^JΓj ) /-factor interactions

involving the factor fl by
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<?| =

THEOREM 11.5. In an St type 2m-BFF design, θ\ is estimable under the
assumption that the remaining l-factor interactions are negligible.

PROOF. From the definition of association matrices, A\}~itl) can be
written in the form of

(11.3)
•* (m- 1 Λ
U-l )•

•T1)

where A\? v) are the local association matrices, defined by (3.2), for (m — 1)

factors /2,/3,...,/m. The first ( ^JΓi ) columns of A\j"ίtl) are clearly inde-

pendent. This completes the proof, because of Lemma 11.4.

Note that since rank(^4(

0

ί~1'ί)) = ( ι™\\ among the remaining /-factor

interactions we can recover ( ^"2 ) = ( ι™\ ) ~~( T-~1 / ^ = z' sa

Consider the following matrix:

(11-4)
Ifm- 1 Λ
(l-ί )

where Fjίj2...Jx is the ( **]_* ) x z matrix composed of 7Ί-th, J2~th9.. 9jz-th

columns of Ά\}~l l\ Then it is easy to see that Ah...ίx is nonsingular if and only

if (^o"2''"1^}^.^^) is so. However it is in general difficult to observe whether
(Ά\)

l~2 l~ί)Fjί...jz) is nonsingular or not. The following lemma is very useful:

LEMMA 11.6. Let ^Γ2,y2...ys be the zxz matrix composed of Jι~th9

j2-th,...,jz-th columns of A{}~2'1\ Then Fj^.j is nonsingular if and only if

HenceΆ(

0

l-2 '-PROOF. From (3.3), we have J^o'-2-1-1^1"1 '0 =
,-/I=2F? .../ holds. This completes the proof.

Let Oϊuijr j i ) t>e ^e z χ l vector composed of z effects which are ob-
tained from Θ2 corresponding to jΊ-th, j2-th,...,7z-th columns of Ά(

0

l~ίtl) in
(11.3). Then we establish the following

THEOREM 11.7. If the matrix Fj2

ίJ2...jz of Lemma 11.6 is nonsingular, then
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θ\ and 02Uίj2'"jχ) are estimable in an Si type 2m-BFF design under the assump-
tion that the remaining l-factor interactions are negligible. Furthermore their

BLUEs β\ and 02Uι jz)
 are given as follows:

(11-5) *§<>,->„> = (n y.)-ιtf(o'-2 |-ι)r2-<rι)/2,
where y± and y2 are the z x l and (m^\ ) χ l vectors, respectively such that

(/ι,/2) = f in (11.2).

PROOF. The proof of the first part of the theorem follows immediately from
(11.4), Lemmas 11.4 and 11.6. Now we shall show that (11.5) holds. From
(11.1), (11.2), (11.4), (11.5) and the assumption of this theorem, we have

It is easily shown that the inverse matrix of Ajv..jz is given by

.̂..̂ (F?,...;,)-' i /(^-in ̂ λ ^)-1^1-2''-

-—-— l^:.^:^

This completes the proof.

Designs of resolution less than or equal to VII are thus far very important.
For the cases / = 2, 3, therefore, we shall make further investigations on recovering
/-factor interactions. First consider the case / = 2 (4:gra). In this case

*?= (0i2, 0i3, . .,0.1m)', ((m-l)xl),

rank(/4(

0

1>2)) = m, z = 1 and

Therefore the matrix Fjt of Lemma 11.6 is nonsingular for every jΊ = l, 2,...,

From Theorem 11.7, we can easily obtaincv>
THEOREM 11.8. In an S2 type 2m-BFF design, the two-factor interactions

θlt(i = 29 3,..., m) and any two-factor interaction θjk in {0ίlί2}, (^^2), are esti-
mable ignoring the remaining two-factor interactions.

Next consider the case / = 3 (6^m). Then
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')"'>
and z = m-l.

In this case, besides the special factor fί9 further consider the special two factors
ft2 and ft3 such that every three-factor interaction involving these two factors can
not be ignored. As before, we may suppose without loss of generality that they
are the second and third factors /2 and/3. Therefore we can obtain the (m — 3) x 1
vector

Since z — (m — 3) = 2, two effects Θtίt2t3 and 0 ,̂̂  can be further recovered from

the rest. Now suppose that at least one of the two effects involves the factor
/2 or /3, and therefore suppose without loss of generality that the effect involves
the factor /2, i.e., Θtlt2t3 = θ2t2t3. Consequently the following theorem can be
established :

THEOREM 11.9. In an S3 type 2mBFF design, Θ2ί #2(i2-m-3) ana the above
two effects Θ2t2t3 and θt>ίt>2t.3 (4^f 2<f 3^m, 3^ί\ <t'2<t'3^m) are estimable

ignoring the remaining three-factor interactions.

PROOF. First consider the case where the other effect involves the factor

/3, i.e., Θt'lt'2t
f

3

=θ3t'2t'3 Further suppose that the j^.^th and jz-th .columns of

>3(o1>3 Correspond to the effects Θ2t2t3 and Θ3ί'2ί'3, respectively. Of course, the

/-th column of ^(

0

1 3) corresponds to the i-th effect in 02(i2 m-3) f°r each ί = =l»

2,..., m — 3. Then the zxz submatrix Fl2...m-3jz_ίjz of A(

0

1>3), defined in
Lemma 11.6, can be explicitly written in the form

(11.6)

1 1

0

0

i

-3 o2

where aί and α2 are (m —3)x 1 (0, 1) vectors with weight 2. In this case, it is
easy to verify that the matrix of (11.6) is nonsingular. Next consider the case
4^ί/

1<ί2<ί3^m. Then the submatrix composed of the last two columns of
(1.1.6) is exchanged for

0 0

1 0 «ι
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where at and α2 are vectors with weight 2 and 3, respectively. Similarly it can
be easily shown that the new matrix is also nonsingular. This completes the proof,
because of Theorem 11.7.

12. Existence of a 2m-BFΓ design of resolution IV with the minimum
number of assemblies

It has been shown in Webb [39] and Margolin [17] that the minimum
number of assemblies must be 2m for a general 2m-FF design of resolution IV.
On the other hand, from Theorem 9.5 the corresponding number for S2 type 2m-
BFF designs must be v2=2m + l. This difference follows from the fact that the
general mean θφ itself is estimable in S2 type 2m-BFF designs. In this section we
shall show that a 2W-BFF design of resolution IV with N = 2m assemblies can be
obtained from a B-array of strength 4 and m constraints, that is, there exists a
2m-BFF design of resolution IV with the minimum number of assemblies. First
consider an S-array Twith parameters (m; λ0 = Q9 λ2 = l, 0,..., 0, λm-ί = l, Am = 0),
which is equivalent to a B-array of strength 4, size N = 2m9 m constraints and index
set {μ0 = (m —4), μ.ι = l, μ.2 = 0, μ3 = l, μ4 = (w — 4)}. Then the matrices K0 and
Kj given in Example 4.1, (i) reduce to the following

(12.1)

2m

0

0 2(w-4)(

2(w-2)2 0

0 (w

m '2

0

(»-2)

These matrices are clearly of rank(K0) = 2 and detCKJ^O. Let op be the px 1

vector whose elements are all 0, i.e., op = Op X 1. Let C0 be a v 2 x v 2 ίv2 =

matrix such that

where /z1=(m —4)(m —l)1 / 2/(2m)1 / 2 and /ι2 is any real number. Then we
shall prove
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LEMMA 12.1. For the B-array T mentioned above and its information
matrix Mτ, there exists a v2 x v2 matrix X0 such that X0MT = C0.

PROOF. The matrix C0 is also expressed as

^
From Theorem 3.3, the matrix C0 belongs to the 3 sets TMDPB association algebra
91. Therefore it follows from (3.17) that the irreducible representations of C0

with respect to ideals 910 and 91 1 are given as follows:

0 0 0

910:C0 > Γ 8 = 0 1 0

1 0 h

1 0

0 A 2

From (12.1), it is easily shown that there exist 3 x 3 and 2 x 2 matrices X% and
X&, respectively, such that XgK0 = rg and X^Kί=Γ}). Let XQ be a matrix such
that X0e$l and the irreducible representations of X0 are X$ and X^ Then it
is easy to check that X0MT=C0 holds.

THEOREM 12.2. The B-array T of Lemma 12.1 is a 2m-BFF design of resolu-

tion IV in which a parametric function 0/0' = (θφ; {βj; {fyj}),

(12.2) Co = CQΘ = (0, 00, ΘφA\)

is estimable, where 0Ό = ({0J) and 0'2 = ({0lV}). Its BLUE is given by

(12.3) ζQ = XQE'τyT9

where X0 is given in Lemma 12.1.

PROOF. From (1.9) and Lemma 12.1, it follows that

Exp[C0] = *o£rExp[yτ] = XoMT = CQΘ = ζ0.

Hence Co is an estimable function of θ. On the other hand, it follows from

Gauss-Markov Theorem that the BLUE Co of Co is uniquely given by Co = CQ0*

where θ* is a solution of the normal equations (1.11). Thus we have ζ0 = X0Mτ0*

= X0E'τyτ. Clearly we also have Var [C0] = X0MτX'0σ
2 = C0X

r

0σ
2 . Since C0X'0

E 91, it is found that Var [C0] is invariant under any permutation of m factors.
This completes the proof.
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COROLLARY 12.3. For the design T of Theorem 12.2,

(12.4) *β = [om: {(2U.L+ «

(12.5)

(12.6) Cov [A £0J = 0,

where xlt = l/2(m-2)2 and ζ0k is the BLUE of k-th element of the vector {θφA

PROOF. Let xy (i,j=0, 1, 2) be (/,./) elements of X%. From Lemma 12.1,

we have x00 = x01=x10 = x02=*Xi2=Q and Xn = l/2(m — 2)2. Furthermore X&
= diag [1/8, Λ2/8(m— 2)]. Therefore the m x v 2 submatrix of .Y0 whose rows
correspond to the block of main effects θf is given by

o '

From (3.7), (12.2) and (12.3), we thus have (12.4). Since Var [C0] = C0 X'0σ
2 e 9ί,

we have the irreducible representations of C0 X'0, i.e.,

diag[0, χu

• diag[l, Λ2/(m-2)]/8.

Hence

Var [Co] =

and, particularly, from the definition of D(

β

u*v)*

This shows that (12.5) and (12.6) hold.

Next, as in Section 11, we shall investigate the alias structure of θφ and
etj. Unlike an S2 type 2m-BFF design, note that, in general, θφ itself is not
estimable in the design T.

THEOREM 12.4. Suppose m>4. For the design T of Theorem 12.2,
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is estimable, where d = (m — 4)/2.

PROOF. From (3.11) and (3.12), the estimability of Co in (12.2) implies

that fl^/m^v^ + i*!^2^^ is estimable.
Now recall that ft^O and h2 is any real number. By letting ft2

 = ' Iιco l f 2 )/
c{l 2\ from (3.11) it can be easily shown that dθφjm+(A(

0

l l^ + A(1'1^)
Ati>2W2 = dθφjm + A(

0

l 2)θ2 is estimable.

COROLLARY 12.5. In the design Tof Theorem 12.2 (ra> 4), the general mean
and (m— 1) two-factor interactions involving the special factor are estimable
under the assumption that the remaining two-factor interactions are negligible.

PROOF. Without loss of generality, we can assume that the special factor
is the first factor. From the assumption and (11.3), therefore, dθφjm + A(l'2)02

can be written as

1 1 l ' l

1

! vi
1

~dθφ'

012

0,3

L0 l m

This shows that ΘΦ9 Θ12, Θ13,. , θlm are estimable.

Finally consider the case where m = 4. Then we establish the following

THEOREM 12.6. Let The a B-array of strength 4, m = 4 constraints and in-
dex set {0, 1, 0, 1, 0}. Then in this design T the general mean θφ and the
differences (θij-θpq) are estimable, where {/, j} Π [p, q} = φ and [i, j} U {p, q}
= {1,2,3,4}.

PROOF. In this case, 0 = (012, β13, Θ14, Θ239 Θ34), /zr=0 and A(

1

2 2)» =
(y4(

0

2 2) — y4(

2

2'2))/2. Also recall that h2 is any real number. Therefore by con-
sidering /ι2 = 0, it follows from Theorem 12.2 that the general mean θφ itself is
estimable. On the other hand, when h2 = 29 from (3.2) it can be shown that
θφ + (θij — θpq) is estimable. This completes the proof, because of the estimability
ofθφ.

As an easy corollary to Theorem 12.6, we have

COROLLARY 12.7. Consider the B-array T of Theorem 12.6. Then in this
design T the (w — 1) two-factor interactions involving the special factor them-
selves are estimable under the assumption that the remaining two-factor inter-
actions are negligible.
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13. Various types of 2m-BFF designs of resolution 21 and their optimality

It has been observed in Section 9 that B-arrays satisfying Condition (9.1)
yield 2m-BFF designs of resolution 21. By further investigations of the properties

of matrices Kβ in (4.3), other types of 2m-BFF designs of resolution 21 can be

similarly obtained from B-arrays of strength 21.

Let K(

β

0) be the (l-β)x (l-β) matrices obtained from Kβ by cutting the last
row and column. Consider the following condition: For r integers βt with

κι-β*.ι-β< =

(13.1)

detCJQ^O for all α with α Φ βt and 0 g α ̂  /.

Note that this condition is equivalent to Condition (9.1) when r=l and βι = l.

EXAMPLE 13.1. Let us consider an S-array with parameters (m = 8; A0 = l,

A1 = l, λ2 = Q, λ3 = 0, A4 = l, A5 = 0, Λ6 = 0, A 7 = l, A8 = 0). It is equivalent to a
B-array of strength 6 (/ = 3), size N = 87, m = 8 constraints and index set {μ0 = 2,

μx = l, μ2 = l» A*3 = 2» AU = 1> /*5 = 1» A*e = 2}. From Example 4.1, (ii), it is easily
checked that this array satisfies icj 1 =0, det(X(

2

0))^0 and det(X^)^0 08 = 0, 1,
3). Herer = l and βί=2.

Using an argument similar to Section 12, we shall show that B-arrays of

strength 21, m constraints and index set {μ0, μlv.., μ2J satisfying Condition
(13.1) yield 2m-BFF designs of resolution 21

LEMMA 13.1. The condition κ^ z~^=0 implies κj

β>
1-* = κl

p-P J = 0 /or

a// j = 0,l,...,/-/ί-L

PROOF. From Theorem 5.5, the matrix Kβ is positive semidefinite. Hence
it is easy to verify that κl

β-P l-P = Q implies κJ

β>
l-P = κl

β-
β J = Q for 7 = 0, 1,..., / —

^-1.

Let

C = diag[/V ί_1, ΣMi1'01].
α=0

where /ια are real numbers such that ^^ = 0 for β = βi (i = l, 2,..., r). Then we

shall prove

LEMMA 13.2. For α B-αrrαy T satisfying Condition (13.1), there exists a
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v / x v j matrix X such that XMT = C holds.

PROOF. From (3.15), the v,x v, matrix C is also expressed as

/-I u

M = O α = 0

α=0 u=0

This implies C e 81. Thus it follows from (3.17) that

diag[/,.„, ΛJ for α = 0, 1,...,/-I,

hl for α = /.

Let

Γ.diagtX^ ̂ O] for α = j?l5 &>,..., ft,

Γα K~1 otherwise,

and let

ί I-Λ l-a
(\'\ 9^ K— V V V v'*^A)(A+ίι/»+J)^IJ.Z^ A — 2Lι 2*, 2L, Λα Uβ 9

α = 0 i = 0 J=0

where χί 7' are (i, j) elements of JΓα. Since JίMτe8ί and from Lemma 13.1

81,: XMT > JΓαXα = Γα for α = 0, 1,..., /,

it is easy to see that XMT — C holds.

THEOREM 13.3. Let T be the B-array of Lemma 13.2. Then a parametric

function,

(13.3) ¥ = co = [θl , hA^θ }

is Λ W estimable function of θ. The BLUE Ψofψ is given by

(13.4) £ = *Ei.yr,

where X is given in (13.2).

PROOF. From (1.9), Lemma 13.2 and Gauss-Markov Theorem, it is easy
^ •«.

to verify that W is an estimable function of θ and Ψ of (13.4) is the BLUE of Ψ.

THEOREM 13.4. For the B-array of Lemma 13.2, the covariance matrix
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Var[y] is given as follows:

(13.5) Var|T] = XCσ2

275

= CΣ Σ Σ κf,j
α=0 i=0 j = 0

l-l l-Λ-l

Σ{ Σ Λ.κf.ι-.
α=0 i=0

where κ*tj are the (i, 7) elements of
2,..., r) or nof.

or K"1 according as α = /? Λ ( fc=l ,

PROOF. From (13.4) and Lemma 13.2, we have

Var[y] = XEf

τVaτ[_yτ]EτX
f = XMτX'σ2 =

Since XC e 91, it is clear that the irreducible representations of XC with respect
to ideals 9ϊα (α = 0, 1,..., /) are given by

L(Sym.)

This leads to (13.5).

Let Xll be the vl.ίxvl,1 submatrix whose rows and columns are composed
of the first v (_ ! those of X. From (13.2) we have

(13.6) diag IX119 0(m)x(r)] = £ '"t" ' '"t" ' κ l j
V / / V / 7 α=0 ί=() j=Q

From (13.5), therefore, we have

(3.7)

say.

where 0t is the BLUE of ^t given in (13.4). Since X<0 )e9l, it is clear that

Var[βj] is invariant under any permutation of m factors. Thus we establish.

THEOREM 13.5. B-arrays satisfying Condition (13.1) are 2m-BFF designs

of resolution 21 such that the vectors A^1)9Θ2 (z^βi, /?2> » ft; O^αgl) are
estimable.

DEFINITION 13.1. A B-array T of strength 21, m constraints and index

set {μ0, μι, . , μ2ι} w ca/kd an S l̂5 jS2,..., jSr) ίype 2m-BFF design if T satisfies
Condition (13.1).
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Of course, we may say that an S/(j8 !,..., βr) type 2m-BFF design is identical
with an S, type 2m-BFF design if r = 1 and βί = I.

THEOREM 13.6. For an Sl(βί,β2,..., βr) type 2m-BFF design T, the number

of distinct assemblies in T must be at least vl(βί9 j82>--> βr) =v/— Σi=o0/?i

PROOF. This follows from the fact that from (3.17) and Condition (13.1),
= v/

1(j5ι,...,W holds.

As in Theorems 5.4 and 9.2, from (13.7) we can obtain the following

THEOREM 13.7. For an Sfβ^ β2,..., βr) type 2m-BFF design T9 the ( * + 2)

distinct elements V^u υ) of the covariance matrix Var[0x] are explicitly given

by

(13.8) F<«'»> = Σ fc{U^-X?.p) for O ^ α £ ι< £ ι> £ J-l.

In general, for given N^vf (/?!,..., βr), there are more than one distinct
SJβ 19...9 βr) type 2m-BFF designs. Note that these designs can estimate a com-
mon parameter vector 0^ As a measure for comparing these designs, the amount

of tr(Var[^]) will be used. Let

(13.9)

Then we can establish the following theorem:

THEOREM 13.8. For an St(βί9 β2,...9 βr) type 2m-BFF design T9 S(

T

0) in
(13.9) can be expressed as

(13.10) s^0)= Z Σ <

PROOF. From (13.7) and (13.8),

tr(Var[Γ

β=0

This completes the proof.

In view of Definition 9.2, we make

DEFINITION 13.2. For given N assemblies, an St(βί9 β2,.. , βr) type 2m-
BFF design Tis said to be optimal with respect to the partial generalized trace
(PGT) criterion if S^0) is a minimum.
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EXAMPLE 13.2. Consider m = 8, / = 3 and N = S1. Let 7\ be a B-array of

strength 6, 8 constraints and index set {8, 4, 1, 0, 1, 3, 7}. Then it is easy

to check that T± is an S3(βί9...9 ft.) type 28-BFF design with r=l and βl = 39 i.e.,

7\ is of S3 type. By using the PGT criterion, now let us compare this design Tx

and the design T of Example 13.1. From (13.10), we have S(

T

0) = 0.52654 and

5^ = 1.1 8 125. Thus the design T is better than 7\ with respect to the PGT

criterion. In fact, as will be seen from the next section, Tis an optimal S3(βί9

..., βr) type 28-BFF design with respect to the PGT criterion. However, 7\ is an

optimal S3 type 28-BFF design with respect to the GT criterion.

14. Optimal S3(βί9 j92v.., βr) type 2m-BFF designs with m = 6, 7, 8

In this section, optimal S3(/?l5..., βr) type 2m-BFF designs with respect to

the PGT criterion will be presented for 6 g m _^ 8 and for every number of N with

vjί/?!,..., βr)^N<v3. For 2m-BFF designs of resolution VI, as pointed out in

Section 10, we are usually interested in ones for which the number of assemblies

is less than v3. First we shall begin by investigating combinatorial properties

of S3(βί9 .., βr) type 2m-BFF designs which are not of S3 type (i.e., r = l; βi^ty

For those of S3 type 2m-BFF designs, see Section 9. From (2.1), (2.2), (3.9),

(4.2), (5.7) and (5.8), we have

(14.1)

(14.2)

(14.3)
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From (14.1)-(14.3) and Lemma 13.1, we have

LEMMA 14.1. For a B-array of strength 6, m constraints and index set

{μ0, μl9...,μ6}9

(i) ifκι.ι=Q9 then

(14.4) μ2 = μ4, (m - 4)μ2 = (m - 6)μ3,

(ii) ifκ2

i>
2=Q,then

(14.5) 2μ3 =μί+μs, 2(m2 - 9m + 22)μ3 = (m - 3) (m - 6) (μ2 -f μ4) ,

(iii) ifκl>* = 0, f/ieπ

(14.6) -4(m-6)(m2-7m + 14)μ3,

THEOREM 14.2. Lei m = 6 αnrf consider an S3(βί9..., βr) type 26-BFF
design T with v^(βί9..., βr)^N<v3 ( = 42) which is not of S3 type. Then, apart
from an interchange ofQ and 1, T exists only when it is one of B-arrays of
strength 6 with index set {μ0, μί9 μ2, μ3, μ4, μ5, μ6} SMC/? that

( i ) JV = 32, {0, 1, 0, 1, 0, 1, 0}, (r = 2; βi = 0, β2 = 2),

(ii) N = 32 + ω01+ω11, {l+ω01, 0, 1,0, 1,0, l + ωn}, (r = 2; ̂  = 1,

ω01 and ωn are nonnegative integers with ω01+ω1]L^9,

(iii) AΓ = 334-ω02 + ω12, {l+ω02, 1,0, 1,0, 1, ω12}, (r = 1; β, = 2),

w/tere ω02 «wd ω12 are nonnegative integers with ω02-f ω12 = 8,

(iv) ΛΓ = 38, {0, 2, 0, 1, 0, 1, 0}, (r = 2; βl = 0, β2 = 2) ,

(v) N = 38 + ω03 + ω13, {ω03, 2, 0, 1,0, 1, ω13}, (r = 1; β1 = 2),

where ω03 and ω13 are nonnegative integers with I:gω03 + ω13 = 3.
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PROOF. From Lemma 14.1, fφ1 =0, fφ 2=0 and κg' 3 =0 imply μ2 = μ4

= 0, μ 1=μ 3=μ 5=0 and Ai0 = /ι 2=^4=jW6 = ̂  respectively. In Section 9, recall
that fc§»° = 0 implies μ3 = 0. From the definition of a B-array, it follows that for
any given index set, there exists always a B-array of strength 6 and 6 constraints.

Therefore we can easily construct B-arrays with v$(βί9...9 βr)^N<42 which
satisfy Condition (13.1). This completes the proof.

THEOREM 14.3. There does not exist any S3(βί,..., βr) type 2Ί-BFF design
with v$(βί9...9 βr)^N<v3 ( = 64) which is not of S3 type.

PROOF. First consider ?c^> 1=0. From (14.4), 3μ2 = μ3 and μ2=μ4 hold.
From the nonsingularity of K2

0), it follows that μ2, μ3 and μ4 must be
positive integers. Thus μ3 is a multiple of 3. This implies N>64, a contradic-
tion. For the case κf ' 2 =0, from (14.5) we have 2μ3 = μ1+μ3 and 4μ3 = μ2 + μ4.

Since K[0) is nonsingular, it is clear that μ x-hμ 3 and μ2 + μ4 must be multiples
of 2 and 4, respectively. This implies JV>64, a contradiction. Finally consider
κg 3 =0. Then, from (14.6) we have 5{15(μ2 + μ4)-7(μ0 + μ6)} = 48μ3. Similarly
it can be shown that this contradicts N>64 or det(K(

0

0))τ^O. This completes

the proof.

THEOREM 14.4. Let /n = 8 and consider an S3(/?1?..., ft.) type 2S-BFF
design T with v^(/?1?..., βr)<>N<v3 ( = 93) which is not of S3 type. Then, apart
from an interchange o f Q and 1, T exists only when it is one of B-arrays of
strength 6 with index set {μ0, μ1 ? μ2, μ3, μ4, μ5, μ6} 5i/c/ί

ω0, 1, 1, 2, 1, 1, 2 + ωJ, (r = 1 j9t = 2),

where ω0 αnc/ o^! αr^ nonnegative integers with ωo + ω^ό. Furthermore T

is equivalent to an S-array with parameters (m = 8; A 0 = 1 H-ω0, A 1 = 1, A2 = 0,

PROOF. We shall use the same methods as in Theorems 14.2 and 14.3. For

K2,2=Q ? (14.5) reduces to 2μ3 = μ1+μ5 and 14μ3 = 5(μ2 + μ4). Since μ3=0

implies det(X(

1

0)) = 0, it is clear that μ3 and (μ2 + μ4) must be multiples of 5
and 14, respectively. This gives N>93, a contradiction. For jcg'3=0, (14.6)
reduces to 7(μ0 + μ6)=18(μ2 + μ4-μ3) and 7(μ1+μ5) = 22(μ2 + μ4-μ3). If μ3

τ£μ2-hμ4, then (μ0 + μβ) an<^ (Mi +^5) must be multiples of 18 and 22, respec-
tively, which leads to the contradiction N^93. Thus the case μ3 = μ2 + μ4>
μQ = μί=μ5=μ6 is considered. This implies κ^1 =y0-f-(ra — l)yt =0 (see Ex-

ample 4.1, (ii)), so that det(X{

0

0)) = 0. This gives a contradiction. Finally con-
sider κi' 1=0. From (14.4), then μ2 = μ4 and μ3 = 2μ2 hold. Since μ2 = 0 or
μ 2 _2 implies det(K(

0

0)) = 0 or N> 93, respectively, the case μ3 = 2, μ2 = μ 4=l
is considered. Therefore we suppose a B-array Twith index set {μ0, μ1? μ2 = l,
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μ3 = 2, μ4 = l, μ5, μ6}, where 0<μ1+μ5^2. The inequality μ1+μ5^2 is due to
Shirakura [23], Theorem 4.1. Also μι+μ5=0 implies that the distinct number

of assemblies in Γis less than v\(βί9...9 βr) = 73 if r= 1 and βί =2. From Corol-

lary 6.5, it is easily shown that apart from an interchange of 0 and 1, the possible

index set of Γis one of {2 + ω'0ι, 1, 1, 2, 1, 1, 2 + ωΊJ and {2 + ω'02, 1, 1, 2, 1,
0, ω'12}, where ω'01, ω'ίί9 ω'02 and ω'12 are nonnegative integers satisfying ω'01

+ ω /

1 1^7 and ω'02+ω'12^14. Simultaneously it is found that all B-arrays of

strength 6 with these index sets are identical with S-arrays. Among the B-arrays

N

*32

*32

*33

*34

*35

*36
*37

*38

*39

*39

*40

*41

*41

'> jf *** *

TABLE

μ0

0

1

2

2

3

3

4

0

1

0

1

2

1

14.1 Optimal

μi μ
2 ^3

1 0 1

0 1

0 ]

0 ]

0 ]

0 I

0 ]

I 0

I 0

I 0

t 0

0

0

2 0

2 0

2 0

2 0

2 0

2 0

S3

μ,

0

1

1

1

1

1

1

0

0

0

0

0

0

(01,

μ5

1

0

0

0

0

0

0

1

1

1

1

1

1

02,

μ*
0

1

1

2

2

3

3

0

0

1

1

1

2

, βr) type 2TO-BFF designs

S£0) types

0.68750 r=2;0!=0, 02=2

0.68750 r=2;0! = l, 0a = 3

0.67676 r=2;j8ι = l, j8ι = 3

0.66602 r=2; j8i = l, ft = 3

0.66243 r=2; ft = 1,02 = 3

0.65885 r=2; 0ι = l, 02 = 3

0.65706 r=2; βι = l, fc = 3

0.62305 r=2; 0!=0, 02=2
0.62305 r=l;/5 1-2
0.62305 r=l ;0 t = 2
0.61111 r=l;βί = 2
0.60917 r=l ; j8 t =2
0.60917 r==l;βί = 2

N

50

51

52

53

54

55

56

57

58

59

60

61

62

*63

μ*
1

2

2

3

3

4
1

2

2

3

3

4

4
5

A i μ

2 ]

2 ]

2 ]

2

2

2

2

2

2

2

2

2

2

2

2 μ.

[ 0

I 0

I 0

0

0

0

0

0

0

0

0

0

0

0

Pi

1

1

1

1

μ,

1

1

1

1

1

1

2

2

2

2

2

2

- 2

2

/*.

1

1

2

2

3

3

1

1

2

2

3

3

4

4

5j.0) types

0.94936 r=l;j8 1 = 3

0.93579 r=

0.92836 r=

0.92469 r=

0.92209 r=

0.92037 r=

0.84524 r=

0.83698 r=

0.82444 r=

0.82131 r=

0.81780 r=

0.81619 r=

0.81450 r=

0.81353 r=

i j8ι=3

;^ι=3
01=3
01 = 3

^1=3
;A=3

0ι=3

^ = 3
0ι=3
0ι=3

;0ι=3
0t = 3

;0ι=3-
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TABLE 14.1 (continued)

N types

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

*87

*88

*89

*90

*91

*92

3

4

4

5

5

6

6

3

4

4

5

5

6

6

7

5

5

6

6

7

7

8

3

3

4

4

5

5

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0

1 0 1

1 0 1

1 2

1 2

1 2

1 2

1 2

1 2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

1

2

2

3

3

4

4

5

3

3

4

4

5

5

6

6

3

4

4

5

5

6

6

2

3

3

4

4

5

1.60112

1.58894

1.58023

1.57599

1.57291

1.57076

1.56918

1.28477

1.27668

1.26510

1.26150

1.25747

1.25550

1.25342

1.25219

1.20743

1.19826

1.19257

1.18902

1.18614

1.18421

1.18246

0.52654

0.50228

0.49706

0.49327

0.49149

0.48991

r=l

r=\

r=\

r=\

r=\

r=\

r=\

r=\

r=\

r=l

r=l

r=\

r=\

r=\

r=l

r=\

r=\

r=\

r=\
V 1r = J

r=\

r=\

r=\

r=l

r=l

r=l

r=\

r=\

0ι=3

0ι=3

0, = 3

Λ=3

0ι = 3
0ι = 3
0ι=3
0ι = 3
0ι=3
0ι = 3
0ι = 3
0ι=3
0ι=3
0ι = 3
0ι = 3
0ι=3
0ι=3
0ι=3
0ι = 3
0ι = 3
0ι = 3
0, = 3
0ι=2
0ι = 2
0ι = 2
0ι=2
0ι=2
0ι=2

imply det(K0) = 0 and det(jK^1) = 0, respectively. This completes the proof.

In Table 14.1, optimal S3(βl9...9 βr) type 2m-BFF designs with respect to the

PGT criterion are presented for any given N assemblies, which satisfy (i) m = 6,

32^N^41, (ii) m = 7, 50gN^63 and (iii) m = 8, 65^N^92. As in Tables

8.1 and 10.1, note that for the designs of Table 14.1, their complementary designs

are also optimal. From Section 9 and Theorems 14.2-14.4, it is found that for

any N with (m = 7, 42gJV^63) and (m = 8, 65^JV^86), the optimal designs can

be chosen in the class of S3 type 2m-BFF designs. Furthermore, as seen from

Table 10.1 and Shirakura [24], it is interesting that many of the optimal designs

are also optimal with respect to the GT criterion. In Table 14.1, the designs
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TABLE 14.2 Covariance matrices for optimal SB

designs
...,βr)type2'*-BFF

N

32

32

33

34

35

36

37

38

39

39

40

41

41

μo

0

1

2

2

3

3

4

0

1

0

1

2

1

Pi

1

0

0

0

0

0

0

2

2

2

2

2

2

A«a

0

1

1

1

1

1

1

0

0

0

0

0

0

ft

1

0

0

0

0

0

0

1

1

1

1

1

1

Λ4

0

1

1

1

1

1

1

0

0

0

0

0

0

Λs

1

0

0

0

0

0

0

1

1

1

1

1

1

Λe

°}1 /
1

2

2

3

3

0

°l1 ί

1

1
 }2}

y(oΌ)

0.03125

0.03076

0.03027

0.03011

0.02995

0.02987

0.02832

0.02832

0.02811

0.02808

Kjo.n

0.00000

0.00049

0.00000

0.00016

0.00000

0.00008

0.00195

0.00195

0.00177

0.00174

1̂ (0.2)
¥
 0

0.00000

-0.00049

-0.00098

-0.00114

-0.00130

-0.00138

-0.00098

-0.00098

-0.00136

-0.00143

K
(i,i)

0.03125

0.03076

0.03027

0.0301 1

0.02995

0.02987

0.02832

0.02832

0.02817

0.02814

N μz μs

6 3 5 2 1 0 1 2 4 0.02520 -0.00003 -0.00187 0.04134

TV

87 3

88 3

89 4

90 4

91 5

92 5

1 2 1

1 2 1

1 2 1

1 2 1

1 2 1

1 2 1

2

3

3

4

4

5

0.01173

0.01130

0.01129

0.01116

0.01111

0.01104

-0.00100

0.00000

-0.00022

0.00000

-0.00010

0.00000

0.00015

0.00000

-0.00003

-0.00008

-0.0001 1

-0.00014

0.01925

0.01649

0.01590

0.01552

0.01534

0.01519

which are not optimal with respect to the GT criterion will be indicated by the

asteric *. In Table 14.2, the distinct elements V(

Λ

u'v} in (13.8) are also given

for these designs. For constructions of the designs, see Theorems 14.2 and

14.4.
Finally it may be remarked that for the case m = 6, the number of assemblies

AT = 32 obtained in Theorem 14.2 is the minimum number for designs of resolu-

tion VI. Indeed it has been stated in Webb [39] that the minimum number

must be N = m2 — m + 2 in a general 2m-FF design of resolution VI. For m = 7

and 8, we have AT = 44 and 58, respectively. However it is unknown whether

there exists a 2W-BFF design (m^6) of resolution VI with the minimum num-

ber.
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K(l,l)

0.00000

-0.00049
-0.00098
-0.00114
-0.00130
-0.00138
-0.00098

-0.00098

-0.00113

-0.00116

F(l,2)

0.00000

0.00049
0.00000
0.00016
0.00000
0.00008
0.00195

0.00195

0.00162

0.00157

(̂1,2)

0.00000

0.00049
0.00000
0.00016
0.00000
0.00008
0.00000

0.00000

-0.00033

-0.00039

(̂2,2)

0.03125

0.03076
0.03027
0.03011
0.02995
0.02987
0.02832

0.02832

0.02760

0.02748

(̂2,2)

0.00000

-0.00049
-0.00098
-0.00114
-0.00130
-0.00138
-0.00098

-0.00098

-0.00170

-0.00181

FU,2)

0.00000

-0.00049
-0.00098
-0.00114
-0.00130
-0.00138
0.00098

0.00098

0.00026

0.00014

y(i.i)

-0.00554

K(l,2)

0.00001

F(l-2)

0.00001

F(2,2)

0.02376

f/(22)

-0.00302

K(2,2)

0.00144

F(i,n

0.00710
0.00434
0.00375
0.00336
0.00318
0.00304

K(l,2)

-0.00042
0.00000

-0.00009
0.00000

-0.00004
0.00000

(̂1,2)

-0.00042
0.00000

-0.00009
0.00000

-0.00004
0.00000

K(2,2)

0.01289
0.01282
0.01281
0.01278
0.01277
0.01276

(̂2,2)

0.00073
0.00067
0.00065
0.00063
0.00062
0.00061

K(2 2)

-0.00100
-0.00107
-0.00108
-0.00110
-0.00111
-0.00113
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