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0. Introduction and summary

The theory of fractional factorial designs, first introduced by Finney [12],
has found increasing use in agricultural, biological, industrial, and other various
experimentations. One reason for the usefulness of fractional designs in prefer-
ence to complete factorials is that they involve a lesser number of assemblies or
treatment combinations, since higher order effects can be in general assumed negli-
gible. In the beginning, the theory was developed for orthogonal fractional
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designs in which the estimates of various effects of interest are all uncorrelated.
However, as is well known, they are available only for special values of N as-
semblies. Moreover they are in general uneconomic in that they require a large
value of N in comparison with the number of unknown effects. As generaliza-
tions of orthogonal fractional designs, Chakravarti [5] first introduced the concept
of balanced fractional designs. In these designs the covariance matrix of the
estimates of effects has desirable features second to orthogonal fractional designs,
although the estimates are not uncorrelated. Of course, balanced fractional
designs are flexible in the number of N assemblies with the fact that more experi-
mental situations can be handled. Such economic designs are very attractive
and often practical.

After important work of Bose and Srivastava [2, 3], Srivastava and/or
Chopra have developed balanced fractional 2™ factorial (briefly, 2"-BFF) designs
of resolution V (cf. [7-10, 28, 34, 35, 37]). It is known from their results that
these designs have close relationships with balanced arrays (B-arrays) of strength
4, which make it possible to interpret the problems into those in combinatorial
fields. For some work in these fields, see Chakravarti [6], Srivastava [29],
Srivastava and Chopra [36], Rafter and Seiden [18]. The above investigations,
however, have been restricted to the effects up to two-factor interactions only.
Since three factor or higher order interactions can not always be neglected, it
is desirable to study fractional designs of higher resolution.

Recently, Yamamoto, Shirakura and Kuwada [41] have established a general
connection between a 2”-BFF design of resolution 2/+ 1 and a B-array of strength
2[. In the above paper, the authors also have discussed some properties of a
triangular type multidimensional partially balanced (TMDPB) association
scheme, defined among the effects up to [-factor interactions, which are useful
for clarifying the algebraic structures of 2"-BFF designs of resolution 2/+1.
The concept of MDPB association schemes was first introduced by Bose and
Srivastava [3] in relation to the analysis of fractional designs. Using the decom-
position of the TMDPB association algebra 2 into its two-sided ideals, Yamamoto,
Shirakura and Kuwada [42] have obtained an explicit expression for the charac-
teristic polynomial of the information matrix M, of a 2"-BFF design T of resolu-
tion 2/+1. (This result includes that of a 2"-BFF design of resolution V (I=2)
given by Srivastava and Chopra [35].) It is used for comparing 2"-BFF designs
of higher odd resolution by popular criteria such as minimizing the trace, determi-
nant or largest root of Mz!. Indeed, Shirakura [23] has presented optimal
2m-BFF designs of resolution VII (/= 3) with respect to the trace criterion for each
6<m <8 and for the reasonable number of N assemblies. On the other hand,
the study of balanced designs of even resolution is' much more rare. For work
on such designs, see Shirakura [24], Srivastava and Anderson [30, 33]. Particu-
larly, by use of the properties of the TMDPB association algebra 2, Shirakura



Balanced Fractional 2™ Factorial Designs 219

[24] has obtained a general result that some B-arrays of strength 2/ yield 2"-BFF
designs of resolution 21.

This paper will make further deep investigations on 2™-BFF designs of odd
or even resolution on the basis of the above mentioned results. 2m-BFF designs
derived from B-arrays of strength 2/ will be characterized. This paper thus con-
sists of three parts. In Part I, the algebraic structures of 2"-BFF designs are dis-
cussed. In Section 1, fractional 2™ factorial designs of resolution 2/ or 2/+1 are
treated. In Section 2, 2"-BFF designs of resolution 2/ or 2/+1 are defined. A
relation between a 2m-BFF design of resolution 2/+ 1 and a B-array of strength 2/,
m constraints and index set {ug, uy,..., ti5;} is also given. Section 3 gives defini-
tions of an /+1 sets TMDPB association scheme and its relationship algebra
A.  Furthermore it is observed that 2 called the [+ 1 sets TMDPB association
algebra is decomposed into the direct sum of [+1 two-sided ideals 2, (=0, 1,
..., ). Section 4 presents the irreducible representation K, of the information
matrix M for a B-array T of strength 2/ with respect to each ideal ;. For
later use, explicit expressions for K, are given for each case [=2 and 3. As will
be seen, many of the results in this part have been already established by the
authors [41, 42]. For clarification of this paper, however, we shall recall them.

In Part 11, optimal 2°-BFF designs of resolution VII with respect to the trace
and determinant criteria are presented for any given N assemblies with 130N
<150. For this purpose, Section 5 gives explicit expressions for the trace and
determinant of M73! for a 2m-BFF design T of resolution 2I+1. These can be
obtained from the characteristic polynomial of M, due to [42]. As a by-product,
the existence conditions for 2"-BFF designs of resolution 2/+41 or B-arrays of
strength 2/ arc also given in terms of the m and g, (i=0, 1,..., 2[). Sections
6 and 7 deal with constructions of B-arrays of strength t. Simple arrays in
Section 7 have been introduced by Shirakura [22], as special cases of B-arrays.
In Section 8, the required designs are given with the covariance matrices of the
estimates and other useful informations.

In Part 111, 2m-BFF designs of even resolution derived from various B-arrays
of strength 2/ are investigated. Section 9 deals with 2m-BFF designs of resolution
2l obtained from B-arrays of strength 2/ with index y;=0, which are called S,
type 2m-BFF designs. For the case /=3, Section 10 presents optimal S5 type
2m-BFF designs with respect to the generalized trace (GT) criterion, due to [24],
for m=6, 7, and for every value of N within a certain practical range. Note that
the optimal S; type 28-BFF designs have been already presented by [24]. As in
Section 8, the covariance matrices of the estimates and other useful informations
are also given for such designs. In Section 11, alias structures of [-factor inter-
actions in S, type 2”-BFF designs and their estimability derived from these struc-
tures are discussed. Section 12 shows that there exists a 2"-BFF design of
resolution 1V with the minimum number of assemblies N =2m. It can be obtained
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from a B-array of strength 4 with u,=0. Section 13 shows that some 2™-BFF
designs of resolution 2/ can be also obtained from B-arrays of strength 2/ with
kg #!"8=0, where ki !"F(f=0,1,...,1) are the last diagonal elements of
K. Such designs are called S(f;, B,,..., B,) type 2"-BFF designs if wj At:!=f1
=KkpPr!Pr=... =k Prl"P=0 and ki *!'"*#0 for a#pf;. For given N as-
semblies, there are a large number of possible S,(f,,..., 8,) type 2™-BFF designs.
A criterion for comparing these designs is also given which is called the partial
generalized trace (PGT) criterion. In Section 14, for the case [=3, optimal
Si(B4,.-.» B,) type 2m-BFF designs with respect to the PGT criterion are presented
for m=6, 7, 8, and for desirable values of N.

Part I. 2m™-BFF designs and their algebraic structures

1. Fractional 2™ factorial designs

Consider a factorial experiment with m factors f|, f5,..., f,, €ach at two
levels (i.e., a 2™ factorial design). An assembly (or treatment combination) will
be represented by (jy, ja,-.., j.) Where j,, the level of the factor f,, equals 0 or 1.
There are 2™ assemblies in all. Consider the observations y(ji, j;,--.» jm) COI-
responding to assemblies (j,, j,,...,j,) and their expectations #7(ji, jz,-- > jm)
=Exp[y(jis jase-es jm)]- It is well known (cf. [41]) that the various factorial
effects can be expressed as linear combinations of all expectations n(j;, j2;---» jm)»
i.e.,

(1) O ez ) =50

J19d 25000y J

f19d 2500esd : : :
dgll,ezz ..... S N(J1s J2ss ]m)
m

where

didzin = dj(e)d;,(82) +d;, (€m) .

E1:,824500058m

Here dy(0)=d,(0)=d,(1)=1 and dy(1)=—1. In particular the general mean
is represented by 6(0, 0,..., 0) and the main effect of the factor f;, is represented by
0(e,, &5,..., &,), wWhere g, =1 and =0 for r#t,. The two-factor interaction of
the factors f;, and f,, is represented by 6(e,, ¢,,..., &,), Where g, =¢,=1 and
e,=0 for r#t,, t,. In general the k-factor interaction of the factors f, , f;,,..., fi,
is represented by 8(ey, €,,..., &,), where &, =¢,=---=¢, =1 and the remaining e,
are all zero.
Let
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y(,...,0,0) 6(,..., 0, 0)

$(0,.... 0, 1) 0(0,.... 0, 1)
Y = . and 6 = .

y(,.., 1, 1) 0(1,..., 1, 1)

be respectively the 2™ x 1 vectors of all observations and effects in the binary
order. From (1.1), O can be expressed in the following form:

(1.2) 6 = 5 Dy Exp [ Y],

where

Dyy=DQ®D ®---® D (m times Kronecker products of D).

{do(O) d(0) } { 11 }

D = = .

do(1) dy(1) -1 1

Note that D, is an Hadamard matrix of order 2. Thus Dy,,)D{,,y=2™ I ,m, Where
I, denotes usually the identity matrix of order p. From (1.2), we thus have

Here

(1.3) Exp[Y] = D,,0

or

(1‘4) r’(jl’ j25"'3jm) = 2 dé,‘,'elz‘l,’.’e{,:" 9(61, £2a'--a £m)-
E1sEgrunes E€m

For simplicity we shall write 6,=0(0,0,...,0) and 0,,,..,.=0(¢, &,..., &,) if

& =¢&,==¢,=land e =0forr#t,, t,,..., t,. Then(1.4) reduces to the follow-
ing:
(1.5) ﬂ(jl,jz,---: ]m) = Z dj,l"'dj.kenmtk
k=0 {t1sestr}emg
=0 d; 0, + d; d; 0
¢+{t1§m1 Jeg Uty {tl.tzz)emz Jea Y tat2

+ +dj,dj2"'dfm012“‘m’

where m, denotes the class of all subsets of {1, 2,..., m} with cardinality k and
d;=1 or —1 according as j=1 or 0.

The formula (1.3), (1.4) or (1.5) is used as a statistical linear model in a 2m
factorial design. For any fixed integer / (1</<m/2), we shall assume a general
situation where (I+1)-factor and higher order interactions are negligible (i.e.,

0,1, =0 for k=1+1). (Throughout this paper, note that we are considering
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such a situation.) The number of unknown effects, therefore, is v,=1+(']n>

+< 31 >+ +< ';') and the vector of these effects is written as

(1.6) 0" =(0450,,0,,...,0,: 0,5 0,3, 001053 012epseees i 1)
= (045 (0,33 {00,355 {0py500})
For later use, we shall provide the following vectors:
o =0} {0i0}5 5 Oniei )y Xy — 1)),
(.7 0 = (0¢5 0)s (Ixv-y),

0 = O (1x(7))s

i.e., @'=(0:603)=(0,: 6;,: 83). From(1.5), we can obtain the following model
for the expectation of the observation corresponding to an assembly (ji, j,-.-.,

Jm):
(]8) n(jl’j2,~-ajm)

d. 0

Jeg tit2erotit

]
=0,+ d. d. -
¢ k=1{tlat2,§’k}emk Jentie

Let T be a suitable set of N assemblies (called a fraction) in which any given
assembly may not occur or occur once or more times. Then T can be considered
as a (0, 1) matrix of size mx N whose a-th column (j®, j{,..., j{®)" denotes
the a-th assembly fora=1, 2,..., N. Let yr be the N x 1 observation vector whose
a-th element is y(j{®, 1(2“’, ‘“)) and further consider the N observations
in y as independent random varlables with common variance ¢2 (>0). From
(1.8) y can be expressed as

Exp[yr] = E/6
(1.9)
Var[yr] = a2y,
where E; is the N x v, design matrix of T whose elements of the first column cor-
responding to the general mean 6, are all I, and whose elements of o-th rows
corresponding to an effects 0, ,,..., are d;@d; - d;.
ty t2 tk

The concept of estimable functions of @ will be stated in the following defini-
tions:

DEFINITION 1.1. A px1 vector ¥ is called a parametric function of 6
if each element of Y is a linear function of unknown effects 0,,,..,, (k1) with
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known constant coefficients, in other words, if ¥ is such that
(1.10) Y = Cé,
where C is a px v, matrix with known constant elements.

DEFINITION 1.2. A parametric function Y of @ is called an estimable func-
tion (or, simply, estimable) if each element of Y has an unbiased linear esti-
mate under the model (1.9), in other words, if there exists a px N matrix A of
constant elements such that

Exp [AyT] = .p’
identically in @. Also Ay is called an unbiased estimate of .

DEFINITION 1.3. For any given fraction T and estimable function ¥,
its unbiased estimate nﬁ is called the best linear unbiased estimate (BLUE)
of Y if the a-th element ofqp has a minimum variance in the class of all unbiased
linear estimates of the a-th element of ¥ for each a=1, 2,..., p.

For the observation vector y; and design matrix E;, consider the following
equations for a v;x 1 vector §*:

(1.11) M10*=E£Fyr,

where M= E}E; called the information matrix. These are so called the normal
equations.

THEOREM 1.1 (Gauss-Markov Theorem). For any estimable function
=C@, its BLUE { is unique and given by

¥ = Co*,
where @* is a solution of the normal equations (1.11).

Of course, the BLUE nﬁ depends on a fraction T. By matrix theory, there
exists always a solution 8* of the normal equations (1.11) and it is in general not
unique for a given 7. However Theorem 1.1 shows that for any two solutions
6% and 0% of the normal equations (1.11), $=C0*= C6% holds.

As a means of classifying fractions, Box and Hunter [4] introduced the
term ‘‘resolution.” First we shall define a fractional 2™ factorial (briefly,
2m-FF) design of odd resolution.

DEFINITION |.4. A fraction T is called a 2™-FF design of resolution 21+ 1
if @ itself is estimable, i.e., if y=C6, where C=1,, is an estimable function of
6.
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From the model (1.9) and Definition 1.2, it is easy to see that T is a 2"-FF
design of resolution 2/+1 if and only if its information matrix is nonsingular.
From Theorem 1.1, furthermore, it follows that for a 2™-FF design T of resolution

21+ 1, the BLUE 6 of 6 is given by
(1.12) 6 = ViEpyr,

where V.=M7z!. Note that fisa unique solution of (1.11). In addition it can be
easily shown that its covariance matrix Var [5] is given by

(1.13) Var[6] = Vyo2.

From the nonsingularity of M and the model (1.9), we can easily prove the
following

THEOREM 1.2. Let T be a 2™-FF design of resolution 21+1. Then the num-
ber of distinct assemblies in T must be at least v,.

Next we shall define a 2m-FF design of even resolution.

DEerFINITION 1.5. A fraction T is called a 2™-FF design of resolution 2l
if 8, given in (1.7) is estimable.

In a 2"-FF design of resolution 2/, in general, the general mean 6, and
I-factor interactions themselves are not estimable, but some linear functions
of these effects are estimable. These functions determine alias structures of
0, and 0,,,.,. In 2"-FF designs of even resolution, it is very important to
investigate such alias structures (see Sections 11-13). It is well known (see, e.g.,
Scheffé [21]) that T is a 2™-FF design of resolution 2! if and only if there exists
a matrix X of size px N such that XE;=[0,x,, I,, Opx,], Where p=v,_;—1
and q=< '}1 > The symbol 0,,, denotes the p x g matrix whose elements are all
0. In this case, by considering C=XE; in Theorem 1.1, we obtain the BLUE
50 of 8,,

éo = XETo*.

For general fractional experiments (i.e., fractional s™ or s; Xs, X - XS,
factorial designs), the concept of the term ‘‘resolution 2/ or 21+ 1"’ can be similarly
defined but we shall not consider it here. As compared with designs of odd resolu-
tion, in general, it is very difficult to obtain those of even resolution. For earlier
work on designs of resolution IV, see, e.g., Anderson and Srivastava [1], Margolin
[16, 17], Shirakura [24], Srivastava and Anderson [30, 33], Webb [39].
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2. 2™-BFF designs and B-arrays of strength 21

First consider a 2™-FF design T of resolution 2/+ 1 and the covariance matrix
Var [@] for the design T.

DEerINITION 2.1. T is called a balanced fractional 2™ factorial (2™-BFF)
design of resolution 21+ 1 if the covariance matrix Var [@] is invariant under any
permutation of m factors.

REMARK. It has been observed in [41] that Definition 2.1 is equivalent to
one of the following three statements: (i) For a design T(P) obtained from T by
letting T(P)=PT, where P is any permutation matrix of order m, M31=Mzlp,
holds, (ii) for any two estimates 9,1...,u and (9,'1...,," in the BLUE 5,

Var [érl---tu] = Var [ét(h"'lu)] ’

Cov [0,1...,u, 0,!]...1'"] = Cov [91.(“...,“), Hr(t’l-"t:,)] ’

where 7 is anyAelemeAnt of the permutation group {1.'; ‘r=(r%1) 1(22):::1’("’"))},
and (iii) Cov[0,,..., 0...,] is a function of u, v and |{t,,..., t,}O{t},..., t}}|
(or |{ty,..., t,} N {tY,..., t,}]), and Var [9,1...,u] is only of u, where the symbols
|S| and S;© S, denote respectively the cardinality of the set S and the symmetric
difference of the sets S; and S,, i.e., S;©S5,=S;US,-S;n8S,.

Now we define a balanced array (‘‘partially balanced” array, in the termi-
nology of Chakravarti [5]) of strength ¢ (with 2 symbols), which has a close rela-
tionship with a balanced design considered in this paper.

DEFINITION 2.2. A (0, 1) matrix T of size m x N is called a balanced array
(B-array) of strength t, size N, m constraints and index set {jg, y,..., 4t} (or
indices pu; (i=0, 1,..., 1)) if for every t-rowed submatrix T* of T, every vector with
weight (or number of nonzero elements) j occurs exactly p; times (j=0, 1,..., 1)
as a column of T*.

For the B-array defined above, it is easily shown that N = Z'j=o< ; )y ;. Thus
the term ‘‘size” will be omitted if not necessary.

Let &(t,---t,; ty---t,) be the element of an information matrix M=EE}
in the cell corresponding to (t,--t,; t}---t;) for 6,,..,, and 0,,..,, in 8. Then the
following two theorems have been established by Yamamoto, Shirakura and

Kuwada [41]:

THEOREM 2.1. Let T be a 2™-FF design of resolution 21+1. Then a neces-
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sary and sufficient condition for T to be balanced is that the information matrix
M has at most 21+ 1 distinct elements y; (i=0, 1,..., 2]) such that

Vi = E(tl'"tu; t’l"'t’v) ’f ]{ll"“’ tu} © {tlla“" l’v}l =i

THEOREM 2.2. A necessary and sufficient condition for My to be expressible
by such elements y, is that T is a B-array of strength 21, m constraints and index
set {Uo, M1s--.5 Hay}. A connection between the elements y; of My and the indices
u; of a B-array T is given by

@1 n= 2 3 or(5)( 2
2.2) wi=r 8 % oe( ()

for all i=0, 1,..., 21.

Throughout this paper we assume < Z >=0 if and only if b>a=0 or b<0.

Next we shall make the definition of a 2m-BFF design of even resolution.

DEerFINITION 2.3. A 2™-FF design T of resolution 21 is said to be balanced
if the covariance matrix Var[8,] for T is invariant under any permutation of m
factors.

In Part III, a 2m-BFF design of even resolution will be discussed in detail.

A 2m-FF design of resolution 2/+1 (or 2[) is said to be orthogonal if the
covariance matrix Var [5] (or Var [50]) is diagonal in this design. A B-array of
strength ¢, size N, m constraints and index set {uq, i,..., 4.} reduces to an or-
thogonal array with parameters (N, m, 2, t) of index pu when po=p,=---=p,
(=u, say) (see Raghavarao [19]). It is well known (see, e.g., [41]) that an or-
thogonal array with parameters (N, m, 2, 2I) (or parameters (N, m, 2, 21—1))
of index u is equivalent to an orthogonal fractional 2™ factorial design of resolu-
tion 2/+1 (or 2/). However orthogonal arrays with parameters (N, m, 2, 1)
of index u are available only for the special numbers N =2y and the possibility
of the existence of such arrays is in general very small. In such a sense, the class
of balanced designs arises naturally as the next wide class to be looked into.

3. TMDPB association schemes and TMDPB association algebras

As a generalization of partially balanced association schemes, multidimen-
sional partially balanced association schemes have been first introduced by Bose
and Srivastava [3]. Subsequently the theory has been developed in Srivastava
and Anderson [31, 32], Yamamoto, Shirakura and Kuwada [41], Yamamoto
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and Tamari [43].

Consider p mutually disjoint non-null finite sets of objects S, S,,..., S,
with |S;|=n;, each. Suppose that a relation of association is defined for each
ordered pair of objects x;,€ S; and x;,€ S}, and that x, is called the a-th associate
of x;, for some o belonging to a set of association indices IT¢:/).  As in the case
of partially balanced association schemes, every object is called the zeroth associate
of itself and 0¢ ITU-) is assumed. The following definition is due to [41]:

DErFINITION 3.1. The relation of association defined among the sets S,,
Sy,...s Sy is called a p sets multidimensional partially balanced (MDPB) associa-
tion scheme if the following conditions are satisfied:

(i) The relation of association is symmetrical, i.e., if x;, is the a-th as-
sociate of x;,, then the x,, is also the a-th associate of x,.

(ii) With respect to any x;,€S;, the objects of S;, distinct from x,,, can
be divided into n-) distinct classes and the number of objects in the a-th
associate class Sj(a; x;,) is n{+9. The numbers n:9 and n{J) are inde-
pendent of the particular object x;, chosen out of S,.

(iii) Let S;, S; and S, be any three sets where they are not necessarily
distinct. Consider the sets Si(B; x;;) and Si(y; xj,) where x;,€S; and x;€S;
are the a-th associates. Then the number of objects common to S(B; x;,) and
Su(y; xjp) is p(i, j, «; k, B, ) which depends on the pair (x;, x,) and S, only
through i, j, a, k, p and y.

Note that the condition (i) implies n¢:D=nU.D and p(i, j, a; k, B, y)=
p(j, i, «; k, 7y, B), and that the number n{j>) =1 can be consistently defined for all i.
Now let Sy, Sy, S,,..., and S; be [+1 sets of effects {0,}, {6,,}, {0;,0,}>--->

and {6,,,,...,}, the cardinalities of these sets being 1, (T), (';),, and <r1n>,

respectively. Suppose a relation of association is defined among these sets
in a way such that 0,,..,,€ S, and 6,...., € S, are the a-th associates if

1t

3.1 I{tys-..5 t,} N {tY,..., t,}] = min(u, v)—a,

where min (u, v) denotes the minimum of the integers u and ». Then the follow-
ing theorem has been established by Yamamoto, Shirakura and Kuwada [41]:

THEOREM 3.1. Among the 1+1 sets of effects {04}, {0,,}, {0:,1,}>-. 5 {0y}
the relation of association defined by (3.1) is an 1+1 sets MDPB association
scheme with parameters

{0, 1,..., min (u, v)} if u#nv,
H(“:") =
{1, 2,..., u} if u=no,
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[ min (u, v)+1 if u#v,
n(u, V) —

u if u=v,
nluv) = u )( m—u

" min(u, v) —« v—min(u, v)+o /°

min (u,v)—a min(u, v).—a v—-min(u, v)+“
D k

p(us v, a;w, ﬂ’ '}’) = o min(u, w)_ﬁ_.k

_<v—min(u, v)+a X m—u—v+min(u, v) —a
min(v, w)—y—k /\ w—min(u, w)+ f—min(v, w)+7y+k

The association thus defined is called an [+1 sets triangular type MDPB
(TMDPB) association scheme. As seen from Yamamoto, Fujii and Hamada
[40], it can be regarded as a generalization of triangular series of association

schemes. To investigate the algebraic structure of an [+ 1 sets TMDPB associa-
tion scheme, first consider the <Z’>x<’:> matrices A ")—-[!a“ '" s (@=0,
1,..., min(u, v); u, v=0, 1,..., ), called the local association matrlces. Each

matrix A{** is defined as follows:

(3-2) at'l...t;, -

t1etusa

1 if 6., is the a-th associate of 0,,..,,
[ 0 otherwise.
From (3.1) and Theorem 3.1, we have

Ag = Iem,

Agv,u) —_ (Agu,v))’,
(3 3) min(u,u)A(u ») G
- Z, A =Gmyu(m,
ALy =neVim),
min(u,v)
Aéu,w)Afyw,U) — Z (u v, o) W, ﬂ ,y)A(u u)

where G, denotes the p x g matrix whose elements are all 1 and, particularly,
J»=G,x;. Next consider the ordered association matrices D#*) of size v;x,
obtained in a way such that every matrix has (I+ 1)2 submatrices M™:%) of size

<m> (m) in the w-th row block and s-th column block for w, s=0, 1,..., 1,
and that all but M®®)=A{") are zero matrices, i.e., M9 =0 (,,,)x(,,,)

(w, s)#(u, v). Here O,,, denotes the px g matrix whose elements are all 0.
Then, from (3.3) we have
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D;v,u) = (Dgu,v))',

(u,u) —
G.4) 208 =L

1 I min(u,v) .0)
Z Z GZO Da“’v =Gv,xv,,

u=0 v=0
DGuwISGs,0) = § minél‘:,v) (u, v, oa; w, p )D(u,v)
B 7 ws = P s Uy, X5 W, P, )0 s

where 6,,=1 or 0 according as w=s or not. The association matrices B{*
which represent the relation of association of an [+1 sets TMDPB association
scheme can be defined as follows:

( | Dgu,u)+D‘(z“r") lf u # v,
(3.5) Bz =
DL“,U) if u=~.

The algebra A ={B&»|a=0, 1,..., min (4, v); 0Su<v<I} generated by (ln;3)

symmetric matrices B{*) is called an [+1 sets TMDPB association algebra.
The following theorem is due to [41]:

THEOREM 3.2. The I+1 sets TMDPB association algebra U is a semi-
simple, completely reducible matrix algebra. It can be also represented by the
linear closure [D{#?|a=0, 1,..., min(u, v); u, v=0, 1,..., 1] of all (I+1)(I+2)
(21+3)/6 ordered association matrices D{*+),

?)x(?}) matrices Ay-*%, (=0, 1,..., min(u, v); u,

v=0, 1,..., ), which are linearly linked with the association matrices A%’ by
the following (see [27], [42]):

Now consider the <

8
(3.6) AW = 3 Zgu0) glw 0% for 0Sa<uc=v,
u=0
3.7 A = 3 e g0 for 0SB<uso,
a=0
(3.8) Af0% = (ALpw¥y for u>v,
where

N

B+b B /3
(3.9 z;,;,w:bgo(—l)a—b( Xu—aXm zv_lfz{)(m “u >}



230 Teruhiro SHIRAKURA

Ba ¢[Iz;v;‘,v)
(3.10) A, <m><u>< — > .
u o v—u+to

Here d’ﬂ:(';)—( ﬁT] > Then the matrices Aj“*’* have the following pro-

perties:

i (u,u)é —
o =1y

(u,0)% — m ‘m -2

(3.11) At = {(u >( v )} G
ALM,W)#ALW,U)# — 6aﬂAl(’u,v)#,
rank (Ay*) = ¢,

(3.12) Al(’u,v)# = C;’u,v)A;iu,u)#A(Ou,v) for u <o,

where

el = {( m;—g;ﬁ)( Z:g>}—1/z.

Let D§~v'* be the matrices obtained by replacing the only nonzero submatrix
Agev) of Dy by Ag»*. From (3.6)-(3.11), we have

(3.13) D@ = éo ZwoDE for 0Sasuso,
(3.14)  Dvi = ago 2 D@ for 0<Bs<ucsno,
if k=0,

Vi

I-k u
(.15 Y > Dywt=
u=08=0 diag [1,_,, Op,xr,] if 1sks],

where p,=Y ¥4 (,;), and
Di(gv,u)# = (Dgu,v)#)’,

(3‘ 16) D;"'"')“D‘(gs’”” — 5ws5apD;3u’v)#’
rank (D§-V¥) = ¢,

From Theorem 3.2 and (3.13)—(3.16), the following theorem can be established
(cf. [42]):

THEOREM 3.3.
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(i) The I4+1 sets TMDPB association algebra W is represented by the
linear closure of all (I+1)(I+2)(21+3)/6 matrices D§**%, i.e.,

A=[Dy-¥p=0, 1,.., min(u, v); u, v =0, 1, .., [].

(ii) Let A, be the matrix algebra generated by (I—p+1)? matrices D§*»*
for each =0, 1,..., 1, i.e.,

Ay = [Dy-*u, v =4, f+1,.,1],
then Ny is the minimal two-sided ideal of A and
AA, = WA, = 6,,%,.

(iii) The algebra W is decomposed into the direct sum of 141 ideals Ay,
i.e.,

A = W@A, D DA,

(iv) Each ideal Ay has D§2% (u, v=4, B+1, .., 1) as its basis and it is
isomorphic to the complete (I—f+1)x(l—B+1) matrix algebra with multi-

s ou=(§)-( 1)

This thcorem implies that for any matrix B (=X - 2120 2525 A /Dy 2'%,
say) belonging to 21, there exists a v, x v, orthogonal matrix P such that
(3.17) P'BP =diag[Aqg; Ay, ..y Aysees Aoy Al

—— [N —
1 L]

where A, are the (/—f+1)x(I—f+1) matrix with (i, j) elements ApJ. The
matrix Ay is called the irreducible representation of B with respect to each ideal
A, for which we shall use the following notation:

4. The irreducible representations of the information matrices for B-ar-
rays of strength 21

Now consider a B-array T of strength 21, m constraints and index set {uq,
Uise-.s Hgy}. Further consider the information matrix M, for the B-array T as a
design. In this section we shall obtain the irreducible representations of M
with respect to ideals ;. They will occur in later discussions frequently.

From Theorem 2.1 and (3.1), it is easy to see that if two effects 0,,..,, and
0y,..., are the a-th associates, then
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&(tyot,; 1y oty) = Yoy
where w=|u—v|+2a, y; are given in (2.1) and &(¢;---t,; t;---t,) is the element
of My corresponding to 6,,..,, and 6,,..,.. From the definition of association
matrices D{#-?, therefore, M, can be expressed as

l

1 minCu,v)
Mp=3 3 5" p,Dg0.
u=0 v=0 a=0
Hence it follows from Theorem 3.2 that the information matrix M, belongs to the
1+1 sets TMDPB association algebra 2. From (3.13) M, can be also expressed

as

I 1= 1-P

4.1) Mp=3Y 3 3 kpiDif+iP+is,

B=0 i=0 j=0
Here

. . Bti .
4.2) Kl = kft =3 .20 for 050 < jSI-B;
a=0
0SB,

where z},‘;’”) are given in (3.9). From Theorem 3.3, therefore, we can obtain
the (I—B+1) x (I—p+1) symmetric matrices Kz (=0, 1,..., I) such that for the
B-array T,

Ay: My — K,

where
0,0 0,1 ... 10,1~
Kg kg Kgh
4.3) K; = : : :
1-8,0 1-,1 ... 1l—B,1-
Ky B Kyh K b1-B

In particular the matrices K, for the cases [=2, 3 are important. Therefore
explicit expressions of K, for =2, 3 are presented in the following example:

ExAMPLE 4.1.

(i) The case I=2.
i 1/2 7
Yo ml/2y, (rzn) Y2

K = —1\1/2

(3x3) Yo+ (m—1)y, ("’Tl) {2v1+(m—2)ys} |,

-2

(Sym.) vo+2(m—2)y2+<m2 )'y4
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K,

_[ Yo—72 (m—=2)12(y;—73) }
2x2) ’

(Sym.) Yot (m—4)y,—(m—3)y,
K; = y0—=2y,+74 = 2%p,,
where
Yo =N = pg+po+4(us+pu,)+6pu,, V1= Ha—Ho+2(us— 1),
V2 = HatHo—2y V3= Ra—to— 23— 1),

Ya = g+ po—4(us+ 1) +6u,.

(ii)) The case I=3.

K, = Yot {m=17: <ﬂ’2_—1>”2{2%+(m—2)v3}
(4x4) i tmes (%5
sym)
G
("3 )} vt =374
(m52) " favi+30m=33+( ™5 )1}
vo+30m=37243( "5 Jat ("5 o6 |
[vo=12 =210, —75)
Gn3)” Yo+ (m—4)p2—(m—3)y4
(sym)
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—2\1/2 a
<'"7 ) (Y2—74)

-

<m;—3)”2{2h+(m—6)v3—(m—4)vs}

_ _9 B
70+(2m—9)y2+(_m._,4_)7(’_7_1_)y4_<m2 4)%
[)’0—2)’24-?4 (m—4)112(y, —2y3+75) }
2 =
(2x2) (Sym.) Yo+ (m—7)y,—Cm—11)y,+ (m—5)y,

K3 =70—=3y2+ 374~ 6
where
Yo = Mo+ o+ 0(ts+ )+ 15(ps + p13) + 2013,
V1 = Mo —Ho+Hps—py)+ 51— p2),
V2 = Mo+ o+ 2(us + py) — (g + 12) — 4us,
V3 = Ho—to—3(Ua—H2), Va = Mo+ Ho—2(1s + 1) — (1 + p2) +4us,
Vs = Ho— Ho—4(pts — 1)+ 5(pts — 12)s Yo = Mot Ho—0(is+ 1)+

+ 15(pt + 145) — 20u5.

Part II. 2m-BFF designs of odd resolution and their optimalities

5. Various properties derived from irreducible representations of the in-
formation matrices of 2™-BFF designs of resolution 21+1

For a B-array T of strength 2/, m constraints and index set {fy, iy,.--5 Uai}s
we have observed in Section 2 that Tis a 2"-BFF design of resolution 2/+1 if and
only if its information matrix M is nonsingular. We now proceed to consider
the characteristic polynomial of M of a 2m-BFF design of resolution 2/4 1 which
will make it possible to investigate the balanced designs of higher resolution.

Since I, € U, if follows that

Q«Iﬂ: MT_AIW —_—> Kﬁ—)ull_ﬂ+ 1
From Theorem 3.3, we have the following theorem (cf. [42]):

THEOREM 5.1. The characteristic polynomial W(A) of the information
matrix My of a 2"-BFF design T of resolution 21+ 1 is given by
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(5.1) V() = det(My—2l,) = TT {det (K,—2l,_ s )},
p=0

where det( .) stands for the determinant of a matrix.
From this theorem, we can easily establish the following:

THEOREM 5.2. Let T be the design of Theorem 5.1. Then

(5.2) r(Vy) = r(M51) = 3 ¢tr (K,
(5.3) det(Vy) = det (M7.1) = ﬂ['[O (det (K5 1)} s,

where tr(-) stands for the trace of a matrix.

From (1.13) we may note that for any 2"-FF design T of resolution 2/+1,
tr (V) is proportional to the average of the variances of all normalized linear
functions of the effects 0,,,,..,, (k<I). On the other hand, det(}V;) is propor-
tional to the volume of the ellipsoid of concentration (see Cramér [11]). That
is, it corresponds to the volume of the region within which the true parametric
point may lie with a certain probability. In such a sense, a design T is said to
be optimal with respect to the trace or determinant criterion if it minimizes
tr (Vy) or det(V;), respectively. It is well known that in the class of all 2"-FF
designs of resolution 2/+ 1 with N assemblies, an orthogonal design is optimal with
respect to the above two criteria. For studies on optimal designs using various
criteria, see, e.g., Hedayat, Raktoe and Federer [13], Kiefer [14, 15], Raktoe and
Federer [20], Shirakura [25], Srivastava and Anderson [30, 33].

Let T be the matrix obtained from T by interchanging symbols O and 1. T
is called the complement of T. It is easy to see that if Tis a B-array of strength
21 with indices y;, then T is that of strength 2! with indices jg;=u,,_; (i=0, 1,...,
20). Furthermore if Tis a 2"-BFF design of resolution 2/+1, then T is also so.
Therefore T is called the complementary balanced design of T.

THEOREM 5.3. For a 2m-BFF design T of resolution 21+ 1 and its com-
plementary design T,

tr(Vy) = tr (Vy),
(5.4)
det (Vy) = det(Vy).

Proor. This follows immediately from Theorem 3.2 in Shirakura and
Kuwada [26].

As will be scen later, this theorem is useful for finding optimal 2"-BFF



236 Teruhiro SHIRAKURA

designs of resolution VII with respect to the trace and determinant criteria. It
may be remarked that (5.4) holds for more general fractional designs (see
Srivastava, Raktoe and Pesotan [38]).

From the definition of balanced designs, it follows that T'is a 2"-BFF design
of resolution 2/+1 if and only if V;e. Thus it is clear that the covariance

matrix Var [5] =02V has at most (143'3) distinct elements. Also we have

A,: Var [é] — 02 K.

Using the inverse matrices Kz ', Shirakura and Kuwada [27] have obtained ex-
plicit expressions for all the distinct elements of V7. That is, let k% ; be (i, j)
elements of Kz! and let V{**) be the element of V; corresponding to 6,,..,,
and 0,,..,. which are the a-th associates. Then we have

THEOREM 5.4. For a 2™-BFF design of resolution 21+ 1,

IIA

u
(5.5) Veer = ¥ kiopo-p2len for 0Sasusvsl,
B=0

where z{2 ) are given in (3.10).

Following a usual procedure in the calculation of Var [5], tr(Var [5]) and
det(Var [5]), we have to calculate the inverse of a large v,xv, <v,=1+<'}1)
++<'7)> matrix M;. However the expressions of (5.2), (5.3) and (5.5)

imply that we have only to calculate the inverse of at most (I+1) x (I+ 1) matrix,
i.., Ko. Note that the sizes of matrices K; do not depend on the number of m
factors. For more explicit expressions of V{":*) for the cases [=2, 3, see [27].

In the following discussion we shall investigate some combinatorial proper-
ties which are useful for obtaining 2"-BFF designs of resolution 2I+1. Further
deep investigations will be discussed in Sections 6, 7 and 8.

The matrices K, are obviously dependent on the constraints m and indices
u; (i=0,1,...,2]) of a B-array T. The information matrix My is in general
positive semidefinite. From (5.1), we can establish the following theorems:

THEOREM 5.5. Let T be a B-array of strength 21, m constraints and index
set {lgs 1ys---» U21}. Then a necessary condition for the existence of T is that
every matrix K, (=0, 1,..., I) is positive semidefinite.

THEOREM 5.6. Consider the B-array T of Theorem 5.5. Then a necessary
and sufficient condition for T to be a 2™-BFF design of resolution 21+1 is that
every matrix K, is positive definite.

From (2.1), (2.2), (3.9) and (4.2), after some calculations, we can express the
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elements of K in terms of the m and y; (i=0, 1,..., 2]). For example
(5.6) K= k0 =2y,

(5.7a) K29 = 2217 2(up gy - 421,

X

(57b)  xfad = kB9 = 2220m =214+ 2 Ay — ),

(570) Kl = 2272 {(m—2042) (s, + ) — 2m — 2D},

(582) K29 = 2274yt g+ Al + o)+ 60 5

(5.8b) K2} = w9 =221"4m =204+ 4)" 2 {py s — o+ 20— - 1)}

(589 g =xpg=228( "I B -,

(58d)  Khd = 224 {(m—20+4) (o o) F 4Gy ) —2m =20},

(589 k3 =xpt =228 2N 2 ) s o)
=2(m=20)(p141 — Hi-1)}s

58 k23 =227 ("I Yt

—2(m—20) (M — 214 3) (s y + 1y )+ {3(m —2D)? +5(m—21)+4}u,].

From (5.6)-(5.8), we thus have as immediate corollaries of Theorem 5.5 and
5.6 the following:

COROLLARY 5.7. A set of necessary conditions for the existence of the
B-array T of Theorem 5.5 is that the following inequalities hold:

(5.9) w0,

(5.10a) (M—=2142)(uy41+p-1) = 2(m—20p,,

(5.10b)  (m=214 2 ypu— 1+ Qs 1 pu+ pupy— ) 2 (m—20pt,

(5.11a) (M=2148)(W4r+w-2)+4y e+ 1) = 2(m =20y, for 122,

G110) (T o+ )+ (Bm =20+ 50m— 2D+ 4,

2 2(m =2 (m=2143) 1+ 1) for 122

COROLLARY 5.8. A set of necessary conditions for the B-array of Theorem
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5.5 to be a 2m-BFF design of resolution 21+ 1 is that the inequalities (5.9)—(5.11)
hold with strict inequality in each case.

From the rest of elements of K, we can obtain results similar to Corollaries
5.7 and 5.8. However they are very complicated and will make this paper unduly
lengthy.

6. Existence conditions for B-arrays of strength ¢

For a (0, 1) matrix T of size m x N, let (i, i5,..., iy; T), (1< k<m), denote
the number of times the vector v occurs as a column of T where v contains 1
exactly at the i,-th, i,-th,..., i;.-th positions and 0 elsewhere. In particular ©(¢; T)
denotes the number of times the vector of weight O occurs as a column of T.
Whenever no emphasis on T is needed, we shall simply write t™(iy, i,,..., i)
=1(iy, ip,..., ix; T). The following two theorems are due to Srivastava [29]:

THEOREM 6.1. A necessary and sufficient condition for the existence of a
B-array T of strength t, m=t+1 constraints and index set {lig, lL1s..., U} IS
that there exists an integer d such that

d=yy, max {0, qZO(—U"uq},

152rst+1

(6.1)
d<yn=_min {3 (=D,

0=2rst ¢=0

Also if there exists an integer d which satisfies (6.1), then

(i, i i) = 3 (= DF (= 1)Fd for 1Sk 141,
q=1
(6.2)
wri(g) = d

THEOREM 6.2. A necessary and sufficient condition for the existence of a
B-array T of strength t, m=t+2 constraints and index set {{g, 5., e} IS
that there exist integers d and d; (i=1, 2,..., t+2) such that

@ VY ,2d =Yy,

dzy, = max {0, Z (=Dqpuzp—y - q

252rst+2

©63) d.)},

T'M“

+  max
(b) Gt iz} eMy

d é ¢22 = min { 2 (_1)q+‘ql'l2r q

0=s2rst+1 g=
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. 2r+1
+ o omin (3,

figsensizp+}EM! =
HiseizreJeMy

where M} denotes the collection of all subsets of {1, 2,..., t+2} with cardinality
k. Also if there exist integers d and d; which satisfy (6.3), then

20y, D i) = 8 (= DI -+ (= DFL S d +(—1)d
q=0 a=1
(6.4) for 1<k=<t+2,
T+2(p) = d.

DEerFINITION 6.1.  For two (0, 1) matrices T, and T, of size mx N, T, is
said to be isomorphic to T, if there exist the permutation matrices Q; and Q,
of size mxm and N x N, respectively, such that Q,T,=T,Q, holds.

From (6.2) and (6.4), we can easily prove the following two corollaries:

COROLLARY 6.3. The number of nonisomorphic B-arrays of strength t,
m=t+1 constraints and index set {ig, lt,..., e} is equal to that of integers d

satisfying (6.1).

COROLLARY 6.4. The number of nonisomorphic B-arrays of strength t,
m=t+2 constraints and index set {yo, Uy,..., 4, is equal to that of sets {d, d,,
dy,...,d,.,} such that d and d; satisfy (6.3a, b).

In Theorem 6.2, without loss of generality, we can assume d, =d,=---2d,, ,.
Thus we have the following

COROLLARY 6.5. A necessary and sufficient condition for the existence of
a B-array T of strength t, m=t+2 constraints and index set {lg, [ys---s s} IS
that there exist integers d', d; (i=1,..., t+2) such that

‘//12 P dll 2 d'z 22 d;+2 = ‘Pn’
, , 2r—1 2r ,
(6.5) dzys = max {0, X (—])qq#2r~1-q+ Z di},
252rst+2 q=1 i=1
, , . 2r 2r ,
d 2y, = min { X (=D quy_,+ 2 diya i}
0=52rst+1 g=2 i=0
As a generalization of Theorem 6.2 and 6.3, we now prove the following theo-
rem:

THEOREM 6.6. Let IMM? be the collection of all subsets of {1, 2,..., t+3}
with cardinality k and let MP be that of {1, 2,..., t+3}—{i}, 1Zigt+3).
Then a necessary and sufficient condition for the existence of a B-array T of
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strength t, m=t+3 constraints and index set {uy, fy,..., It} is that there exist
integers d, d;and d, ; (i, j=1, 2,..., t+3; i< j) such that

@ Y= di,j < Y2
(6.6) (b) ¥v¥) <d, =y for i=1,2,.,t+3,
© VY31 =d=Ys,,

where
1/1(2'% =2 rznax {0 Z ( l)qq”2r 1- q+32r}
6.7
Y$) = min {Z( D qu,, q+42r+1}
0s2rst+1 ¢=
Y3, = max {0, ( Z (- 1)"“( )#zr 1- q+32r)}
©9) 252rst+3
Usa= min (5 (=09 gt darer), min di}.
2<52rst+2 g= (il)emn
Here
W= max  ($d,}, dP= min_ {Fd.}
(G treerdicyem) a= (s ixemy’ =
) k
ak= max 2{2d = 2 di i)
(i1, intemy %=1 @,p=1
. k k
di = min {(Xd,— X di,,,l'p}'
(i1,enikiemy @=1 a,p=1

Also if there exist integers d, d; and d, ; satisfying (6.6a, b, c), then

k

T30, ighenny Bg) = :g.:(— 1)q< g )ﬂk—l—q+(_ 1)"a2=1 iasip
6.9)

F(=D*1 S d +(=DFd  for 25 k<143,
a=1
*3(iy) = d;, —d,

() =

Proor. Let T® and T (i, j=1,2,...,t+3;i<j) be (t+2)x N and
(t+1) x N matrices obtained from T by omitting the i-th row and the i-th and
Jj-th rows, respectively. Let d; and d;; be the numbers of column vectors with
weight 0 of T® and TG J), respectively. If T is a B-array of strength ¢, then
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T and T ) are also of strength t. Thus from Theorem 6.1 and 6.2 it follows
that for the B-array T, the integers d; ; and d; must satisfy (6.3a) and (6.3b)
(or (6.6a) and (6.6b)). For such integers d; and d, ;, therefore, a necessary and
sufficient condition for the existence of a B-array T with indicated indices is
equivalent to that there exist nonnegative integers (i, i,..., i) such that the
following equations hold:

(i) +d = dil’
©(iy, i)+ (i) + (i) +d = d;, ;,,
iy, ia, i3)+ 7y, i) +1(iy, i3)+1(ia, i3)+7(i) +1(i2),
+1(i3)+d = o,
in general, for all permissible k,
T(i1s gy I3y Bgoeees i) FT(iyy Tgy Bgsenes ) FT(iq, T3y Ggseees Bp)
+1(iy, B35 4seees i) FT(i15 Tgseeey )+ T2y Tgpeney i) F T35 Pgseers i)
+ (45005 i) = i35

where d=1'"3(¢) and (i, i,,..., iy)=1""3(iy, i,..., i;). From these equations,
it can be easily proved by induction on k that (6.9) hold. The condition.(6.6¢c)
is equivalent to that d=0 and (i, i,,..., i) =0 for all distinct integers i, i,,...,
i, with 1§, <t+3and 1<k=<t+3. This completes the proof.

From (6.9), we have

COROLLARY 6.7. The number of nonisomorphic B-arrays of strength t,
m=t+3 constraints and index set {yiy, pi,..., i;} is equal to that of sets {{d, ;},
{d;}, d} such that (6.6a, b, ) hold.

For a (0, 1) matrix T of siz¢ mx N, let z% (0=<q=<m) be the number of

columns in T which are of weight g. Then the following theorem has been given
in [29]:

THEOREM 6.8. Let T be a B-array of strength t, m constraints and index
set {lo, M1,---» te}. Then the nonnegative integers z" must satisfy the follow-
ing equations:

610) 3 ‘]1> ";___‘]1.>z';= T)(;)“J for j=0,1,.,t

DEFINITION 6.2. A B-array with m constraints is said to be ‘‘trim” if
ZB=z"=0
0 m .
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DEFINITION 6.3. A 2"-BFF design of resolution 21+1 is said to be trim
if it is a trim B-array of strength 21 and m constraints.

7. Simple arrays with parameters (m; 4y, 4,,..., 4,,)
Let Q(k; m), (0= k<m), be the (0, 1) matrix of size m X ( 72 > whose columns
are all distinct vectors with weight k.

DEFINITION 7.1. A matrix obtained by juxtaposing each Q(k; m) A,
(k=0, 1,..., m) times, i.e.,

[Q0; m):---: Q0; m): Q(1; m):+--: Q(1; m): +--: Q(m; m): ---: Q(m; m)]

Ao Ay Am

is called a simple array (S-array). The numbers (m; Ay, Ays..., A,,) are called
the parameters of the S-array.

Each Q(k; m), of course, is an S-array with 4,=1. Also it can be easily
checked that it is a B-array of strength ¢ with indices <r;n€::) (i=0, 1,..., 1).

Thus we have

THEOREM 7.1. An S-array with parameters (m; Ay, Ays..., A,,) is a B-array
of strength t, m constraints and indices yi=2;”=0('7€:5>ik (i=0, 1,..., 1).

Now we shall investigate some conditions for B-arrays to be S-arrays. From
the definition of a B-array, we can easily prove the following:

THEOREM 7.2. A B-array of strength t, m=t constraints and index set
{Mos U1s-.-s Wi} s an S-array with parameters (t; Ao=pos A1 =15, A=)

We now prove

THEOREM 7.3. A B-array of strength t, m=t+1 constraints and index
set {lg, ty,..., U} is an S-array with parameters (t+1; Ay, A4,..., A, 1), Where
Ao=T"T1(P) and A =7'*1 (iy, iy,..., iy) given in (6.2).

Proof. The proof follows from the fact that each t**1(i,, i,,..., i;) in (6.2)
depends on distinct integers i,, i,,..., i, only through k.

COROLLARY 7.4. Let T be a B-array of strength t, m constraints and
index set {yg, t15..., 4} and let T (i=1, 2,..., m) be matrices obtained from
T by omitting i-th rows. If every T is equivalent to an S-array with parame-

ters (m—1; Ay, A4,..., A,—,) such that p;= ',':;(‘)<mk___1j_t>/1;‘ hold for j=0,
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1,..., t, then T is also an S-array. Its parameters are given by
Ao =1(¢; T),

A= 3 (=DM 4 (=1Y¥i for 1<k<m.
q=1

Proor. From assumption, T is of strength m —1, m constraints and index
set {19, A%5...» Am—1}. This completes the proof, because of Theorem 7.3.

THEOREM 7.5. Let T be a B-array of strength t, m=t+2 constraints and in-
dex set {Ug, tys---s W} If

zi*2 =0 for some k with 1ZkZt+1,

where z*2 is the number of columns of T which are of weight k, then T is an S-
array with parameters lo=1"t2%(¢), 4, =0 and A,=t'*2(iy, iz..., i), 1Zr
<t+2; r#k), given in (6.4).

ProOF. It is clear that z}*2=0 implies **2(i,, i,,..., i,)=0 for all distinct
elements iy, i,,..., i, of {1, 2,...,t+2}. From (6.4), therefore, the value of
k-1d;, depends on k only. This shows that d;=d,=---=d,,,. Again from
(6.4), this implies that t**2(i,, i,,..., i,) depend on i,, i,,..., i, only through r.
This completes the proof.

COROLLARY 7.6. Consider the B-array T of Theorem 7.5 with t=6, m=38
and pus=1. Then T is an S-array with A;+As=1 and 2,=0.

Proor. Without loss of generality, we assume that T is a trim B-array.
Therefore, after some calculation of (6.10), we have

z§+28 = 56(—3+3p,—2p,+po) 2 0,
(7.1)
z§ = 35(4=3p,+2p;—po) 2 0,

where po=po+ue Pr=p,+ps and p,=u,+u,. From (7.1), it is clear that
0<4-3p,+2p;—po=1 holds. Now assume that 4—3p,+2p, —po=1 holds.
Then z§=35 and z§+28=0. From Theorem 7.5, T is an S-array, so that z§

=< 2 )L,,. This implies a contradiction. Hence we have 4—3p, +2p, + po=0,
that is, z§+2z%8=56 and z§=0. Again from Theorem 7.5, it follows that T is
an S-array with z§ +z§ =< g >(/13 +A5)=56 and 1,=0. This completes the proof.

THEOREM 7.7. A B-array T of strength t, m (2t+2) constraints and index
set {Ug, Uise--> te} With pu,=0(0=r=t) is an S-array with parameters (m; A,,
Atsees Aoe15 05iis 0, Appir—s 415 --» Am) Which satisfy
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r—1

_ m—t . B
;1,._,;0( k_l.>,1k for i=0,1,.,r—1 (r#0),
a2

=M =0 1
Prer+i= 2 i—k )/mEr-t+1+k for i=0,1,.,t—r—1 (r#1.
K=0

Note that for two cases =0 and x,=0, the parameters of the S-array take
the form of (m;O0,...,0, A,,_;41..., 4,») and (m; Ao,..., 4,4, O,..., 0), respectively.
First we shall prove the following two lemmas:

LemMA 7.8. Consider the B-array T of Theorem 7.7. Then the weight q
of a column of T must satisfy q<r or g>m+r—t.

PrOOF. Assume that there exists a column vector of T with weight g satisfy-
ing rSq<m+r—t. Then we can obtain a t-rowed submatrix T* of T such that
a column vector with weight r occurs in T*. This implies u,#0, a contradiction.
This completes the proof.

In view of Lemma 7.8, the B-array T of Theorem 7.7 can be expressed without
loss of generality as

T=1[Toy: T1y: 't To-1)! Tomtr—e+1y: =% Timy]s
where T, is a submatrix of T whose columns are only of weight g.

LemMMA 7.9. Consider the B-array T of Theorem 7.7. Then the sub-
matrices [Tioy:-+: Tp—yy] and [Typip—si1y: - Tyl are also B-arrays of
strength t and m constraints with index set {uq,..., 41, 0,..., 0} and {0,..., 0,
Ups15--+5 le}, Tespectively.

Proor. The number of times any column vector of weight g (0<g=<r—1)
occurs in any t-rowed submatrix of T does not depend on Tipir—r41)5-+es Tim
Thus [Toy:---: T,—1y] is a B-array of strength t, m constraints and index set
{to> t15-..> Uy—1, 0,...,0}. Similarly it can be shown that [T, rors1): ot Timyl
is a B-array with the indicated index set.

Proor oF THEOREM 7.7. We prove by induction that every T, (¢=0,
1,...,r—1)isan S-array. From Lemma 7.9, the index set of the B-array [T(oy: ---:
T, -1y is given by {uo,..., -1, 0,...,0}. Furthermore it is found that the number
of times a vector with weight r—1 occurs as a column of this array depends on
Ti,-1y only. Let v be the column vector of T,_,;, which contains 1 exactly at
iy-th,..., i,_,-th positions and O elsewhere. Then in a t-rowed submatrix of
Ti,- 1y which includes i;-th,..., i,_;-th rows, the column vector corresponding to
v must occur exactly t(iy,..., i,—; T,—q)) times. From the definition of a B-
array, it follows that 7(i,,..., i,_;; T,—1))=H,—, that is, it does not depend on the
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is-th,..., i,_,-th positions of v. This shows that Tj,_,, is an S-array with 4,_,
=U,_1. Assume that [T;,): Tjjy): -2 T,—yy] is an S-array. Then, since it
is a B-array of strength t from Theorem 7.1, it is clear that [Ty): ---: T{;] is also
a B-array of strength t and its index set takes the form of {ug,..., #j, 0,..., 0}.
From an argument similar to the above, it follows that T;;, is an S-array with
A;j=uj. This proves that [To,:---: T(,_;,] is an S-array. In the same way, it
can be shown that the B-array [T, 4,—;4+1): === Tim] is also an S-array. Clearly
the relation (7.2) follows from Theorem 7.1. This completes the proof of Theo-
rem 7.7.

Finally we shall prove the following

THEOREM 7.10. A necessary and sufficient condition for a B-array T of
strength t, m constraints and index set {ug, t1,..., it} to be an S-array is that
there exist intergers d**l, d**2,..., d™ such that for each s=t, t+1,....,m—1,

2r—1
iz ysl = max (0,5 (D),

(7 3) 1s2rsst+1
d*t S Yg) = min (3 (~D9a),
where
i =pw, for k=0,1,..,1t,
(7.4) ugtt = dstl,

k
pptt = Zl(—l)Hqﬂf;-l'*‘(_l)deH for k=1,2,.,s+1.
a=

If there exist integers d* satisfying (7.3), then the parameters of the S-array
are given by (m; Lo=p%, Ay =ur,..., Ap=pm.

Proor. Let T be a j-rowed submatrix of T. If T is an S-array, then for
each s=t, t+1,...,m—1, Ts*! is also an S-array and a B-array of strength s.
Denote its parameters and index set by (s+1; p§tt, usti,..., ustl) and {43,
u,..., 15}, respectively. Particularly ui=p, for k=0, 1,...,¢t. From Theorems
6.1 and 7.3, it is clear that a connection between the parameters ui*! and the
indices u§ is given by (7.4). This implies that there exists an integer ds*! satisfy-
ing (7.3) for each s=t,t+1,..., m—1. Conversely let d**i, d**2,...,d™ be
integers which satisfy (7.3). Then from Theorems 6.1 and 7.3, we can construct
S-arrays T**1, T**2,..., T™ in sequence. Let T=Tm™, then T is clearly a B-
array of strength ¢t and m constraints with the given index set.

As an immediate corollary to the above theorem, we have
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COROLLARY 7.11. The number of nonisomorphic S-arrays which are
equivalent to a B-array of strength t, m constraints and index set {ug, y5..-»
1.}, is equal to that of sets {d**1, d**2,..., d™} satisfying (7.3).

In Theorem 7.10, note that there may be B-arrays of strength ¢ and m con-
straints with the same index set which are nonsimple, even if there exist integers
di satisfying (7.3). However it may be seen from [7-10, 23, 34, 37] and Section
8 that the possibility of the existence of such B-arrays is very small within a certain
practical range of N for t=4, 6. In such a sense, Theorem 7.10 is very useful
for constructing 2m-BFF designs of resolution V or VII.

8. Optimal 2°-BFF designs of resolution VII with 130 < N<150

Now we shall consider 2°-BFF designs of resolution VII with N assemblies
satisfying v, (=130)<N<150. Two criteria, the trace and determinant criteria,
will be used for comparing these designs. As mentioned in Section 5, the two
criteria are based on the amounts of (5.2) and (5.3), respectively.

First we proceed to consider trim B-arrays (or trim designs) T* (see Defini-
tions 6.2 and 6.3) of strength t=6, m=9 constraints, size N and index set {u,,
Uys-.s Ua3. To avoid repetition, suppose that such trim B-arrays T* are con-
sidered throughout this section. Further suppose that simply z,=z? for g=1,
2,..., 8. Then it follows from Theorem 6.8 that for a trim B-array T%,

(a) 28z,4+7z,+z5 = 84pu,,
(b) 28z, +21z,+9z3+2z, = 252u,,
(C) 7Zz+923+624+225 = 252#2,

(8.1) (d) z3+2z,+2z5+2z4 = 84u,,
(€) 2z,4+6z5+9z4+72z; = 252u,,

(f) 225 +9Z5+2127+2828 = 252#5,
(8) ze+7z,+28z5 = 84y,

As in Section 7, define po=po+ug, py=4,+us and p,=p,+p4. From (8.1),
after some calculations, we obtain

THEOREM 8.1. For a trim B-array T¥*, the following hold:
(@) yy = —16u3+15p,—12p,+7p, 2 0,

(b) ¥y =4(23u3~21p,+15p,~5po) 2 0,
(8.2)
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(©) y3=28(=Tu3+6p,—3p;+py) 20,
(d)  y4=14(10p;—6p,+3p;—po) 2 0,
where y,=z,+2g, y2=2,+2, y3=23+2¢ and y,=z,+zs.
THEOREM 8.2. For a trim B-array T*,
(@ N =42,

(b) Nz '452*(3172 +us),

(8.3)
(©) N 29p,+3%s,

|

@ py ?#3-

v

Proor. It follows from (8.2a,b,c) that py+6p,=(21-98)p,+(128
—26)u; holds for =6/5. Since N=p,+6p,+15p,+20u;, we have N=9(4
—B)p,+6(2—1us for f=6/5. The inequalities (8.3a, b) can be obtained by
taking f=4 and f=6/5, respectively. From (8.2b, c), also py+15p,=3p,
+19u,.  Similarly we have (8.3c). The inequality (8.3d) can be easily obtained
from (8.2a, b, c).

THEOREM 8.3. For a trim B-array T*, u; =4 implies N = 168.
Proor. This follows immediately from (8.3a).

THEOREM 8.4. Let T* be a trim 2°-BFF design of resolution VII. Then
us=1 and p,>6/5u5 hold.

Proor. This follows immediately from (5.9), (5.10a) and Corollary 5.8.

Now we are interested in the designs with N <150. In view of Theorem 8.3
and 8.4, we can restrict only to B-arrays with 1 <pu;<3. In the following discus-
sions, we shall make further investigations on trim B-arrays (or trim designs)
for each case of pu;=1,2,3. In each case T™ and z{¥ (i=1,2,...,9; k=0,
1,..., 8) denote a B-array obtained from T* by omitting i-th row and the number
of columns of weight k in T, respectively.

(a) The case u;=1.

THEOREM 8.5. Let T* be a trim 2°-BFF design of resolution VII with
us3=1 and N=150, then 5=2p,=2,122p,21 and 6p,—3p,+po=10 (i.e,
Y4=0) hold,
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Proor. The first two inequalities follow from Theorems 8.2 and 8.4.
Clearly TD is of strength 6 and 8 constraints with pu;=1. From Corollary
7.6, therefore, TV is also an S-array with a parameter 1y =0 for each i=1,
2,...,9. Since A{? is the number of times Q(k; 8) occurs as submatrices of T(),
it is found that z,=z5=0. This completes the proof.

THEOREM 8.6. Consider the B-array T* of Theorem 8.5. Then T¥* isan
S'array With (A’O=2’4=2'5=)’6=2’9=0’ 2.3= 1) or (1.0:),3:}.4:}.5:).9:0, )'6= 1).

Proor. From Theorem 8.5, y,=0 holds. Hence it follows from (8.2c, d)
that z;+2z¢=284 holds. Again consider a B-array T». By Corollary 7.6, it is
shown that T® is an S-array with A{?=0 and 1’ +1{)=1 for each i=1,
2,...,9. Since A{’ are nonnegative integers, 4§’ =1 or 0 according as A{’=0
or 1. If 1§?=1 and 2{’=0 for some i, then we shall show that A§’=1 and
2$)=0 for all j=1,2,...,9. Itis easy to see that z,=0 and A{’=1 imply
z32z§)=56. Now suppose there exists an integer j such that 1§’=0 and
A¥)=1. Then z5=0 and AY’=1 imply zc=z{’=56. Thus z3+zg=112
must hold. It contradicts z;+z¢,=84. This shows that if 1{’=1 and A{’=0,
then z;=84 and zz=0 hold. As in Section 7, therefore, T* can be expressed
without loss of generality as

T* =[Tyy): Tay: Tiay: Tyt Tisl -

It is clear that the number of times a column vector of weight 3 occurs in any
6-rowed submatrix of T* depends on Ti3, only. This implies that T3, itself must
be an S-array with A;=1. Since it is also a B-array of strength 6, the submatrix
[T): Tzt Tiqy: Tisy] must be of strength 6. Its index set takes the form of
{uo, Wy, sy p3=0, uy, us, ug}. From Theorem 7.7, it follows that this sub-
matrix is an S-array. Hence T* is an S-array with 1g=1,=As=1=72=0, A;=1.
In the same way, we can show that T* is an S-array with A, =1;=1,=15=25=0,
A¢=1 in the case when 1§ =0 and A{’=1.

(b) The case pu3=2.

THEOREM 8.7. Let T* be a trim 2°-BFF design of resolution VII with
u3=2and N<150. Then S=p, 23 and 8=p, =1 hold.

Proor. This follows from Theorems 8.2 and 8.4.

THEOREM 8.8. There does not exist any trim B-array T* with p3=2,
p,=5 and N £150.

PrOOF. In this case p; =6 and p,; <3 imply N>150 and y,< —4(14+5p,)
<0, respectively. Thus the cases (i) p;=5 and (ii) p, =4 are considered. In
the case (i), (8.2a, b) reduce to
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Y1=Tpo—1720,  y,=4(16-5po) 2 0.

This shows that po=3 must hold. For a trim B-array T* with p,=5, p;=5 and
po=23, consider T® and its trim B-array T* for i=1, 2,...,9. Then the index
set of T()* takes the form of {u§’, u,,..., us, u&’}, where 0<p("+,u")( pP, say)
<3. From Theorem 6.8,

z(:)+z(x) = g(p(z) 2) =0, Z(Zi)+z(6i) = 28(4_p%i)) =0,
2§ +2§) = 56(p§" —1) 20, 2P =353-pP) 20

hold for i=1, 2,...,9. If p{?=2, then z{?=z%=0and z{?=35. From Theo-
rem 7.5, however, z4{) must be a multiple of (§>=7O This implies a contra-

diction. On the other hand, p{’<1 implies z{¥+z% <0. After all p{’=3
(.e., z{?=0) for all i=1,2,..,9. Hence y,=0 holds. However it contra-
dicts y,=28 in (8.2d). Next consider the case (ii). Then similarly (8.2a, b)
reduce to

Y1 =Tpo—5 20, y, = 41—=5p,) = 0.

Clearly there does not exist any nonnegative integer p, satisfying the above
inequalities. This completes the proof.

THEOREM 8.9. There does not exist any trim B-array T* with u;=2, p,=4
and 128 < N £150.

In view of Theorem 1.1, note that a 2°-BFF design of resolution VII can not
be obtained from a trim B-array with N <128 (or a general B-array with N <130).
To prove the theorem, we need the following three lemmas:

LeMMmA 8.10. If there does not exist a B-array of strength 6 and m con-
straints with index set {ug+oo+o,(m—=06), py+0y, s, Uz, Has s+ s, fe+ 03
+a,(m—6)}, where o; (i=0, 1, 2, 3) are nonnegative integers, then there does
not exist any B-array of strength 6 and m constraints with {ug, Uy, H2s Uz> Has
Hss Ko}

ProOOF. Suppose that there exists a B-array T of strength 6 and m con-
straints with index set {uq, pty,..., g}. Further consider a matrix obtained by
juxtaposing the array T and an S-array with parameters (m; lo=0g, 1; =0,
0,...,0, A,,_ =0y, A,=03). From Theorem 7.1, it is clear that this matrix is a
B-array with the indicated index set. This implies a contradiction.

LEMMA 8.11. There does not exist a B-array of strength 6 and 9 constraints
with index set {10, 4, 2, 2, 2, 3, 8}.
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Proor. This follows immediately from Theorem 6.6.

LEMMA 8.12.  There does not exist an S-array corresponding to a B-array
of strength 6 and 9 constraints with ;=2 and p,=4.

ProoF. Consider an S-array with parameters (9; 4y, 4;,..., 4¢) such that
Ay +3A34+34,+ 45 = uy,
Az +3A4 4345+ 46 = 2,
Ag+3As+3A6+ 14, = py,

where u,+p,=4. It is easy to see that there do not exist nonnegative integers
A; satisfying the above equations. This completes the proof, because of Theorem
7.1.

PrOOF OF THEOREM 8.9. p,;=7 and p,<3 imply N>150 and N<128
respectively. For 4<p, <6, by using Corollary 6.5, we can construct B-arrays
of strength 6 and 8 constraints. Furthermore, in view of Corollary 7.4 and
Lemma 8.12, among these B-arrays we can select ones which will be of strength
6 and 9 constraints. The following is a list of index sets of such B-arrays: (i)
When p,=p,=2 and p, =6, (1ty, iy, s, 1e)=(9, 4, 2, 1), (8, 4, 2, 2), (7, 4, 2, 3),
6,4,2,4),(54,2,5),(7,3,3,3), (6,3,3,4),(5,3,3,5),(8, 4,2, 1), (7, 4, 2, 2),
6,4,2,3),(54,2,4),(6,3,3,3), (53,3,4, (7,4, 2, 1), (6, 4, 2, 2), (5, 4, 2, 3),
(5, 3,3,3), (4,3,3,4), (ii) when p,=u,=2 and p,=5, (1o, ;> its, itg) =(6, 3,
2, 1), (53,2,2), 43,2,3), (3,3,2,4), (53,2,1), (4,3,2,2), (3,3,2,3),
4,3,2,1), (3,3,2,2), and (iii) when p,=pu,=2 and p,=4, (g, U, Us, Ue)
=(3,2,2,1),(2,2,2,2). From Lemmas 8.10 and 8.11, however, it is found
that there do not exist B-arrays of strength 6 and 9 constraints with the above
index sets. For example, we shall show that there does not exist any B-array with
{9,4,2,2,2,2,1}. In Lemma 8.10 consider ag=1, a;=0, a,=1 and oz=4.
Then it follows from Lemma 8.11 that this array does not exist. This com-
pletes the proof.

THEOREM 8.13. There does not exist any trim B-array T* with p;=2,
p,=3 and 128 <N <150.

Proof. Clearly p, =8 and p, <5 imply N>150 and N <128, respectively.
If p, =7, then (8.2b, c) reduce to

Y2 =4(88-35pg) 20,  y3=28po—17) 2 0.

Thus po=17 (i.e., y3=0) holds. As in Theorem 8.8, consider a trim B-array
T@*  Then from Theorem 6.8,
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2P +2¢) = 28(12—pP) 2 0,
zgi)+z(5i) = 56(p((,i)— 11) =0, z{) = 35(13-—pg")) =0

hold for i=1, 2,...,9. From Theorem 7.5, therefore, p{’ =11 (i.e., 24 =z =0)
must hold for all i. Furthermore this implies y,=0. It contradicts y,=
14(23—po)#0 in (8.2d). In the same way, it can be shown that there does not
exist T* with p, =6. This completes the proof.

In consequence of Theorems 8.7-8.13, it is found that there does not exist
any trim B-array with u;=2 and 128 <N <150.

(c) The case u;=3.

THEOREM 8.14. Let T* be a trim 2°-BFF design of resolution VII with
us=3 and 128<N<150. Then p,=4,3=p,=2 and 3p,=py+3 (i.e., y,=126,
y2=y3=0, y;=9%p, —1)) hold.

Proor. From Theorems 8.2 and 8.4, we have p,=4 and 3=p,=1. The
remaining equalities follow from (8.2b, ¢, d). Now assume p,=1. Then py=0
and N=126. It gives a contradiction.

THEOREM 8.15. The B-array T* of Theorem 8.14 is an S-array with
parameters Ag=A,=Ay=A¢=A,=21g=0and A, +7s=1.

Proor. As in Theorem 8.6, from Theorem 8.14 we can consider T* as the
following form:

T* =[Tuy: Tyt Tisy: Tis)l-

The number of times a column vector with weight 1 occurs in any 6-rowed sub-
matrix of T* depends on Tj;, only. This shows that T},, itself is an S-array with
Ay=Wo/3. Therefore the submatrix [Ti,): T(sy: Tgy] must be a B-array of
strength 6 and its index set takes the form of {up=0, uy, Uz, U3=3, L, Us, Le}-
From Theorem 7.7, this submatrix is an S-array. Since y,= 126=< 3 ) (Aa+45),
T* is an S-array with the indicated parameters.

COROLLARY 8.16. There does not exist any trim B-array with u,=pu,=2,
u3=3 and 128 <N <150.

Proor. This follows immediately from Theorems 7.1 and 8.15.

From the above results, we can easily construct trim B-arrays with 128<N
<150. Furthermore it is found that all the B-arrays obtained are fortunately
S-arrays. General B-arrays can be easily obtained from trim B-arrays by adding
column vectors, each being of weight 0 or 9. Among all the B-arrays for each
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TaBLE 8.1 Optimal 2°-BFF designs of resolution VII with respect to the trace cri-

terion
N po 1 ps ps pa ps ps tr(Vp) 20 A4 2 A A4 25 A A A A
*130 4 4 3 1 1 3 4 16015 0 1 0 1 0 O O 1 0 1
31 4 4 3 1 1 3 5 159277 0 1 0 1 0 O O 1 O 2
*132 4 4 3 1 1 3 6 15884 0 1 0 1 0 0 O 1 O 3
133 4 4 3 1 1 3 7 15838 0 1 0 1 0 O O 1 O 4
134 5 4 3 1 1 3 7 158690 1 1 0 1 0 O0 0 1 O 4
135 5§ 4 3 1 1 3 8 15859 1 1 0 1 O O O 1 O 5
*136 6 4 3 1 1 3 8 158521 2 1 0 1 0 O O 1 O 5
137 6 4 3 1 1 3 9 158458 2 1 0 1 0 O O 1 O 6
13 7 4 3 1 1 3 9 158410 3 1 0 1 0 O O 1 O 6
139 7 5 3 1 1 3 4 152246 0 2 0 1 0 O O0 1 O 1
40 7 5 3 1 1 3 5 151367 0 2 0 1t O O O 1 O 2
*141 7 5 3 1 1 3 6 15104 0 2 0 1 O O O 1 O 3
142 7 5 3 1 1 3 7 150928 0 2 0 1 0 0 O 1 O 4
143 7 5 3 1 1 3 8 150840 0 2 0 1 O O O 1 O 5
14 7 S5 3 1 1 3 9 1571 0 2 0 1 0 O 0 1 O 6
145 8 5 3 1 1 3 9 15732 1 2 0 1 0 O 0 1 O 6
146 8 5 3 1 1 3 10 156% 1 2 0 1 0 0 0 1 O 7
147 9 5 3 1 1 3 10 150657 2 2 0 1 O O O 1 O 7
14810 6 3 1 1 3 4 14909 0 3 0 1 0 0 O 1 O 1
14910 6 3 1 1 3 5 148730 0 3 0 1 O O O 1 O 2
15010 6 3 1 1 3 6 148437 0 3 0 1 0 O O 1 O 3

* This design is also optimal with respect to the determinant criterion.

TaBLE 8.2 Optimal 2°-BFF designs of resolution VII with respect to the deter-
minant criterion

N po o1 ps #s pa ps pe tt(Vz) Ao A A 23 A4 A A A A 4
133 5 4 3 1 1 3 6 15842 1 1 0 1 0 O O 1 O 3
135 6 4 3 1 1 3 7 158614 2 1 0 1 0 0 O 1 0 4
137 7 4 3 1 1 3 8 158473 3 1 0 1 O O O 1 O 5
13834 4 3 1 1 4 6 158630 0 1 0 1 O O0 O 1 1 O
143 8 5 3 1 1 3 7 15081 1 2 0 1 0 0 O 1 O 4
144 8 5 3 1 1 3 8 150792 1 2 0 1 0 0 O 1 O 5
45 9 5 3 1 1 3 8 15070 2 2 0 1 0 0 O 1 O 5
146 9 5 3 1 1 3 9 1570 2 2 0 1 0 0 0 1 O0 6
147 7 5 3 1 1 4 6 151719 0 2 0 1 0 O O 1 1 O
148 7 5 3 1 1 4 7 15056 0 2 0 1 0 0 o0 1 1 1




Balanced Fractional 2™ Factorial Designs 253

TaBLE 8.3 Covariance matrices for optimal 2°-BFF designs of resolution VII
N poopyops ps fo s e Véo,.;)/éo,n Véo,i)/éom 61’1])/1(1,1) Vél'z;/luyz)

130 4 4 3 1 1 3 4 0017578 —0.001519 0.017578 0.001519
0.001519 —0.000651 —0.001519  —0.000651

131 4 4 3 1 1 3 5 0.014526 —0.001010 0.017565 0.001553
0.001316 —0.000346 —0.001533  —0.000617

132 4 4 3 1 1 3 6 0.013509 —0.000841 0.017560 0.001564
0.001248 —0.000244 —0.001537 —0.000606

133 4 4 3 1 1 3 7 0.013000 —0.000756 0.017558 0.001570
0.001214 —0.000193 —0.001539  —0.000600

133 5 4 3 1 1 3 6 0.013471 —0.000811 0.017545 0.001583
0.001224 —0.000258 —0.001552  —0.000587

134 5 4 3 1 1 3 7 0.012947 —0.000720 0.017542 0.001589
0.001185 —0.000209 —0.001555  —0.000581

135 5 4 3 1 1 3 8 0.012630 —0.000664 0.017541 0.001594
0.001162 —0.000180 —0.001557  —0.000577

135 6 4 3 1 1 3 7 0.012919 —0.000701 0.017534 0.001600
0.001170 —0.000217 —0.001563  —0.000571

136 6 4 3 1 1 3 8 0.012597 —0.000643 0.017532 0.001604
0.001145 —0.000188 —0.001565 —0.000566

Vlgx.s) Vé%vz) Vé2'2) V1(2v3) Véa's) Vz(am
Vl(lvs) V1(2,2) Vész) Vé2-3) V{Sva) Vss,s)

—0.001519 0.011882 0.000380 —0.000380  0.011882 0.000380
0.000651 —0.000705 0.000705 0.000488  —0.000705  —0.000488

—0.001499 0.011797 0.000295 —0.000431  0.011851 0.000349
0.000671 —0.000790 0.000654 0.000437  —0.000736  —0.000519

—0.001492 0.011768 0.000267 —0.000448  0.011841 0.000339
0.000678 —0.000818 0.000637 0.000420 —0.000746  —0.000529

—0.001489 0.011754 0.000253 —0.000456  0.011836 0.000334
0.000682 —0.00832 0.000629 0.000412  —0.000751 —0.000534

—0.001501 0.011746 0.000244 —0.000437  0.011836 0.000334
0.000669 —0.000841 0.000648 0.000431 —0.000751 —0.000534

—0.001497 0.011730 .0.000228 —0.000445 0.011831 0.000329
0.000673 —0.000857 0.000640 0.000423 —0.000756  —0.000539

—0.001495 0.011720 0.000218 —0.000450  0.011828 0.000327
0.000675 —0.000867 0.000635 0.000418  —0.000759  —0.000541

—0.001501 0.011717 0.000215 —0.000440 0.011829 0.000327
0.000669 —0.000870 0.000645 0.000428  —0.000758  —0.000541

—0.001499 0.011706 0.000205 —0.000445  0.011826 0.000324
0.000671 —0.000880 0.000640 0.000423 —0.000761 —0.000544
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TABLE 8.3 (continued)

(0:0) (0,2) (1,1) (1,2)
N g0 p1 pa fts Py s s yoen Vi y o Ve yn Vi yee
137 6 4 3 1 1 3 9 0.012382 —0.000604 0.017531 0.001607
0.001128 —0.000169 —0.001566 —0.000563
137 7 4 3 1 1 3 8 0.012577 —0.000630 0.017528 0.001610
0.001135 —0.000194 —0.001570 —0.000560
138 7 4 3 1 1 3 9 0.012359 —0.000590 0.017526 0.001614
0.001117 —0.000174 —0.001571 —0.000556
1383 4 4 3 1 1 4 6 0.020745 —0.001732 0.017342 0.001485
0.002094 —0.000878 —0.001419 —0.000737
139 7 5 3 1 1 3 4 0.017456 —0.001444 0.014418 0.000902
0.001424 —0.000671 —0.001207 —0.000400
140 7 5 3 1 1 3 5 0.014404 —0.000936 0.014404 0.000936
0.001221 —0.000366 —0.001221 —0.000366
141 7 5 3 1 1 3 6 0.013387 —0.000766 0.014400 0.000947
0.001153 —0.000264 —0.001225 —0.000355
142 7 5 3 1 1 3 7 0.012878 —0.000682 0.014398 0.000953
0.001119 —0.000214 —0.001227 —0.000349
143 7 5 3 1 1 3 8 0.012573 —0.000631 0.014396 0.000956
0.001099 —0.000183 —0.001229 —0.000346
143 8 5 3 1 1 3 7 0.012867 —0.000673 0.014397 0.000955
0.001117 —0.000219 —0.001228 —0.000347
14 7 5 3 1 1 3 9 0.012370 —0.000597 0.014395 0.000958
0.001085 —0.000163 —0.001230 —0.000344
y(1:3) Véz’” V(22 V (2:3) V (3:8) | 785
0 y p e 2 145 ! Ve yse y e
—0.001498 0.011699 0.000198 —0.000448 0.011824 0.000323
0.000672 —0.000887 0.000637 0.000420 —0.000763 —0.000546
—0.001502 0.011698 0.000196 —0.000442 0.011825 0.000323
0.000668 —0.000889 0.000643 0.000426 —0.000762 —0.000545
—0.001500 0.011691 0.000189 —0.000445 0.011823 0.000321
0.000670 —0.000896 0.000640 0.000423 —0.000764 —0.000547
—0.001450 0.011852 0.000366 —0.000383 0.011700 0.000393
0.000539 —0.000727 0.000674 0.000513 —0.000789 —0.000377
—0.000956 0.011498 0.000431 —0.000295 0.011444 0.000376
0.000346 —0.000871 0.001007 0.000356 —0.000926 —0.000275
—0.000936 0.011414 0.000346 —0.000346 0.011414 0.000346
~ 0.000366 —0.000956 0.000956 0.000305 —0.000956 —0.000305
—0.000929 0.011385 0.000318 —0.000363 0.011403 0.000336
0.000373 —0.000984 0.000939 0.000288 —0.000966 —0.000315
—0.000926 0.011371 0.000303 —0.000371 0.011398 0.000331
0.000376 —0.000999 0.000931 0.000280 —0.000971 —0.000320
—0.000924 0.011363 0.000295 —0.000376 0.011395 0.000328
0.000378 —0.001007 0.000926 0.000275 —0.000975 —0.000323
—0.000927 0.011364 0.000297 —0.000367 0.011396 0.000328
0.000375 —0.001005 0.000935 0.000284 —0.000974 —0.000323
—0.000922 0.011357 0.000289 —0.000380 0.011393 0.000326
0.000380 —0.001013 0.000922 0.000271 —0.000977 —0.000326
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TABLE 8.3 (continued)

(0.0) (0,2) [Z4t8Y (1.2)
A T N P N R d yon d y{on ¢ yien d yon
144 8 5 3 1 1 3 8 0.012556  —0.000619 0.014396 0.000958
0.001096 —0.000189 —0.001229  —0.000344
145 8 5 3 1 1 3 9 0.012348  —0.000584 0.014395 0.000961
0.001081 —0.000170 —0.001230  —0.000341
145 9 5 3 1 1 3 8 0.012545 —0.000612 0.014395 0.000960
0.001094 —0.000193 —0.001230  —0.000343
146 8 5 3 1 1 310 0.012199  —0.000558 0.014394 0.000962
0.001071 —0.000155 —0.001231 —0.000340
146 9 5 3 1 1 3 9 0.012334  —0.000575 0.014394 0.000962
0.001079 —0.000174 —0.001231 —0.000340
147 9 5 3 1 1 310 0.012183 —0.000549 0.01439%4 0.000964
0.001069 —0.000160 —0.001231 —0.000338
147 7 5 3 1 1 4 6 0.020674 —0.001679 0.014467 0.000844
0.002023 —0.000896 —0.001139  —0.000486
148 10 6 3 1 1 3 4 0.017415 —0.001420 0.013364 0.000696
0.001393 —0.000678 —0.001103 —0.000316
148 7 5 3 1 1 4 7 0.015872 —0.001070 0.014400 0.000916
0.001459 —0.000477 —0.001206  —0.000415
1499 10 6 3 1 1 3 5 0.014364 —0.000911 0.013351 0.000730
0.001189 —0.000373 —0.001117"  —0.000283
150 10 6 3 1 1 3 6 0.013346 —0.000741 0.013346 0.000741
0.001121 —0.000271 —0.001121 —0.000271
V (1:3) y§en y{en y e y (3:3) |45
¢ s yizn ) y e 0 y e v
—0.00925 0.011355 0.000288 —0.000372  0.011393 0.000325
0.000377 —0.001015 0.000930 0.000279  —0.000977 —0.000326
—0.000923 0.011349 0.000281 —0.000376  0.011391 0.000323
0.000379 —0.001021 0.000926 0.000275  —0.000979 —0.000328
—0.000926 0.011350 0.000283 —0.000370  0.011392 0.000324
0.000377 —0.001019 0.000933 0.000281 —0.000978 —0.000327
—0.000922 0.011345 0.000277 —0.000378  0.011390 0.000322
0.000380 —0.001025 0.000924 0.000273 —0.000980  —0.000329
—0.000924 0.011344 0.000276 —0.000373  0.011390 0.000322
0.000378 —0.001026 0.000929 0.000278 —0.000980  —0.000329
—0.000923 0.011339 0.000272 —0.000375  0.011388 0.000321
0.000379 —0.001031 0.000927 0.000276  —0.000981 —0.000330
—0.000991 0.011420 0.000438 —0.000302  0.011371 0.000389
0.000283 —0.000907 0.000957 0.000392  —0.000956 —0.000219
—0.000769 0.011371 0.000448 —0.000267  0.011298 0.000375
0.000244 —0.000927 0.001108 0.000312  —0.000999 —0.000203
—0.000941 0.011343 0.000361 —0.000355  0.011335 0.000353
0.000332 —0.000984 0.000904 0.000339  —0.000992  —0.000256
—0.000748 0.011286 0.000363 —0.000318  0.011268 0.000345
0.000264 —0.001012 0.001057 0.000261 —0.001030  —0.000234
—0.000741 0.011258 0.000335 —0.000335  0.011258 0.000335

0.000271 —0.001040 0.001040 0.000244  —0.001040  —0.000244
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number N =pqy+ pe+6(y+us)+15(u, +p,)+20u; with 130<N=150, we can
find the required optimal designs with respect to the trace and determinant criteria.
In view of Theorem 5.3, however, note that we may restrict our attention to B-
arrays such that (i) u, > u, if p, # pa, (1) uy > ps if p,=p, and p, #ps, or (iii) y,
=g if py=p, and u, =us. In Table 8.1, the optimal 2°-BFF designs T of resolu-
tion VII with respect to the trace criterion are given with the values of tr(Vy)
and the parameters 4; (i=0, 1,...,9) of the corresponding S-arrays. Note that
the optimal designs are completely determined by knowing the values 4;. Next
let us consider the optimal designs with respect to the determinant criterion. In
this case it is interesting that for N=130-132, 134, 136, 139-142 and 149-150,
these designs are identical with the designs of Table 8.1, and moreover that for
the remaining values of N but N=138 and 147, these designs are the second-best
designs with respect to the trace criterion. These are given in Table 8.2 with
the values of tr(Vy) and 4, By Theorem 5.4, we can easily obtain the distinct
elements Vv of V; for each optimal design of Tables 8.1 and 8.2. These are
given in Table 8.3.

Part III. ' 2™-BFF designs of even resolution derived from B-arrays of
strength 27 and their optimalities

9. S, type 2m-BFF designs and their optimality

Consider a B-array T of strength 2/, m constraints and index set {uq, Uy,.-.,
U} such that the following condition is satisfied:

det(K;) # 0 forall g=0,1,...,1-1,

©.1)
Kl = 0,

where K, are the (I—f+1) x (I—B+1) matrices given in (4.3). Note that a 2™-
BFF design of resolution 2/+ 1 can be no longer obtained from such an array T,

since its information matrix My is singular. The following theorem has been
established by Shirakura [24]:

THEOREM 9.1. Let T be the above B-array. Then T is a fractional design
in which

(@) 0, and Y,=A§-P*%0, (B=0, 1,...,1—1) are estimable where 6, and
@, are given in (1.7),

(b) the BLUE i,,=(6", Y;) of (61, ¥})' is given by

9.2) Uip= X 4Eryr  for B=0,1,.,1-1,

where
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1-11-B-1 1-

(9'3) le— z Z Z Ka D(a+l ¢+1)#+2 Zxﬂ D(ﬂ+;ﬁ+,)s
a=0 i=0 i=0 j=0
a#p

(<% ; are (i, j) elements of K51), A
(c) the covariance matrix Var[@,] is invariant under any permutation of
m factors.

From Definition 2.3, the designs obtained in this theorem are a subclass of
2m-BFF designs of resolution 21.

DEfFINITION 9.1. A B-array T of strength 2l, m constraints and index
set {Ug, [Ly,-..» Ha;} is called an S, type 2m-BFF design if T satisfies Condition
9.1).

It is easy to see that the covariance matrix Var [51] has at most (1;52)
distinct elements. By using the method similar to Theorem 5.4, we can obtain
the following

THEOREM 9.2. Let Tbe an S, type 2™-BFF design and consider the elements
Vg2 of Var[6,] corresponding to 0,,.., and 6., which are a-th associates.
Then

u
9.9 V= 3 kb, pzbe,  for 0Sasusv<Ii-1,
B=0

where z{2 ) are given in (3.10).

Now we shall state some combinatorial properties of S, type 2-BFF designs.
From (5.6), K;=0 is equivalent to y;=0. To construct S, type 2"-BFF designs,
first of all, we must investigate B-arrays of strength 21 with 4;=0. From Theorem
7.7, we can establish

THEOREM 9.3. T is a B-array of strength 2l, m constraints and index set
{lo> His---s Uzt With =0 if and only if T is an S-array with parameters (m;
Agsevvs Aim15 Oyeres 0y A1 15e+0s ), Where

W= ( " 21 )/lks
9.5) 21 )
m

‘m—1+1+k

TS Z
k=0

fori=0,1,...,1-1.

COROLLARY 9.4. A necessary and sufficient condition for the existence of
the B-array of Theorem 9.3 is that the following inequalities hold:
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-1 ;
1yitk m—21—1+l—k>
T (MR Y 2,

-1 . — —- —_7
igo(_ 1)'“‘( " 21k_1?-k g >ﬂl+1+i =0
for all k=0, 1,..., I—1.
Proor. See Shirakura [22].

The following two theorems are due to [24].

THEOREM 9.5. Let T be an S, type 2™-BFF design. Then the number of
distinct assemblies in T must be at least v} =v,—¢,=1 +m+< '; )+ +( 1T2)

+2<l_’f’1).

THEOREM 9.6. If there exists an S, type 2™-BFF design T with N, (2v})
assemblies, then for N> N,, (N — Ny+1) nonisomorphic S, type 2™-BFF designs
with N assemblies can be obtained from T.

THEOREM 9.7. A necessary condition for the existence of an S; type 2m-
BFF design is that the following strict inequalities hold:

Wi-1t+1 >0,
(Mm=2148) (-2 + p+2) > 4dm =20 (-1 +m+,)  for 122
Proor. This follows from (5.7), (5.8f) and Condition (9.1).

THEOREM 9.8. Consider the case 1=2. Then there exist always S, type
2m-BFF designs for any N (Zvi=2m+1) assemblies.

Proor. Consider an S-array T with parameters (m; 1o=1, 4,=1, 0,..., 0,
Am—1=1, A,,=0). From Theorem 9.3, then T'is equivalent to a B-array of strength
4, size N=2m+ 1, m constraints and index set {uo=(m—3), p, =1, p,=0, u3=1,
ug=(m—4)}. It is easy to check that the matrices K, and K, in Example 4.1, (i)
are nonsingular for the B-array 7. This implies that T is just an S, type 2"-BFF
design with the smallest number v} =2m+1 of assemblies. Because of Theorem
9.6, the proof of this theorem is completed.

Now consider the case I=3. In this case the smallest number is vi=1+m

+2 r2n . Consider an S-array T with parameters (m; A,=0, A;=1, 1,=1,
0,..,0,4,_,=1, 1,_,=0, 1,,=1), which is identical with a B-array of strength 6,

size¢ N=v}, m constraints and index set {yo=< m;S ), ui=m-=5, u,=1, u;=0,
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Ha=1, us=m—=6, ug =( m2— 6 ) +1}. Unlike the case =2, it is very complicated
to show that for a general number m, the array T satisfies Condition (9.1). How-
ever for each value of m within a practical range, we shall be able to show that T
satisfies Condition (9.1).

From Theorems 9.6, 9.8 and the above statements, we may say that for any
given N, there are in general a large number of possible S, type 2”-BFF designs.
Among these, we must choose one which maximizes information in some sense.
For this purpose, Shirakura [24] has introduced the following amount for an S,
type 2"-BFF design T':

9.6) Sr= 3 ostr(K;).

Let y§ be ¢ x 1 vector whose elements are composed of ¢, independent linear
-1/2 .
functions in {d),, /< rln )} V5. Then Sy can be rewritten as

Sy = tr(Var[,D/o* + 3. tr(Var [§D)o?,

where @3‘ is the BLUE of y}. From (3.17), (4.1) and Condition (9.1), it is also
found that S; denotes the trace of a generalized inverse matrix of M.

DEFINITION 9.2. For given N assemblies, an S, type 2™-BFF design T is
said to be optimal with respect to the generalized trace (GT) criterion if T
minimizes Sy.

10. Optimal S, type 2™-BFF designs with m=6, 7

In view of the previous section, we are interested in optimal S, type 2"-BFF
designs with respect to the GT criterion for desirable numbers m and N2v}. In
this section, for the special case /=3, the optimal designs will be obtained for
m=6,7 and for every N with v} <=1+m+2<'2”))§N<v3 <=1+m+<’2n)
+( r;z)) In this case, note that since there exist always 2™-BFF designs of resolu-
tion VII with N >v, assemblies (see [23]), we need not consider S; type 2"-BFF
designs for larger N. For the optimal designs for m=8, see [24].

From Condition (9.1) and Theorem 9.3, first consider a B-array of strength
6, m constraints and index set {ug, 21, Kz, #3=0, 4, Us, Ue}, and the correspond-
ing S-array with parameters (m; Ay, 44, 45, 13=0,..., 4,,_3=0, 4,2, An—1, Am)-
From (9.5), we have

po = do+(m=6)y+( "3 O Yoy s = 21+ (m—6)1y,
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(10.1) M2 =72y Uy =1Impy Hs= Ay 1 +(M—6)y_3,
ﬂ6 = Am+(m"‘6)}.m_l+< m2_6 )lm_z.

From Corollary 9.4 and Theorem 9.7, we can obtain the following

THEOREM 10.1. A necessary condition for the existence of an S5 type 2™-
BFF design is that the following inequalities hold:

@ w21, p21,

102 ®) po+(™37 Ju2 2 =6, 1y 2 (M-,

Ue+ m=3 Ha = (M—=6)us, ps = (Mm—06)u,.
2

Now we shall prove

THEOREM 10.2. A4 necessary condition for the existence of an S; type 2™-
BFF design with N <v, is that thefollowmg inequalities hold:

(@ m.;r L > (uy+ps)  for m#7,
(10.3)
(®) 32 (ur+us) for m=17.
Proor. From (10.2b), it is easy to verify that py+ pe+6(u, +ps)=(m?—m
—30) (; + p4)/2 holds.  Since N =p+pg+6(py + pts) + 15(u; + py) <vi, we have
Vs >< g’ ) (uy+14). This shows that

m+1 + 2(m+1)

3 m(m_l) > (M2+“4)'

(10.4)
Let m+1=3t+r where 0<r<2. Since we are assuming m=6, we have t>2.
Now we shall show that (10.3a, b) hold for each case r=0, 1, 2. For r=0, the
left hand side of (10.4) reduces to t+6t/(9t2—9t+2). Clearly r=0 implies
m28, so that 1=3. It is easy to see that 0<6¢/(9t>2 —9t+2)<1 holds for t23.
Hence we have t=(u,+p,). For r=1, the left hand side of (10.4) reduces to
t+(3t2+5t+2)/(9t> —3t). Since 0<(3t2+5t+2)/(9t>—31)<1 holds for t=2,
we have t=(u,+p,). Finally consider the case r=2. Then the left hand side
of (10.4) reduces to t+(3t2+4t+2)/(9t>+3f). Similarly it can be shown that
0<(3t2+4t+2)/(9t>2+3t)<1 holds for t=3. Thus t>(u,+p,) for m=11.
When m=7, from (10.4) it is clear that (10.3b) holds. This completes the proof.

From the above results, we can easily construct S; type 2"-BFF designs for
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TasBLE 10.1 Optimal S; type 2»-BFF designs
m=6 N po 1 ps pa s pe Sy A A A A A5 A
37 0 1 1 1 0 1 1.20979 0 1 1 1 0 1
38 1 1 1 1 0 1 1.16667 - 1 1 11 0 1
3% 1 1 1 1 0 2 11538 1 1 1 -1 0 2
40 2 1 1 1 0 2 1.14619 2 1 1 1 0 2
41 2 1 1 1 0 3 1.14179 2 1 1 1 0 3
m=1 N po 1 ps pa s e Sr de A& A A e A
50 1 2 1 1 1 1 143426 0 1 1 1 0 1
51 2 2 1 1 1 1 1.41425 1 1 1 1 0 1
52 2 2 1 1 1 2 1.40466 1 1 1 1 0 2
53 3 2 1 1 1 2 1.39952 2 1 1 1 0 2
54 3 2 1 1 1 3 1.39624 2 1 1 1 0 3
55 4 2 1 1 1 3 1.39388 3 1 1 1 0 3
56 1 2 1 1 2 1 1.15878 0 1 1 1 1 0
57 2 2 1 1 2 1 1.13936 1 1 1 1 1 0
58 2 2 1 1 2 2 112012 1 1 1 1 1 1
59 3 2 1 1 2 2 1.11531 2 1 1 1 1 1
60 3 2 1 1 2 3111032 2 1 1 I . 1 2
61 4--2 1 1 -2 3 110804 3 1 1 1--1 "2
62 4 2 1 1° 2 4 110571 31 1 b 1 "3
63 2 3 1 1 2 1°10960 0 2 1 1 170
TasLE 10.2 Covariance matrices for optimal S, type 2»-BFF designs
m=6 N o 1 fs 4 U5 Ve y o0 yon y§on 458
37 01 11 01 0.02833 0.00187 —0.00083 0.03042
38 1 ‘1 11 01 » 0.02832 0.00195 —0.00098 0.02995
39 11110 2 0.02800 0.00150 —0.00135 0.02933
40 2 1 1 1 0 2 0.02799 0.00152 —0.00139 0.02926
41 2 1 1 1 0 3 0.02788 0.00137 —0.00152 0.02905
Vl("l) Vlgl-Z) V1(1»2) Vé2»2) V1(272) _VéZ:Z)
—0.00083 —0.00021 —0.00021 0.03250 0.00125 0.00125
—0.00130 0.00065 0.00065 ©0.03092 —0.00033 —0.00033
—0.00192 0.00013 0.00013 0.03049 —0.00076 =0.00076
—0.00199 0.00027 0.00027 0.03020 —0.00105 ©  —0.00105
—0.00220 0.00010 0.00010 0.03005 —0.00120 —0.00120
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m=7 N po pyps prats pts VOO vien vien virn
5 1 21 11 1 002980 0.00058  —0.00376 0.05237
51221 1 1 1 002742 0.00019  —0.00266 0.05231

52 221112 002708 0.00045  —0.00235 0.05211

55 321 11 2 002645 0.00036  —0.00206 0.05210

5 3211 1 3 002632 0.00045  —0.00195 0.05203

55 42111 3 002604 0.00041  —0.00181 0.05202

56 1 21121 003125 0.00000  —0.00446 0.04167

57 221121 0027  —000049  —0.00384 0.04150

58 221122 002734 0.00000  —0.00279 0.04141

59 3 211 2 2 00273 —000012  —0.00253 0.04138

60 3 211 2 3 002604 0.00000  —0.00223 0.04136

61 4 2 1 1 2 3 002573  —000006 —0.00210 0.04135

62 4 2 1 1 2 4 0.02539 0.00000 —0.00195 0.04134

63 23 11 2 1 003097 —0.00028  —0.00419 0.03939
v 1452 i Ve |45 y e
—0.00666 —0.00231 0.00116 0.02633 —0.00145 0.00203
—0.00672 —0.00213 0.00134 0.02582 —0.00196 0.00151
—0.00692 —0.00237 0.00111 0.02555 —0.00223 0.00124
—0.00693 —0.00233 0.00115 0.02541 —0.00237 0.00110
—0.00700 —0.00241 0.00107 0.02531 —0.00247 0.00101
—0.00700 —0.00239 0.00109 0.02525 —0.00253 0.00094
—0.00521 0.00000 0.00000 0.02487 —0.00191 0.00255
—0.00537 0.00021 0.00021 0.02460 —0.00218 0.00228
—0.00547 0.00000 0.00000 0.02415 —0.00263 0.00183
—0.00549 0.00005 0.00005 0.02404 —0.00274 0.00172
—0.00551 0.00000 0.00000 0.02392 —0.00287 0.00159
—0.00552 0.00002 0.00002 0.02386 —0.00293 0.00154
—0.00553 0.00000 0.00000 0.02380 —0.00299 0.00147
—0.00515 —0.00020 0.00047 0.02432 —0.00227 0.00238

each m>6 and each N with vi < N<v,;. Among these, we can obtain the required
optimal design T such that S in (9.6) is @ minimum. In Table 10.1, the optimal
designs for m=6, 7 are given with the values of Ag, 11, 43, A2, Am—15 4 IN
(10.1). The distinct 20 elements V¥ in (9.4) for the designs are also given
in Table 10.2. As in Theorem 5.3, for an S, type 2”-BFF design T and its com-
plementary design T, we have S;=Sy. Thus it may be remarked that for the de-
signs in Table 10.1, their complementary designs are also optimal with respect to
the GT criterion,
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11. Alias structures of I-factor interactions in S, type 2™-BFF designs and
their estimability

In this section we shall make certain investigations on alising of I-factor
interactions in S; type 2™-BFF designs. It has been observed in Section 9 that
V,=AyP%, (B=0, 1,...,1—1) are estimable in an S, type 2"-BFF design T.
From (3.7) and (3.11), ¥, are such that

(i) every element of Y, represents the mean of effects of I-factor interac-
tions, i.e.,

=1 ;
'po ) <’;z> (t1.12,§t1)6‘ﬂh0“!2"‘“1("")’

(ii) the elements of Y, (B#0) represent contrasts between effects of I-factor
interactions, i.e.,

j’(,l,,)wﬂ =0 for f#0,

(iii) any two contrasts, one belonging to ¥, and other to Y, (x#p), are
orthogonal, i.e.,

V=0 for o # B, and

(iv) there are ¢4 independent contrasts in each ¥, (8#0).
From the above statements, it is found that in all ( lr_n 1 ) (=¢o+P+-+

¢,_,) independent linear functions of 6,,,,..., are estimable in the design T. How-
ever to observe the pattern of aliasing, a more simple expression for alias structures
of [-factor interactions is needed. We establish the following

THeOREM 11.1. In an S, type 2™-BFF design,
(11.1) v = A§-1.0g,
is an estimable function of 8, where AY~1:Y is the local association matrix
of size (l:nl )x('?) defined in (3.2). There are just (1T1> independent
linear functions of 8, in .

Proor. From (3.11) and (3.12), we have A§~1:D%4{LD% = g{I-1.D%
=ciim LD AQ-1LImDE4I-1.D for all f=0, 1,...,I—1. Hence the estimability of

=0, 1,..., I—1) implies that Y J=1 A{-1.1-D%4(-1.Dg, is estimable. Since
b B=04p 0 2

YhzhAg-ti-D¥ =] where p=< lTl ), it is clear that y is estimable. From
(3.6) and (3.11), AY=1DAPI=D = Thzb(2451P)240-14-D%, From (3.9),
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(51?2 =(m—1+1-pB)(I-Pp) #0 for all =0, 1,..,1—1, so that rank
(Ag"‘"’)=rank(A{,"l”)A‘(,’"‘l’)=< 11"1 ) This completes the proof.

ExAMmPLE 11.1.
(i) Consider an S, type 2"-BFF design (I=2). Then 8, =(0,,, 0,3,

01> 023505 O 1m)s (1 x('zn)), and rank (4{-2)=m. ¥ reduces to

(012+0,3+0,4++0,,
012+023+024+'“+02m

Y =|03+0,3+03,++0;,

L 01m+02m+63m+"'+0m—1m_,

(ii) Consider an S5 type 2™-BFF design (I=3). Then 8% =(0123, 01245
012m 01325 +> O 2= 1m)» (1 x( '; )), and rank (AE,Z’”):( 31 ) ¥ reduces to

(012340124401 55+ 40,2,
0123+9134+0135+ "'+613m

V= ‘ 0124+6134+9145‘+'“+614m

hglm— 1m+02m—1m+"'+0m—2m—1m_

COROLLARY 11.2. For an S, type 2m-BFF design T, the BLUE § of ¥ is
given by

(11.2) ¥ = X, Eryr,

where X, is the p x v; matrix such that
-1
X, = ﬂ;o(cgl—l,l))—l[opxqﬁ: x’,’_ﬂ’oA,(g”l’”“: K’,’_ﬁ,lAf,"l"’“)“:
K?—ﬁ,l—ﬁAgl_l’l)“:l'
<p=( ITI ), qp=2€=o( iT1> and, particularly, [O,xo: A]=A).

Proor. This follows immediately from (9.2), (9.3) and Theorem 11.1.
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RemARK. From Theorem 9.5, the rank of the information matrix My
of an S, type 2m-BFF design T is v/ =1+< T >+ +< lr_n2>+ 2< lr_nl ) Since

v,‘—v,_1=( l—"—ll.)’ from the design T we can not obtain more than (lTI)

independent linear functions of ,,,,..,, which are estimable. Therefore it follows
from Theorem 11.1 that any estimable function y* of @, is completely determined
by y*=C*y, where C* is a matrix of appropriate size.

TueoreM 11.3. In an S, type 2"-BFF design, no l-factor interaction itself
is estimable.

ProOOF. Assume that some [-factor interaction 6,,,,..,, is estimable in this
design. Let ¢ be the ( r;n ) x 1 vector obtained from &, by replacing 6,,..., with 1

and the remaining effects with 0. Now we shall show that rank (A)>< IT 1 ),
where A=[A{-V:¢]. Since AY-1:PA{I-1 is nonsingular, det(A’A)=
det, (Agl—l,l)Agl,l—l))(l —s), where s=1t Agl,l—l)(Ag)l—l,l)A(ol,l—l))—l Aﬁ)""”t.
From (3.6), (3.9), (3.11) and (3.12), we have (4~ 1P A=)~ 1 =3 -4 (25 1+P)~2
A;l—-l,l—l)# and ABI,I—I)A;!—[,[—U#A%!—I,l)=(c;,l—l_,l))—2A;}I,l)$ fOI' ﬁ=0’ 1,_”,
I-1. Since zfly 1P =(cgt~1-P) tand T fzhA5HD* =I(m)—A{""D*%, it is clear that
1—s=tr(et' A"P%). From (3.7), therefore, (1—s)#0, so that det(4’A4) #0.
From matrix theory, it is found that there "does not exist any < ITI ) x 1
vector x satisfying

AP-Dx =t.
This contradicts that 6,,...,, is estimable.

In view of this theorem, consider a situation where some of I-factor inter-
actions can be assumed negligible. By Theorem 11.1, we can easily prove the
following lemma:

LEmMMA 11.4. In an S, type 2m-BFF design, r (§,< lTl )) I-factor interac-

tions themselves are estimable if the column vectors of A{~1: correspond-
ing to these effects are independent, and if the remaining I-factor interac-
tions can be neglected.

Now let us consider an experiment with the special factor f,, such that every
I-factor interaction involving it can not be ignored. From properties of the matrix
A{-1.D_then we may suppose without loss of generality that it is the first factor

fi- Thus we denote the vector composed of all <r;1——11) I-factor interactions
involving the factor f; by
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03 = Oy ((721)x1).

THEOREM 11.5. In an S, type 2™-BFF design, 6} is estimable under the
assumption that the remaining I-factor interactions are negligible.

Proor. From the definition of association matrices, AY~1:? can be
written in the form of

O (")

Igeyy AL
-1 !

(11.3)

where A{®) are the local association matrices, defined by (3.2), for (m—1)
factors f5, f3,..., f. The first (n;_—ll> columns of A{~1.D are clearly inde-
pendent. This completes the proof, because of Lemma 11.4.

Note that since rank(AE,“l'”)=< ITI ), among the remaining [-factor

interactions we can. recover ( '?_—21 >=( IT 1 )—( rln_—ll ) (=z, say) those.

Consider the following matrix:

(1-2,1-1) |
ZO H Ozxz

(11.4) I(m—l """""" F} """" (= A4; i, 53Y),

m- ) i 1j2jz
where F1 ., .. is the < ’?—_11 )x z matrix composed of j,-th, j,-th,..., j,-th
columns of A§¢~1-P. Then it is easy to see that 4;,...;, is nonsingular if and only

if (A4-2:1-VF 1.j.) isso. However it is in general difficult to observe whether
(Zﬁ,"zv"“F},... ;.) is nonsingular or not. The following lemma is very useful:

LEMMA 11.6. Let F?%,,.;. be the zxz matrix composed of j-th,
Jja-th,..., j~th columns of AY=2:Y. Then F2,.;_ is nonsingular if and only if
(A§-24-DF1 ;) is so.

Proor. From (3.3), we have A§~2:-DF(-1.0=24(-2.D  Hence A{}~2:1-1
=2F? holds. This completes the proof.

Ji1jz

.F1

Jiis
Let @3;,j,j.) be the zx1 vector composed of z effects which are ob-

tained from @, corresponding to j,-th, j,-th,..., j-th columns of AY-1.D in
(11.3). Then we establish the following

THEOREM 11.7. Ifthe matrix Fj?;, .. of Lemma 11.6 is nonsingular, then
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6} and 0%;,;,.;.) areestimable in an S, type 2"-BFF design under the assump-
tion that the remaining I-factor interactions are negligible. Furthermore their
BLUEs 6} and 6%, ,...;,, are given as follows:

6% =y, +FL . (F2 ;) My, — AY-21-0) 2,

(11.5)
Griny = (F3.5 )7 HAG 21Dy, —y1)/2,

D>

2
2

where y, and y, are the zx 1 and (m 1)xl vectors, respectively such that
(y1, y2) =¥ in (11.2).

ProoF. The proof of the first part of the theorem follows immediately from
(11.4), Lemmas 11.4 and 11.6. Now we shall show that (11.5) holds. From
(11.1), (11.2), (11.4), (11.5) and the assumption of this theorem, we have

R [ 62
EXp[lII]=l/I=Aj1...sz :l

2
2(j1iz)

It is easily shown that the inverse matrix of 4;,...;, is given by

3Fj,.j, (F}.507" I(""‘l) 3F), 5 (F}g)” LAg-20-0

(Ajl-..j,)_l = _(Fjljz)— ................. (Fz ...... )12“2[1) ..................................

This completes the proof.

Designs of resolution less than or equal to VII are thus far very important.
For the cases =2, 3, therefore, we shall make further investigations on recovering
I-factor interactions. First consider the case [=2 (4<m). In this case

0% = (912’ 013""3 G-Im),’ ((m—l)x 1)’
rank (4{1'2) =m, z=1 and
APD = jm=1y = (1, 1.,y 1),

Therefore the matrix F2? of Lemma 11.6 is nonsingular for every j,=1, 2,...,

(mz— 1). From Theorem 11.7, we can easily obtain

THEOREM 11.8. In an S, type 2™-BFF design, the two-factor interactions
0,; (i=2, 3,..., m) and any two-factor interaction 0y in {0,,,}, (t,22), are esti-
mable ignoring the remaining two-factor interactions.

Next consider the case [=3 (6<m). Then
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0% = (01239 91245*--’ 012m’ 0134’"-, olm— lm),, <( m‘z_l )X l >,
rank (A@2) = ( r2n> and z=m-—1.

In this case, besides the special factor f;, further consider the special two factors
Ji, and f;, such that every three-factor interaction involving these two factors can
not be ignored. As before, we may suppose without loss of generality that they
are the second and third factors f, and f;. Therefore we can obtain the (m—3) x 1
vector

0%(12--»"—3) = (9234, 0235,-“, 023m)"

Since z—(m—3)=2, two effects 0,
the rest. Now suppose that at least one of the two effects involves the factor
f, or f;, and therefore suppose without loss of generality that the effect involves
the factor f,, i.e., 0,,,,=0,,, Consequently the following theorem can be
established:

stats and O, can be further recovered from

THEOREM 11.9. In an S; type 2"BFF design, 63, 9%0 2.-m—3) and the above
two effects 0y, and 0y, (4=<t,<ty<m,3<t)<t)<t3<m) are estimable
ignoring the remaining three-factor interactions.

Proor. First consider the case where the other effect involves the factor
f3s i€ Oy, =034,,,. Further suppose that the j,_,-th.and j,-th_columns of
At +3correspond to the effects 0,,,, and 03, respectively. Of course, the
i-th column of A>3 corresponds to the i-th effect in @3(;3..m-3) foreach i=1,

2,....,m=3. Then the zxz submatrix F%,.,_3; _,;. of A{»3), defined in
Lemma 11.6, can be explicitly written in the form

(11.6) FRme3amiie = | oo ;

where @, and a, are (m—3)x 1 (0, 1) vectors with weight 2. In this case, it is
easy to verify that the matrix of (11.6) is nonsingular. Next consider the case
4<t)<t)<t3=<m. Then the submatrix composed of the last two columns of

(11.6) is exchanged for
|: 0 0ad) }'
10 a |
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where @, and a, are vectors with weight 2 and 3, respectively. Similarly it can
be easily shown that the new matrix is also nonsingular. This completes the proof,
because of Theorem 11.7.

12. Existence of a 2™-BFF design of resolution IV with the minimum
number of assemblies

It has been shown in Webb [39] and Margolin [17] that the minimum
number of assemblies must be 2m for a general 2"-FF design of resolution IV.
On the other hand, from Theorem 9.5 the corresponding number for S, type 2™-
BFF designs must be vi=2m+1. This difference follows from the fact that the
general mean 0, itself is estimable in S, type 2m-BFF designs. In this section we
shall show that a 2™-BFF design of resolution IV with N =2m assemblies can be
obtained from a B-array of strength 4 and m constraints, that is, there exists a
2m.BFF design of resolution IV with the minimum number of assemblies. First
consider an S-array T with parameters (m; 4,=0, 1,=1,0,..., 0, 1,,_,=1, 4,=0),
which is equivalent to a B-array of strength 4, size N =2m, m constraints and index
set {po=(m—4), p,=1, p,=0, u3=1, yy=(m—4)}. Then the matrices K, and
K, given in Example 4.1, (i) reduce to the following

om 0o 20m-a(7)"
K, = 0 2(m—2)? 0 ’
(12.1) ‘2(m—-4)<’;>1/2 0 (m—1)(m—4)2
8 0 }
K, = :
L0 (m-2)

These matrices are clearly of rank (K,)=2 and det(K,)#0. Let o, be the px1

vector whose elements are all 0, i.e., 0,=0,.;. Let C, be a v, xv, (v2= 1+m

+<’;)> matrix such that

where h;=(m—4)(m—1)1/2/(2m)}/2 and h, is any real number. Then we
shall prove
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LeMMA 12.1. For the B-array T mentioned above and its information
matrix My, there exists a v, x v, matrix X, such that X Mr=C,.

Proor. The matrix C, is also expressed as
Co =(Df)1’1)“ +D82,0)# +h1DE)2’2)*)+ (D(11,1)$ +h2D(12'2)”).

From Theorem 3.3, the matrix C, belongs to the 3 sets TMDPB association algebra
A. Therefore it follows from (3.17) that the irreducible representations of C,
with respect to ideals 2, and A, are given as follows:

(0 0 O
QIO:CO—)F8= 0 1 O ’
b1 0 hl

1 0
QII:CO——*F(1)= .
LO &,

From (12.1), it is easily shown that there exist 3 x 3 and 2 x 2 matrices X§ and
X}, respectively, such that X3K,=I3 and X}K,=T§. Let X, be a matrix such
that X, e U and the irreducible representations of X, are X3 and X3. Then it
is easy to check that X M;=C, holds.

THEOREM 12.2. The B-array T of Lemma 12.1 is a 2"-BFF design of resolu-
tion 1V in which a parametric function of 6’ =(0,; {6;}; {0;;}),

(122) &= Cof = (0, Bo, OpARL-2F+85 {h, AR D+ hy A DR}y
is estimable, where 8, =({0,}) and 6, =({0,;}). Its BLUE is given by
(12.3) Co = XoEryr,

where X, is given in Lemma 12.1.

Proor. From (1.9) and Lemma 12.1, it follows that

Exp[€o] = Xo EfExp[ys] = Xo My = Cof = &,.

Hence {, is an estimable function of #. On the other hand, it follows from
Gauss-Markov Theorem that the BLUE & o of §, is uniquely given by ¢ 0=Co0*
where 6* is a solution of the normal equations (1.11). Thus we have ¢ o=XoM6*
=XoEryr. Clearly we also have Var [E o]=X M Xo02=CoXy62. Since CoXy
e, it is found that Var [50] is invariant under any permutation of m factors.
This completes the proof.
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COROLLARY 12.3. For the design T of Theorem 12.2,

(12 4) 00 = [ {(X’;ll + 8m )A(l 1)+ 1<x11__é__>A(11,1)}; Omx(ril)]E"ryT,

(12.6) Cov [0, £o,1 =0,

where x,,=1/2(m—2)? and {y is the BLUE of k-th element of the vector {0,A%*»®*
+(h AR+ hy A2 D9)8,}.

Proor. Let x;; (i, j=0, 1, 2) be (i, j) elements of XJ. From Lemma 12.1,
we have xyo=X¢;=X10=X02=X;,=0 and x,;=1/2(m—2)2. Furthermore X}
=diag [1/8, h,/8(m—2)]. Therefore the m x v, submatrix of X, whose rows
correspond to the block of main effects 6; is given by

[om: X, 1AE,l'1)’”‘+»515~A‘11'”": O'"x('il)il'
From (3.7), (12.2) and (12.3), we thus have (12.4). Since Var [f 0]1=Co Xpo%2e¥,
we have the irreducible representations of C, X5, i.e.,

Wo: CoXy — diag[o0, x4, 1/2m],

A, : CoXy — diag[1, h,/(m—2)]/8.
Hence

var [§,] = [x, Dyt D* 4 é Dt 1>**+21 DDt 42 hy — 25 D¢ 2”]
and, particularly, from the definition of Dj*»#
Var[6,] = ((xi, AG D%+ g A( D7) 02

This shows that (12.5) and (12.6) hold.

Next, as in Section 11, we shall investigate the alias structure of 6, and
0;;. Unlike an S, type 2™-BFF design, note that, in general, 0, itself is not
estimable in the design T.

THEOREM 12.4. Suppose m>4. For the design T of Theorem 12.2,
d0¢jm+AE)1 ’2)02
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is estimable, where d=(m—4)/2.

Proor. From (3.11) and (3.12), the estimability of {, in (12.2) implies
that 0,/m1/2-j, +(hycht-DAG DFAG2) 4 h, (1.2 4(1. DF4(1.2))§, is estimable.
Now recall that h,;#0 and h, is any real number. By letting h,=h,c{!+?’/
c{1:?), from (3.11) it can be easily shown that df,j,+ (45 D%+ A{1-V%)
A260,=d0,j,+ A28, is estimable.

COROLLARY 12.5. In the design T of Theorem 12.2 (m>4), the general mean
and (m—1) two-factor interactions involving the special factor are estimable
under the assumption that the remaining two-factor interactions are negligible.

Proor. Without loss of generality, we can assume that the special factor
is the first factor. From the assumption and (11.3), therefore, df,j,+A:28,
can be written as

(1 i1 11 [ 46, ]
1 0,
Vi, 0,3

L 1 . J helﬂl_J

This shows that 0, 0,,, 0,3,..., 0,,, are estimable.
Finally consider the case where m=4. Then we establish the following

THEOREM 12.6. Let T be a B-array of strength 4, m=4 constraints and in-
dex set {0,1,0,1,0}. Then in this design T the general mean 0, and the
differences (0;;—0,,) are estimable, where {i, j} n{p, q}=¢ and {i, j} U {p, q}
={1, 2,3, 4}.

ProoF. In this case, @ =(0;,, 03, 0,4, 053, 034), ;=0 and A2-2% =
(A@2)—A2:2))/2.  Also recall that h, is any real number. Therefore by con-
sidering h,=0, it follows from Theorem 12.2 that the general mean 0, itself is
estimable. On the other hand, when h,=2, from (3.2) it can be shown that
04+ (0;;—0,,) is estimable. This completes the proof, because of the estimability
of 0.

As an easy corollary to Theorem 12.6, we have

COROLLARY 12.7. Consider the B-array T of Theorem 12.6. Then in this
design T the (m—1) two-factor interactions involving the special factor them-
selves are estimable under the assumption that the remaining two-factor inter-
actions are negligible.
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13. Various types of 2™-BFF designs of resolution 2/ and their optimality

It has been observed in Section 9 that B-arrays satisfying Condition (9.1)
yield 2™-BFF designs of resolution 2I. By further investigations of the properties
of matrices K, in (4.3), other types of 2m-BFF designs of resolution 2] can be
similarly obtained from B-arrays of strength 21.

Let K§° be the (I— ) x (I— f) matrices obtained from K, by cutting the last
row and column. Consider the following condition: For r integers f; with
0B, <B,<--<B, =,

K't?:m,l—ﬁi =0,
(13.1) det(K§®) #0 (B, <1-1),
det(K,) #0 forall o with a#f, and 0Za =1
Note that this condition is equivalent to Condition (9.1) when r=1 and g8, =1.

ExampLE 13.1. Let us consider an S-array with parameters (m=38; 1,=1,
A=1,2,=0,1;=0, A,=1, 15=0, 44=0, 1,=1, 3=0). It is equivalent to a
B-array of strength 6 (I=3), size N=87, m=8 constraints and index set {u,=2,
=1, p,=1, u3=2, uy,=1, us=1, uyg=2}. From Example 4.1, (ii), it is easily
checked that this array satisfies x1-1 =0, det(K{)#0 and det(K,)#0 (=0, 1,
3). Here r=1 and g,=2.

Using an argument similar to Section 12, we shall show that B-arrays of
strength 2I, m constraints and index set {ug, U;,..., Uy} satisfying Condition
(13.1) yield 2m-BFF designs of resolution 21.

LemMA 13.1.  The condition xj#-'"#=0 implies x}:'# =xk#Ji=0 for
all j=0,1,...,1-p—1.

Proor. From Theorem 5.5, the matrix K, is positive semidefinite. Hence
it is easy to verify that x}#-'~#=0 implies xj'"#=x}#J=0 for j=0, 1,...,I—

B—1.
Let

1
C = diag [Iy,_,, thaAgt.z);],

where h, are real numbers such that h;=0 for f=8; (i=1, 2,...,r). Then we
shall prove

LeMMA 13.2. For a B-array T satisfying Condition (13.1), there exists a
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v, X v, matrix X such that XM = C holds.

Proor. From (3.15), the v, x v, matrix C is also expressed as

~
|

C

D& S ! D
> Do+ % h,DDF
0 a=0 a=0

=
|1}

1

~
|

1-f-1
{2 DLu+a,u+a)$+haD;l,l)§}_+_th§1,!)#.
u=0

a=0

This implies C € . Thus it follows from (3.17) that

diag[I,_,, h,] for «=0,1,...,1—-1,
A:C—T,=

h, for a=1
Let
I,diag[K{9-1,0]  for o=y, oo Bu
B [ r,K;! otherwise,
and let
(13.2) X= i If 'f“ LT DY+,

where yiJ are (i, j) elements of X,. Since XM ;e U and from Lemma 13.1
WU XMy — XK, =T, for a =0, 1,..., I,
it is easy to see that XM= C holds.

THEOREM 13.3. Let T be the B-array of Lemma 13.2. Then a parametric
function,

p
(13.3) T - o= [ ! }
(Tlooh, AHPH0,

is an estimable function of 6. The BLUE 7 of ¥ is given by
(13.4) ¥ = XEpyr,
where X is given in (13.2).

Proor. From (1.9), Lemma 13.2 and Gauss-Markov Theorem, it is easy
to verify that ¥ is an estimable function of & and & of (13.4) is the BLUE of 7.

THEOREM 13.4. For the B-array of Lemma 13.2, the covariance matrix
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Var [ﬁ] is given as follows:

(13.5)  Var[¥] = XCq?

l—a—-1 (atiat DE =1 l=a=1
‘ZO K?.jDaa hatsit 4 ZO{ '20 hax‘iz,l—-a
j= a= i=
.(Dgaﬂ',l)# +sz"“““)+h§’€7~a,1—a0£’")#} + hlsz’ngl,l)a]o.z’

where k¢ ; are the (i, j) elements of K{9~! or K;' according as a=p, (k=1,
2,..., ) or not.

ProoF. From (13.4) and Lemma 13.2, we have
Var [fr] = XEr Var[yr]E;X' = XMX'6? = XCo?2.

Since XC e ¥, it is clear that the irreducible representations of XC with respect
to ideals A, (=0, 1,..., I) are given by

K§,0 ** KB, 1—a—1 Rk 1-a

X, r

K?—a-—l,l—a—l ha’c?—a—l,l—a ’
(Sym) hg K‘lz-a,l-‘a
This leads to (13.5).

Let X,, be the v,_, x v,_, submatrix whose rows and columns are composed
of the first v,_, those of X. From (13.2) we have

. =1 I=a=1 l-a-1 .
(13.6) dlag [XI 13 O(T)x(pln)] = ago jgo K?’jD(¢+l,a+])5 = X(O)’ say.

i=o
From (13.5), therefore, we have
(3.7 Var[8,] = X,,02,

where 51 is the BLUE of @, given in (13.4). Since X(® e, it is clear that
Var[@,] is invariant under any permutation of m factors. Thus we establish.

THeOREM 13.5. B-arrays satisfying Condition (13.1) are 2™-BFF designs
of resolution 2l such that the vectors A{Y*@, (a#pBy, Bss..., Br; 0Sa <) are
estimable.

DErINITION 13.1. A B-array T of strength 21, m constraints and index
set {ltg, Wy,-.., U1} IS called an S By, Ba,..., B,) type 2"-BFF design if T satisfies
Condition (13.1).
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Of course, we may say that an S,(f,,..., f,) type 2"-BFF design is identical
with an S; type 2"-BFF design if r=1 and f,=1.

THEOREM 13.6. For an S(B,, Bs,.-., B.) type 2m-BFF design T, the number
of distinct. assemblies in T must be at least v}(B;, Bas-.., B)) =Vi— Zi=0Py,

Proor. This follows from the fact that from (3.17) and Condition (13.1),
rank (M )=v}(B;,..., B,) holds.

As in Theorems 5.4 and 9.2, from (13.7) we can obtain the following

TuroreM 13.7. For an S(By, Ba.... B.) type 2n-BFF design T, the ( I +2)
distinct elements Vv of the covariance matrix Var [01] are explicitly given
by

(13.8) pue = kb, b for 0Sasusov<I-l.
p=0

In general, for given Nz=v}(,,..., B,), there are more than one distinct
Si(By,-.-, B,) type 2™-BFF designs. Note that these designs can estimate a com-
mon parameter vector 8;,. As a measure for comparing these designs, the amount
of tr(Var [8,]) will be used. Let

(13.9) S$9) = tr(Var[6,])/c2.
Then we can establish the following theorem:

THEOREM 13.8. For an S(B;, B3,..., B,) type 2m-BFF design T, S in
(13.9) can be expressed as

-1
(13.10) S0 = p;o dptr(KEO-1),
Proor. From (13.7) and (13.8),

tr (Var [51])/02 =tr(X,,)= :g:( ’l’: )Vg)u,u)

S 8 8
= p;ofﬁﬂ("o,o‘f"‘l,l et Kp-1,1-p-1)
This completes the prodf.
In view of Definition 9.2, we make

DErFINITION 13.2. For given N assemblies, an S/(B,, B2,-..» B,) type 2m-
BFF design T is said to be optimal with respect to the partial generalized trace
(PGT) criterion if S{* is a minimum.
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ExamPLE 13.2. Consider m=8, [=3 and N=87. Let T, be a B-array of
strength 6, 8 constraints and index set {8,4,1,0,1,3,7}. Then it is easy
to check that T, is an S5(8,,..., B,) type 28-BFF design with r=1 and 8,=3, i.e.,
T, is of S; type. By using the PGT criterion, now let us compare this design T,
and the design T of Example 13.1. From (13.10), we have S{°’=0.52654 and
S{9)=1.18125. Thus the design T is better than T, with respect to the PGT
criterion. In fact, as will be seen from the next section, T is an optimal S;(f;,
..., B,) type 28-BFF design with respect to the PGT criterion. However, T; is an
optimal S; type 28-BFF design with respect to the GT criterion.

14. Optimal S;(8,, B2,---» B,) type 2™-BFF designs with m=6, 7, 8

In this section, optimal S;(f,,..., 8,) type 2"-BFF designs with respect to
the PGT criterion will be presented for 6 <m <8 and for every number of N with
vi(By,..., B)SN<v;. For 2m-BFF designs of resolution VI, as pointed out in
Section 10, we are usually interested in ones for which the number of assemblies
is less than v;. First we shall begin by investigating combinatorial properties
of S5(By, --, B,) type 2™-BFF designs which are not of S; type (i.e., r=1; B, #3).
For those of S5 type 2m-BFF designs, see Section 9. From (2.1), (2.2), (3.9),
(4.2), (5.7) and (5.8), we have

K9 = 24(m—4) (=),

Kiet = 24{(m—4) (g + 12) — 2Am — 6)u3};

(14.1)

K92 = 22( m2—2 )1/2(ﬂ5 +uy—2u3),
(142) kb2 = 22<m_2_3’)1/2{(m—2)(u5—ul)—2(m—6)(u4—uz)},

K302 = 22 {( m>2 )(us+u1)—2(m—3)(m—6)(u4+#z)
+(3m2—31m+82)u3};
kb2 ={("5 )3} o+ 1) = 20m— )y + 1)
(14.3) —m(py+py)+4(m—6)us},
K33 = (?)(uoﬂzs)—(m—l)(m—Z)(m—6)(u1+ﬂs)
+3(m—2)(5m* —53m+ 144)(p, + p4)

—3(m—6)(5m*—39m+82)ps.
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From (14.1)-(14.3) and Lemma 13.1, we have

LeEMMA 14.1. For a B-array of strength 6, m constraints and index set
{/‘0’ Hiseeos ﬂ6}9

(i) ifki-1=0, then
(14.4) By = gy (M—4p; = (M—6)us,
(ii) ifk?2=0, then
(14.5) 2u3 = py+ps, 2(m2—9m+22)p;y = (m—3)(m—6)(uy+pa)

(iii) if k3:3 =0, then

Am=Dm=2m=6) (y, + ;) = Hm=Dm’ = 10m+27) (), 11,

(14.6) —4(m—6)(m2—Tm+14)u,,

2( 3 )sto+1g) = 30m—2)(m? = 9Im+24) (s + 1)

_ 16(m—6)(m*—6m+11)
3 U

3.

THEOREM 14.2. Let m=6 and consider an S;(By,...,B,) type 2°-BFF
design T with vi(By,..., B)S N <v; (=42) which is not of S5 type. Then, apart
from an interchange of 0 and 1, T exists only when it is one of B-arrays of
strength 6 with index set {iy, Uy, a2, U3s gy Us, [} SUcCh that

(i) N=32,{0,1,0,1,0,1,0},(r=2;8,=0, ,=2),
(ii) N=324wg+w;y, {14+w,0,1,0, 1,0, l+w,,}, (r=2;8,=1,
B.=3),

where woy and w,, are nonnegative integers with wy, +©,;; <9,

(iii) N =334wo;+ w1, {1+wg3, 1,0, 1,0, 1, w5}, (r=1; p; =2),
where wy, and w,, are nonnegative integers with wg, +w,;, <8,

(ivy N=38,{0,2,0,1,0,1,0}, (r=2;8,=0, 8,=2),

(v) N =38+wo3+w3, {Wo3,2,0,1,0, 1, w3}, (r=1; B, =2),

where wq; and w,; are nonnegative integers with 1 Swo;+w,3=3.
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Proor. From Lemma 14.1, k}'1=0, ¥}:2=0 and «3:3=0 imply u,=pu,
=0, gy=p3=ps;=0 and puo=p,=p,=p,=0, respectively. In Section 9, recall
that k$:°=0implies u;=0. From the definition of a B-array, it follows that for
any given index set, there exists always a B-array of strength 6 and 6 constraints.
Therefore we can easily construct B-arrays with vi(B,,..., B,)<N <42 which
satisfy Condition (13.1). This completes the proof.

THEOREM 14.3. There does not exist any S;(B,,..., B,) type 27-BFF design
with v3{(By,..., B,) = N <v; (=64) which is not of S5 type.

Proor. First consider x}-'=0. From (14.4), 3u,=p; and u,=p, hold.
From the nonsingularity of K%Y, it follows that p,, u; and pu, must be
positive integers. Thus u3 is a multiple of 3. This implies N > 64, a contradic-
tion. For the case x3:2=0, from (14.5) we have 2u; =y, +u; and 4dus=p,+ u,.
Since K{° is nonsingular, it is clear that u, +u; and p,+u, must be multiples
of 2 and 4, respectively. This implies N >64, a contradiction. Finally consider
k3:3=0. Then, from (14.6) we have 5{15(u, + ps) — 7(to+ ttg)} =48us. Similarly
it can be shown that this contradicts N>64 or det(K{®)#0. This completes
the proof.

THEOREM 14.4. Let m=8 and consider an S5(B;,..., B8,) type 28-BFF
design T with v4(B,,..., B)S N <v3 (=93) which is not of S; type. Then, apart
from an interchange of 0 and 1, T exists only when it is one of B-arrays of
strength 6 with index set {yy, iy, 12y U3, Uas Us, He} SUch that

N=860+wo+w,;, {3+wy I,1,2,1,1,24+w}, (r=1;p, =2),

where wy and w, are nonnegative integers with wy+w,<6. Furthermore T
is equivalent to an S-array with parameters (in=8; lo=1+wy, A, =1, 1,=0,
l3=0, A4= ‘, A.S:O, 2’6=0’ 117=1, )\,8=(l)1).

PrOOF. We shall use the same methods as in Theorems 14.2 and 14.3. For
k?:2=0, (14.5) reduces to 2uz=pu,+us and 14u;=5(u,+u,). Since p;=0
implies det(K{®’)=0, it is clear that u; and (u,+pu,) must be multiples of 5
and 14, respéctively. This gives N>93, a contradiction. For x3:3=0, (14.6)
reduces to 7(uo+pe)=18(uy+pa—p3) and T(uq+ps)=22(uy +pa—3). If ps
# U, + Uy, then (ug+ue) and (1 + us) must be multiples of 18 and 22, respec-
tively, which leads to the contradiction N=93. Thus the case uz=pu,+ iy,
Ho=,=pus=He is considered. This implies k! =y,+(m—1)y;=0 (see Ex-
ample 4.1, (ii)), so that det (K{?’)=0. This gives a contradiction. Finally con-
sider x}:'=0. From (14.4), then p,=p, and u;=2u, hold. Since u,=0 or
U, =2 implies det (K{?)=0 or N>93, respectively, the case u;=2, u,=p,=1
is considered. Therefore we suppose a B-array T with index set {ug, uy, p,=1,
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Ha=2, pa=1, us, pe}, where O<p,+pus<2. The inequality p; + us=<2 is due to
Shirakura [23], Theorem 4.1. Also u,+us=0 implies that the distinct number
of assemblies in Tis less than vi(B,,..., B,)=73 if r=1 and B,=2. From Corol-
lary 6.5, it is easily shown that apart from an interchange of 0 and 1, the possible
index set of T is one of {2+ wp,, 1,1,2,1, 1, 24w} ,} and {24+ wp,, 1, 1,2, 1,
0, ) ,}, where wy,, 0], wp, and w), are nonnegative integers satisfying wp,
+w7,; <7 and wy,+w},<14. Simultaneously it is found that all B-arrays of
strength 6 with these index sets are identical with S-arrays. Among the B-arrays
obtained above, particularly, {2, 1, 1,2, 1, 1,2} and {2+w},, 1, 1,2, 1,0, 0},}

TasLe 14.1 Optimal S; (81, Bs,..-, B,) type 2™-BFF designs

m=6 N Mo My Mz P 4 M5 M S types
*32 01 0 1 0 1 O 0.68750 r=2; 81=0, B3=2
*32 1 01 0 1 0 1 0.68750 r=2; B1=1, B3=3
*33 2 01 0 1 0 1 0.67676 r=2; Bi=1, By=3
*34 201 0 1 0 2 0.66602 r=2; =1, Bs=3
*35 301 0 1 0 2 0.66243 r=2; f1=1, B=3
*36 301 0 1 0 3 0.65885 r=2; By=1, p3=3
*37 4 0 1 0 1 0 3 0.65706 r=2; B;=1, fs=3
*38 0 2 0 1 0 1 O 0.62305 r=2; =0, By=2
*39 1 2 0 1 0 1 0 0.62305 r=1; g3=2
*39 0 2 0 1 0 1 1 0.62305 r=1; ;=2
*40 1 2 0 1 0 1 1 0.61111 r=1; g3=2
*41 2 2 0 1 0 1 1 0.60917 r=1; =2
*41 1 2 0 1 0 1 2 0.60917 r=1; g3=2
m=1 N Ko M1 M3 M3 My M5 M S types
50 1t 2 1 0 1 1 1 0.94936 r=1; 8;=3
51 2 21 0 1 1 1 0.93579 r=1; 83=3
52 2 21 0 1 1 2 0.92836 r=1; 8;=3
53 321 0 1 1 2 0.92469 r=1; 8,=3
54 321 0 1 1 3 0.92209 r=1; g3=3
55 4 2 1 0 1 1 3 0.92037 r=1; 8,=3
56 1 21 0 1 2 1 0.84524 r=1; =3
57 2 21 0 1 2 1 0.83698 r=1; g,=3
58 2 21 0 1 2 2 0.82444 r=1; g;=3
59 3321 0 1 2 2 0.82131 r=1; 8,=3
60 321 0 1 2 3 0.81780 r=1; ;=3
61 4 2 1 0 1 2 3 0.81619 r=1; =3
62 4 2 1 0 1-2 4 0.81450 r=1; ;=3
*63 5 2.1 0 1 2 4 0.81353 r=1; ;=3
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TABLE 14.1 (continued)

m=8 N Ho M1 M3 M Ps s e 0 types
65 3310 1 2 2 1.60112 r=1; ;=3
66 4 3 1 0 1 2 2 1.58894 r=1; ;=3
67 4 3 1 0 1 2 3 1.58023 r=1; ;=3
68 5 31 0 1 2 3 1.57599 r=1; g;=3
69 5 3 1 0 1 2 4 1.57291 r=1; ;=3
70 6 3 1 0 1 2 4 1.57076 r=1; ;=3
71 6 3 1 0 1 2 5 1.56918 r=1; g;=3
72 3310 1 3 3 1.28477 r=1; ;=3
73 4 3 1 0 1 3 3 1.27668 r=1; ;=3
74 4 3 1 0 1 3 4 1.26510 r=1; g;=3
75 53 1 0 1 3 4 1.26150 r=1; g,=3
76 53 1 0 1 3 5° 125747 r=1; g=3
77 6 3 1 0 1 3 5 1.25550 r=1; p;=3
78 6 3 1 0 1 3 6 1.25342 r=1; g,=3
79 73 1 0 1 3 6 1.25219 r=1; ;=3
80 5 4 1 0 1 3 3 1.20743 r=1; g;=3
81 5 4 1 0 1 3 4 1.19826 r=1; ;=3
82 6 4 1 0 1 3 4 1.19257 r=1; ;=3
83 6 4 1 0 1 3 5 1.18902 r=1; ;=3
84 7 4 1 0 1 3 5 1.18614 r=1; g;=3
85 7 4 1 0 1 3 6 1.18421 r=1; ;=3
86 8 4 1 0 1 3 6 1.18246 r=1; py=3
*87 3011 2 1 1 2 0.52654 r=1; g;=2
*88 31 1 2 1 1 3 0.50228 r=1; ;=2
*89 4 1 1 2 1 1 3 0.49706 r=1; g3=2
*90 4 1 1 2 1 1 4 0.49327 r=1; g;=2
*91 5 1 1 2 1 1 4 0.49149 r=1; g, =2
*92 5 1 1 2 1 1 5 0.48991 r=1; p;=2

imply det(K,)=0 and det(K,)=0, respectively. This completes the proof.

In Table 14.1, optimal S;(B,,..., B,) type 2"-BFF designs with respect to the
PGT criterion are presented for any given N assemblies, which satisfy (i) m=6,
32<N=41,(ii)) m=7,50=<N=<63 and (iii) m=8, 655N<92. As in Tables
8.1 and 10.1, note that for the designs of Table 14.1, their complementary designs
are also optimal. From Section 9 and Theorems 14.2-14.4, it is found that for
any N with (m=7, 42<N<63) and (m=8, 65< N <86), the optimal designs can
be chosen in the class of S; type 2”-BFF designs. Furthermore, as seen from
Table 10.1 and Shirakura [24], it is interesting that many of the optimal designs
are also optimal with respect to the GT criterion. In Table 14.1, the designs
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TaBLE 14.2 Covariance matrices for optimal S; (81, fBs,-.--, B-) type 2»-BFF

designs
m=6 N o M1 Ms M3 My M5 M V,;“‘O) Vé“’“ Véovz) V,gl”)
2010101 0} 0.03125  0.00000 0.00000  0.03125
32 10107101
33 201 01 0 1 003076 000049  —000049  0.03076
3 20101 0 2 00302 000000 —000098 003027
35 301 01 0 2 003011 000006 —000114 003011
36 301 01 03 00295 00000 —000130  0.02995
37 40101 03 00298 000008 —000I38 002987
38 020 1 01 0 002832 0009  —000098  0.02832
¥ 120101 0} 0.02832 000195  —0.00098  0.02832
39020101 1
40 1 201 0 1 1 002811 00077  —000136  0.02817
4 220101 1
M 1201 01 2} 0.02808  0.00174  —0.00143  0.02814
m=17 N po p1 ps f3 Py Ps Ms v §oon p§on y§e® vy

63 52101 2 4 0.02520  —0.00003 —0.00187 0.04134

m=8 N g p VEY VD Vi p i
8 3 1 1 2 1 1 2 0.01173 —0.00100 0.00015 0.01925
8 3 I 1 21 13 0.01130 0.00000 0.00000 0.01649
8% 4 1 1 21 1 3 0.01129  —0.00022  —0.00003 0.01590
9 4 1 1 2 1 1 4 0.01116 0.00000  —0.00008 0.01552
91 5 1 1 2 1 1 4 0.01111 —0.00010  —0.00011 0.01534
92 5 1 1 2 1 15 0.01104 0.00000 —0.00014 0.01519

which are not optimal with respect to the GT criterion will be indicated by the
asteric *. In Table 14.2, the distinct elements V{**) in (13.8) are also given
for these designs. For constructions of the designs, see Theorems 14.2 and
14.4.

Finally it may be remarked that for the case m =6, the number of assemblies
N =32 obtained in Theorem 14.2 is the minimum number for designs of resolu-
tion VI. Indeed it has been stated in Webb [39] that the minimum number
must be N=m2—m+2 in a general 2"-FF design of resolution VI. For m=7
and 8, we have N=44 and 58, respectively. However it is unknown whether
there exists a 2"-BFF design (m#6) of resolution VI with the minimum num-
ber.
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Vl(lvl) V‘glv2) Vl(lvz) VéZvZ) V{Zyl) V2(2v2)

0.00000 0.00000 0.00000 0.03125 0.00000 0.00000
—0.00049 0.00049 0.00049 0.03076 —0.00049 —0.00049
—0.00098 0.00000 0.00000 0.03027 —0.00098 —0.00098
—0.00114 0.00016 0.00016 0.03011 —0.00114 —0.00114
—0.00130 0.00000 0.00000 0.02995 —0.00130 —0.00130
—0.00138 0.00008 0.00008 0.02987 —0.00138 —0.00138
—0.00098 0.00195 0.00000 0.02832 —0.00098 0.00098
—0.00098 0.00195 0.00000 0.02832 —0.00098 0.00098
—0.00113 0.00162 —0.00033 0.02760 —0.00170 0.00026
—0.00116 0.00157 —0.00039 0.02748 —0.00181 0.00014

Vl(1~l) V(gLZ) Vl(l~2) VéZyZ) V{Z 2) VZFS-Z)
—0.00554 0.00001 0.00001 0.02376 —0.00302 0.00144

yin |45 yin 452 | 4520 yEn
0.00710 —0.00042 —0.00042 0.01289 0.00073 —0.00100
0.00434 0.00000 0.00000 0.01282 0.00067 —0.00107
0.00375 —0.00009 —0.00009 0.01281 0.00065 —0.00108
0.00336 0.00000 0.00000 0.01278 0.00063 —0.00110
0.00318 —0.00004 —0.00004 0.01277 0.00062 —0.00111
0.00304 0.00000 0.00000 0.01276 0.00061 —0.00113
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