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Introduction

The principal oriented bordism module Q,(G) of a compact Lie group G
is defined to be the module of all equivariant bordism classes of closed principal
oriented (smooth) G-manifolds, and is a module over the oriented bordism ring
Q, of R. Thom (cf. [2]).

Let G be a finite subgroup of the unit sphere S3 in the quaternion field H.
Then, it is well known that G is a cyclic group Z,,, a binary dihedral group D*(4m)
or a binary polyhedral group T*, O*, or I'* (cf. (1.1)).

The Q,-module structure of Q,(G) is determined by P. E. Conner and E. E.
Floyd [2, Ch. VII] for G=Z, (p: odd prime), and by K. Shibata [7, §§ 1-4] for
G=Z,. Also, it is proved by N. Hassani [3] that there is an isomorphism
Qu(Z ) =Q4(Z,)® 0.824(Z,,) if m and m' are relatively prime.

Furthermore, in the recent papers K1 and K2, we have determined Q,(G)
for G=Z,«, k=2 (K1-Theorem 2.18), and for G=H,=D*(2"*'), m=2 (K2-
Theorem 8.12). As a continuation to these papers, we study in this paper the
Q,-module structures of Q,(G) for the remaining finite subgroups G of S3, that
is,

G = D¥2™*!t) (t:odd 23, m = 1), T* O* and I*
Our results are stated in Theorems 4.8, 5.9, 6.10 and 7.8 as follows:
G (D*2m*11)) = DAL(D*(2"* 1) @ D'3,. s,
Qu(T*) = T(2, ® BW,) ® T'3u(Z3),
3.0%) =0 ® 0B, ® Q,),
") = 3© 1,6, ® 1,35, ® I53s,1-
Here
Q. (D*Q2m1) =2, ®@W, ®Q,, ® Y, (cf. K2-Theorem 8.12),
0.Z)=30® 3., (cf. Theorem 3.8),
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0(Z)=9,0 ®,0® 6,, (cf Theorem 7.6),

and O and 3 are the submodules of §,(0*) and Q,(I*) generated by the classes
[0*, S4"*3] (n=0) and 3n+150n/21+1[[* §4n+3] (p>0), respectively, where
[G, S4"*3] is the class of the G-manifold S4"*3 with the diagonal G-action.
Further, D, D', T, T’, O and I, (k=3, 4, 5) are the extensions induced by the
natural inclusions

D*(2m+1) D, p*(Qm+1f) D' Z D*(8) L, T* I Z,

D*(8) -2, 0*, Z, Le, 1* (k=3,4,5),
(cf. (4.1), (5.1), (1.9), (7.2)), and these extensions are monomorphic on the sub-
modules written just behind them.

We prepare the results for the homologies of G=D*(2™*1¢t), T*, O* and I*
in§1. The unoriented bordism modules t,(G) are determined in § 2 by Theorems
2.4, 2.7 and 2.11. After preparing some preliminary results in §3, we determine
Q,(G) in §§4-7. Throughout this paper, we often use the notations and the re-
sults of the recent papers K1 and K2.

The author wishes to express his gratitude to Professor M. Sugawara for
his valuable suggestions and reading this manuscript carefully.

§1. The homologies of finite subgroups of S3

Let G be a finite subgroup of the unit sphere S3 in the quaternion field H.
Then.it is well-known that

(1.1) (J. A. Wolf [10, Th. 2.6.7]) G is a cyclic group Z, of order m
(=1), a binary dihedral group D*(4m) of order 4m (=8), a binary tetrahedral
group T* of order 24, a binary octahedral group O* of order 48, or a binary
icosahedral group I* of order 120. Further, two finite subgroups of S3 are
isomorphic if and only if they are conjugate in S3.

Here, the above groups are given as follows (cf. [10, 5.3, 7.1], [6, §3]):
Z,=2,[x]=[x:x"=1],
D*(4m) = D*(4m)[x, y] = [x, y: x™ = y2, xyx = y],
(12) T*=[x,y,z:x3=y*=1, y2 =22, xyx! = z, xzx~1 = yz,
yzy~t =z71],
O =[x, y,z,t: x3=yp*=1,y2 =22 =12, xyx~1 =z, xzx~! = yz,

yzy =zl txt™l = x7 L tyt~t = zy, tzt™! = z71],
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I* =[x, y: x2 = (xy)3 = y%, x* = 1],

where G=G[x,,..., X,]=[X{,..., X,: Ry,..., R;] means that G is generated by the
elements x,,..., x,, with the relations R,..., R,.
We notice that D*(2™*1) is denoted in K2 by

H, =D*2™1)  (mz2),

which is called the generalized quaternion group.
Now, we consider the (co)homology group of G. According to [6, §2],
we see that

(1.3) H*(G; Z) has period 4,
since G acts freely on S3, and
1.4) [1,p.2371 ANG;Z)=HYG;Z)=0,
A°G:2) =2, (9=1%G), HA-%G:2) =G/DG),
where #G is the order of G and D(G) is the commutator subgroup of G.

We can see easily by (1.2) that

D(D*(4m)) = Z,[x*], D(T*) = D*@8)L[y, ],
(1.5)

D(0*) = T*[x, y, z], D(I*) = I*.

Therefore, we have the following results by (1.3), (1.4) and (1.5).

ProrosiTION 1.6.

Zim if n=3(4),
- Z,®Z, if n=14), m:even =2,
(i) H,(D*(4m); Z) =
Z, if n=1@4), m:odd = 3,

0 otherwise.
Zy if n=3@4),

0 otherwise.
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Zyg if n=3(14),
(i) H0*2)={Z, if n=1(4),

0 otherwise.
. Zio if n=3(),
(iv) H(I*Z)=

0 otherwise.

Let H be a subgroup of G. For the induced homomorphism
ix: H(H; A) — H,(G; A) (A=Zor Z,)
of the inclusion i: H =G, we obtain the following properties.

LEMMA 1.7. (i) For n=4k+3 and A=Z, i, is monomorphic.
(i) For n=4k and A=2,, iy is monomorphic.

Proor. (i) We consider the unit sphere S44*3 in H**! as the S3-mani-
fold by the diagonal action q(qg,..., 9)=(490,---» qqx). Then, \U,S**+3/K
is the classifying space of a subgroup K of S3, and S4*¥*3/K is its (4k + 3)-skeleton.

Consider the covering space

G/H —— S4k+3|H 1, §4k+3 G, (i: H = G).
Then there is the commutative diagram

Hypi3(S*43[H; Z) —5 Hyyy 3(S*3/G 5 Z)

2 l,

Zyy=Hyi3 (U S**H3H; Z) o5 Hyyo 3(\J SHY31G 5 Z) = Zyg,

where j and j' are the inclusions. For the upper iy, we have i, (1)=rl, where
1’s are the fundamental classes and r=#(G/H), since i is the r-fold covering.
Therefore, we have the desired result since j4(1) and ji(1) are the generators of
Z,y and Z,g;, respectively.

(i) When k=0, (ii) is clear. Assume that k=1 and consider the commuta-
tive diagram

Hy(H; Z) — Hy(H; Z,) £, Hy(H; Z)

e [ e

Hu(G; Z) — Hu(G; Z,) AN Huy1(G; Z)

of the Bockstein exact sequence. Since H, (K; Z)=H"1(K; Z)=0 for K=G
and H by (1.4), p’s are monomorphic and hence we see (ii) by (i). q.e.d.
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We notice the following lemma which is proved easily.

LemMmA 1.8. ¢ =0 if and only if ¢* =0, where ¢: Z,—Z, is a homomor-
phism and ¢*: Ext(Z,, Z)—»>Ext(Z,, Z) is its induced homomorphism.

Now, we consider the inclusions
0: D*®)[x, y] — O*[x, y, z, t], O(x) =t, O(y) = z,
(1.9 Oiy: Zy, — O*[x, y, z, t], ImOi, = Z,[t],
0j,: Zy —> O*[x, y, z, t], ImOj, = Z,[z],

(cf. (1.2)), where i,, j,: Z,—»D*8)=H, are the inclusions of K2-(1.6), (1.9).
Then

LEMMA 1.10. For the induced homomorphisms
(0iy)ss (0j)s: Haps 1(Z45 A) — Hypo (0*; A), (A=ZorZ,)),
we have (0i,)4 = 0 and (0j,), = 0.

PrOOF. Set 0,=0j, and 0,=0i,. By [I, Prop. 11.3] and (1.3), if a
€ H4(0*; Z) is the maximal generator, then so is a,=0,,a€ H*(Z,; Z). Hence,
by [1, Prop. 11.1], the universal coefficient theorem and (1.4), we have the com-
mutative diagram

H2(0%; Z) 25 H442(0%; Z) & Ext(Hys,(0%; Z), Z)

101“‘ loi* 1(01—)‘
Kk

HX(Zy; Z) —> H**2(Zy; Z) = Ext(Hyy(Z4; Z), Z).

For k=0, we see that 0,,=0 and 0,,>0 by (1.4), (1.5) and Lemma 1.8.
Therefore we have the desired results for A =Z by the above diagram and Lemma
1.8. The results for A=Z, follow from these results, since the mod 2 reduction
H g0 (0*; Z)>H,, . (0*; Z,) is isomorphic by Proposition 1.6 (iii). q.e.d.

Lemma 1.11. Consider the induced homomorphisms
Oy Hypyo(D*(8); Z3) — H i 2(0*; Zy),
kax: Hyps2(D*(8); Z3) — Hypr 2(D*(16); Z5),

of O in (1.9) and ky=k, 3: D¥(8)->D*(16) of K2-(1.13). If aeH,,.,(D*(8);
Z,) satisfies a >0 and k3,(a)=0, then O,(a)=0.

Proor. By K2-Lemmas 1.3, 1.7, 1.10 and 1.14, we see that
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Hyp s 1(Dx(8); Z) = Z,[i24(2)] @ Z2[)24(2)],
kixizn(z) =0,  k3ujou(2) * 0,
where z is a generator of H,,,,(Z,; Z). On the other hand,
O4izx(2) X 0,  O4j2u(2) =0

by the above lemma. Hence we have the lemma using the Bockstein homomor-
phisms H,,,,(G; Z,)—H,,,,(G; Z) for G=D*(8), O* and D*(16). q.e.d.

§2. The unoriented bordism module N, (G)

In this section, we study the principal unoriented bordism modules RN,(G)
for G=D*(4m), T*, O* and I* of (1.2).
Consider the Thom epimorphism

(2.1) p: N(G) — Hy(G; Zy)
of [2, (8.1)] and the isomorphism
(2.2) h: Ny @ Hy(G; Z,) —= Ny(G)

of [2, (19.3)] such that h(1®c;)=C,, where {c;} is a basis of H,(G; Z,) and uC;
=c;. By using pand h, N, (G) for G=2Z,.. and D*(2"*1)=H,, (m =2) are studied
in K1-§1 and K2-§2.

Now, we consider the binary dihedral group

D*(2m+1f), t:odd 23, m=1.
By (1.2), we see easily that there exists a split exact sequence
(2.3) 1 — Z,[x2"] 25, D*(2"+11) [x, y] o D*(2"1)[x!, y] — L.
D

Here, if m=1, then D*(4)[x!, y]=2Z,[y].
THEOREM 2.4. The extension homomorphism
D: N (D*(2m*1)) — R, (D*(2mH 1)) (trodd 23, mz1)

of My-modules is isomorphic. The domain RN,(D*2™*1)) (m=2) or N(Z,)
(m=1) is given in K2-Theorem 2.3 or K1-Theorem 1.22, respectively.

Proor. By the exact sequence (2.3), we see that D is monomorphic. Hence
we have the theorem by (2.2), since H,(D*(2™*1); Z,)=H,(D*(2™*'t); Z,) by
Proposition 1.6 (i). q.e.d.
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Consider the principal G-manifolds

(G’ S4"+3)’ ‘I(‘Io,---: qn) = (q‘IOa'“’ an) (q’ qiEH)’
i(a’ S") (i: ZZ < G)3

2.5

for any finite subgroup G of S3 of even order, where (a, S") is the Z,-manifold
of K1-(1.5) with the antipodal action. Then we have the following

LeEMMA 2.6. For the epimorphism u'of (2.1), the p-images
pLG, S*"*3]1€ Hyn13(G; Z,)=2,, pila, S*"1€ Hy(G; Z3)=2Z,
are not zero.

PrOOF. Since S*"*3/G is the (4n+ 3)-skeleton of the classifying space
BG=\U,S$*"*3/G, we have u[G, S*"*3]x0 by the definition of u. Since pu[a,
S4"1%0 in H,(Z,; Z,)=Z, by [2, Th. 23.2], we see pui[a, S*"]=i,ula, S*"]
%0 by Lemma 1.7 (ii). q.e.d.

For the case G=T%* or I*, we see that H(G; Z,)=0 if n=4m+1, 4m+2
by Proposition 1.6. Hence we have the following theorem by (2.2) and the above
lemma.

THEOREM 2.7. If G=T* or I*, then the principal unoriented bordism
module M,(G) is a free Ny-module with basis {[G, S*"*3], i[a, S*"]: n=0},
where the bordism classes are those of (2.5).

By considering Z,,=Z,[exp(2ni/m)]=S! =C, we have the Z,-manifold
(2.8) (Z,, S2*1Y),  c(Cgy.--s Cn) = (CCos...5 CCy) (c, c;€C),

which is denoted by (7, S27*1) in K1- (1.6) or (T;, S?2"*1) in K2—-(2.8) for m=2!,
By using this manifold and the D*(8)-manifold (8,, S?"*! x S2n*1) of K2~
(2.10), we have the following O*-manifolds:

(0*, S4n*3), i(a, S™) (i: Z, = 0*), (in (2.5)),
2.9 0i,(Z,, S*"*') (0i,: Z, < O* of (1.9)),
0(f,, S2mt1 x S2n+1)  (0: D*(8) = O* of (1.9)).
LeEMMA 2.10. Consider the epimorphism u of (2.1) for G=0*. Then
HOiZ[Zy, S4" 1] € Hypiy(0%5 Z5) = Z,,
HO[B2, S2"*1 x S27* 1] € Hyp 1 )(0%; Z5) = Z,

are not zero.



78 Yutaka KATSUBE

Proor. Since u[Z,, S*"*1]1x0 in H,,,(Z,; Z,)=Z,, we have uOi,[Z,,
S4m 11 =(0i,)4u[Z,, S4"*']%0 by Lemma 1.10. By K2-Lemmas 2.11 and 2.14,

we have u[B,]0in H,,.,(D*(8); Z,) and kyuu[B,]1=0, where [B,]=[B,, S2"*!
x §2n*+1] These and Lemma 1.11 show that uO[f,]1=0,u[f,]1=0. q.e.d.

By Proposition 1.6 (iii), Lemmas 2.6, 2.10 and (2.2), we have the following

THEOREM 2.11.  The principal unoriented bordism module RN, (0*) is a
Jfree Ny-module with basis

{[0*, §4"*3], i[a, S*"], Oi,[Z,, S*"*'], O[B,, S2"*! x §2"*1]: n 2 0O},
where the bordism classes are those of (2.9).
Finally, we notice the following

LEMMA 2.12. Let GoH be finite subgroups of S3 of even order and
i: HcG be the inclusion. If $(G/H) is odd, then

[G’ S4"+3] = Z[H’ S4"+3] in gl‘tn+3(G)’
where (G, S*"*3) and (H, S*"*3) are the ones in (2.5).

ProoF. Consider the principal G-bundle G x ,S*"*3—S4"*3/H., Then
its classifying map is the projection i: S***3/H—S*"*3/G. Since #(G/H) is
odd, we see that iy,: H,,, 5(S***3/H; Z,)>H,,,(S*"*3/G; Z,) is isomorphic,
and hence the Stiefel-Whitney number of i[H, S4"*3] coincides with the one of
[G, S4*3]. Thus we have the lemma by [2, Th. 17.2]. q.e.d.

§3. Preliminaries to the oriented bordism module £2,(G)

Consider the homomorphism
G.1) u: @(G) — H,(G; 2)

for a finite group G defined in the same way as u of (2.1) (cf. [3, §6]). By [2,
(7.2)], this is the edge homomorphism

(32) B,G) = B,(BG) = J, o — Eg << E, = [,(BG; 2) = [,(G; 2),

in the bordism spectral sequence {E} ,, d; ,} for (BG, *). Further, it is known
that

(3.3) [2,(14.1)] The bordism spectral sequence {Ej ,, dj, ;} is trivial
mod €, that is, Imdy, , is an odd torsion group, where € is the class of odd tor-
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sion groups.

PrROPOSITION 3.4. Assume that H,,(G; Z)=0 for all n=0. Then

(i) (cf. [4], [5]) u of (3.1) is epimorphic.
(i) The bordism spectral sequence for (BG, *) is trivial.

Proor. We see easily (i) by using (3.2), (3.3) and the theorem of C.T. C.
Wall for the structure of Q, (cf. K2-Theorem 3.6).
We see (ii) by (i) and [2, Th. 15.1]. qg.e.d.

By (1.3), (1.4) and (ii) of this proposition, we have

CoRrOLLARY 3.5. If G is a finite subgroup of S3, then the bordism spectral
sequence for (BG, *) is trivial.

REMARK 3.6. By [4], G has periodic cohomology if and only if H,,(G;
Z)=0 for all n=0.

Further, we use the following
THeorREM 3.7 (cf. Th. 14.2]). The canonical homomorphism
0: 3(G) — 3 1 4=f(G; Q)
is isomorphic mod €, where % is the class of odd torsion groups.

Now, according to [2] and [7], we recall the Q,-module structure of Q,(Z,)
(t: odd = 3) as follows:

THEOREM 3.8 ([2, Th. 46.3], [7, Th. 6.3]). (i) Consider the submodule
3. =0, 1) of O.(Z,) generated by the elements

afai2ers = [Z,, S4+2e41] (in (2.8)), n 2 0.

Then, Q,(Z,), t: odd=3, is the direct sum

ﬁ=a=(Zt) = 3:,0 ® 3:.“

and 3,, is the quotient module of the free Q. -module Q. {{0{);,.+::n=0}}
by the submodule generated by the elements

BEri2er1 = D=0 V(zt()n—j)“ff}nen, nz0,

where the coefficients V) € Q,, are given in [7, Prop. 6.7].
(ii) Let t=T1,p¥* (k;=1) be the prime decomposition of t. Then the order
afdiy of )iy in Qy(Z,) is given by
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af). =TLpk*t, L =[Qn+1)2(p;i—=1)].

Let G be any finite subgroup of S3. Consider the orbit manifold S4"+3/G
of the G-manifold (G, S4"*3) in (2.5), the principal G-bundle &=(S4"*3, &,
S4n*+3|G) and its associated 4-plane bundle & by the inclusion G S3cO(4).
Then, the following is known.

THEOREM 3.9 [8, Th. 3.1]. The tangent bundle ©(S*"*3/G) of S4"*3/G
satisfies

(S*"*3/G) @ 0! = (n+1)§,
where 0! is the trivial line bundle.

LemMA 3.10 [8, Lemma 7.1]. Let w=3 w;e H¥BO(4); Z,) be the uni-
versal Stiefel-Whitney class, and j: S3 =O(4) be the inclusion. Then

j*w = 1+u,
where u is the generator of H4(BS3; Z,) = Z,.

LemMA 3.11. Let G be a finite subgroup of S3 of even order, and i: BG
—BS?3 be the induced map of the inclusion G=S3. Then i*: H¥BS?; Z,)—
H*(BG; Z,) is monomorphic.

Proor. Let {E??} be the Serre cohomology spectral sequence of the
bundle

S3/G —> BG — BS?.

Then, by the easy calculations, we see that E4"°=H4*BG;Z,) and E%"°
=E%"° Thus we have the lemma. g.e.d.

By Theorem 3.9 and the above lemmas, we have

LemMma 3.12. The Stiefel-Whitney class w(t(S*"*3/G)) of the tangent
bundle 1(S*"*3/G) is given by

w(t(S4"*3/G)) = (1+v)»*! if n=21, =1 if n=0,
where ve H*(S*"*3/G; Z,) = Z, is the generator.
ProOPOSITION 3.13. Let G be any finite subgroup of S3 of even order. Then
[S*"*3/G] =0 in Q3.

Proor. Since dim(S4"*3/G) is odd, all the Stiefel-Whitney and Pontrjagin
numbers of S4"*3/G are zero by the above lemma. Hence we have the proposi-
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tion by [9, §8, Cor. 1]. q.e.d.

§4. £2,(D*(4m))

In K1 and K2, we have already studied the Q,-module structure of Q,(G)
for G=Z,« (k=2) and D¥(2m*!) (m=2). In this section, we study the case that
G is the binary dihedral group

D*@2m*11) = D*2"* ') [x, y], x =exp(ni/2"~'1), y =],

for m=1 and t: odd =3, by using the split exact sequence
(4.1) 1 — Z,[x2"] 2, D*(2n*1) /= D*Qm*1)[x!, y] — 1
D

of (2.3), where D*(4) [x*, y]1=Z,[y]l if m=1.

For a finite abelian group A, denote by A.,., and 4,44 the 2-primary and odd
components of A, respectively.

LEMMA 4.2. (i) #GQ,(D*Q2™ 11))eyen = #3,(D*(2m+1)).
l#ﬁn<z,) if n=3(),

otherwise.

(i) #2(D*2™* ' 1))oaa =

Proor. By the structure of Q, (cf. K2-Theorem 3.6) and Proposition 1.6,
we see easily that E2-terms of the bordism spectral sequence of Q,(BD*(2"*'t))
satisfy

A, (D*2™11); Q)even = H(D*(2"1); Q)),
~ ﬁp(zt; Qq) if p = 3 (4)’ q = 0 (4)9
Hy(D*(2™*11); 2p)oaa =

otherwise.
Thus we have the desired results by Corollary 3.5. q.e.d.

PrOPOSITION 4.3. The extension homomorphism
D: 3, (D*2m*1)) — G (D*(2m*11)),

induced by the inclusion D in (4.1), is monomorphic and

ImD = Qy(D*Q2™  D)even-

Proor. The former is clear by the split exact sequence of (4.1), and the latter
is shown by this result and the above lemma. q.e.d.
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Now, consider the D*(2™+1f)-bordism classes
(4.4) 0%ty = [D*2™* '), S4"3]  (n20),
where (D*(2m+1¢), S4»*+3) are the ones in (2.5). Also, let
4.5) tp: G (D*QQm+11)) — (,(Z)

be the transfer homomorphism induced by the inclusion D’: Z,=D*(2™*!t) in
(4.1), i.e., the homomorphism defined by restricting D*(2"*!f)-actions to Z,.
Then, we see immediately the following

LeEMMA 4.6. tp 0t s = o), s,
where a$).3 = [Z,, S4"*3] is the class in Theorem 3.8 (i).

PrROPOSITION 4.7. (i) Let ®,,, be the Q,-submodule of Q,(D*(2m+1t))
generated by 2mt16%:t o, n=0, where 653}, 5 is the class of (4.4). Then

D = Du(D*Q™ ')oaa ® 31 by tp of (45).

Here 3, is the submodule of @.(Z,) in Theorem 3.8, and so D, is the quotient
module of the free Q,-module Q, {{2m*16%:! 5: n=0}} by the submodule gener-
ated by the elements

2m*1 27=0 V(z'()n—j)‘s'f)t-&-a, n20,

where the coefficients V) are those in Theorem 3.8 (i).
(ii) Consider the extension

D': 3y(Z) — Qy(D*(2"* 1))
induced by the inclusion D' in (4.1). Then
D'af)is = 2" 1t 5,
and so D’ maps 3,,; isomorphically onto D,,,.

Proor. (i) We notice that 2mt157;t, 4 eﬁ*(D*(Z"'“t))odd by Theorem 3.7
and Proposition 1.6. Hence we see that 5.0, 3(D*Q"* 11)oga=3r.1 N Dans3(Z)
by the above lemma and the definition of 3, ;. Thus we have (i) by Lemma 4.2
(i)

(i) We see easily by definition that the class t,D'ay), ;€ Q*(Z,) is re-
presented by Z, (=Z,[x2™])-manifold

D*(2m+1t) X 2z S4n+3 — D*(2m+1) [xt’ y] X S4n+3

with the Z,-action given as follows:
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a(x"yt, (qo, -.» qn)) = (xy?, at1729(qq,..., q,))  (a = x?"),

for 0<1<2m =0, 1. Also the equivariant diffeomorphism of (Z,[x~2™], S4r+3)
onto (Z,, S47*3) is defined by multiplying j. These show that t,D'a¥), ;=
2m+140) o, and we obtain (ii) by the above lemma and (i). g.e.d.

Now, we have immediately the following main theorem of this section, by
Propositions 4.3 and 4.7.

THEOREM 4.8. The principal oriented bordism module Q.,(D*(2"*1t)) of
the binary dihedral group D*(2™*1t) (m=1, t: odd =3) is the direct sum

Q,(D*2m*11) = DA(D*(2"*1)) © Dy

where the summands are the 2-primary and odd components and are given in
Propositions 4.3 and 4.7, respectively.

§5. £,(T)

In this section, we study the binary tetrahedral group T*.
It is easy to see by (1.2) that there exists the split exact sequence

.1) 1 — D*@8)[y, z] % T*[x, y, z] Tﬁ Z[x]— 1.
Now, we use the direct summands
(5.2) 2,, generated by [D*(8), S4"*3], n =0,
and
(5.3) W, generated by IE4"*3W(w), n=0, wen, (I:Z,=D*@8)),

of @,(D*(8)), which are given in K2-Theorem 4.8 (i) and (iii). The r-images of
the classes in (5.3) satisfy the following equalities by K2-Lemma 4.5:

(5.4) rlE4n3W(w) = rg(w) Y. 324%a,;l[a, S+ 1=27], ap =1,
where r: Q,( )—-N,( ) is the orientation ignoring homomorphism.
LemMA 5.5. (i) $0,(T*)oqa = $3.(Z5).
(ii) $O(T)even = #(2, @ BW,) n G, (D*(®))).

ProoF. By Corollary 3.5, the bordism spectral sequence of {2,(G) is trivial
for G=T*, Z; or D*(8). Also, by the structure of Q, (cf. K2-Theorem 3.6)
and Proposition 1.6, we see that
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ﬁp(T*; Qq)odd = Hp(ZSa Qq)a
AD*®8); Q) if p=3 or 0(4),

HP(T*; Qq)even = .
0 otherwise.

Thus we have (i) and #3,(T*).,.. is equal to
(X hzoHak+3(D*(8); 25— 4x-3) © ZisoHar(D*(8); 2,-41))
= #(2, n 3,(D*(8)) ® (W, n &,(D*(8)))
by K2-Proposition 4.1 (ii). q.e.d.
PROPOSITION 5.6. The extension
T: 3,(D*(8)) — Qu(T*),

induced by the inclusion T in (5.1), is monomorphic on the submodule £,®%,
of (5.2) and (5.3).

Proor. (i) In the first, we prove that T is monomorphic on £,. Consider
the Thom homomorphism p: Q. (T*)—H.(T*; Z) of (3.1). Then uT[D*(8),
S4nt3] is a generator of the 2-primary component Zg of H,,.s(T*; Z2)=Z,,
by (*) in the proof of K2-Lemma 4.3 (i), Proposition 1.6 and Lemma 1.7. Hence,
T[D*(8), S4"*3] is of order 8 by K2-Theorem 4.8 (i), and we see that

(*) xT[D*(8), S4"*3]1 =0 if and only if xe€8Q,,

in the same way as the proof of K2-Lemma 4.3 (ii).
Consider the Smith homomorphism

(57) 4: Qn(G) — 'Qn—4(G)’

which is an Q,-module homomorphism, defined as follows (cf. K2-(4.6)): For
a principal oriented G-manifold (G, M"), we can take a differentiable equivariant
map ¢: (G, M")—(G, S*N*3) to the G-manifold (G, S4"*3) in (2.5) for 4N +3
> n, which is transverse regular on S4V-1, since S4N*3/G is the (4N + 3)-skeleton
of BG. Then 4 is defined by

4[G, M"] = [G, ¢~ 1(S*N"1)].
It is easy to see that
AT[D*(8), S4i+3] = T[D*(8), S*i~1] if j=1, =0 if j=0.

Assume that
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$1-0x, TID*(8), 44T =0 (x,€Q,).

Then, by applying 4"=A4o---04 (n-times), we have x,T[D*(8), S*]=0 and so x,
€8Q, by (x). Thus x;e89, for 0<j<n, and we see that T is monomorphic on
£, by K2-Theorem 4.8 (i). '

(ii) Since r: G, (D*(8))—>N,(D*(8)) is monomorphic on MW, by K2-Lemma
4.5, we see that Tor=roT: Q,(D*{8))—RN,(T*) is also monomorphic on W,
by (5.4), Theorem 2.7 and K2-Theorem 2.13.

(iii) Finally, we prove the proposition. Assume that

I+w=0 (leTL,, we TIR,).

Since T[D*(8), S4"+3]=[T*, S4"*3] in N,,,3(T*) by Lemma 2.12, we see that
rl=0=rw by the T-images of the equalities of (5.4) and Theorem 2.7. Thus
w=0 by (ii). Therefore we have the proposition by (i) and (ii). q.e.d.

By the split exact sequence (5.1) and Lemma 5.5 (i), we have immediately
the following

ProrOsITION 5.8. The extension homomorphism
T': G4(Z;) — Q(T*),
induced by the inclusion T': Zy<=T* in (5.1), is monomorphic, and
ImT’ = Q(T*),4a-

By the above two propositions and Lemma 5.5, we havé immediately the fol-
lowing

THEOREM 5.9. The principal oriented bordism module Q,(T*) of the binary
tetrahedral group T* is the direct sum

QT = T(2, ® W,) ® T'A(Zs),

where the summands are the 2-primary and odd components, and are given in
Propositions 5.6 and 5.8, respectively.

§6. £2.(0%

In this section, we study the binary octahedral group O*.
Consider the direct summands

(6.1) MW, and Q, of $,.(D*@8)),
of (5.3) and K2-7.1, respectively, (cf. K2-Theorem 8.12).
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LEMMA 6.2. (i) #3,(0%),qq = $3.(Z5) if n=3 (@), =1 otherwise.
(i) #3(0%)eren = 2 1Haj 3(0%5 Qu_aj—3)even X H(WB,@Q,) 1 G,(D*(®))).
Proor. In the same way as the proof of Lemma 5.5, we see that
H0%; Q)oaa = H(Z3; Q) if p=3(4), =0 otherwise,
- (#H,(D*(8); Q,)'/? if p=1,2(4),
$H,(0%; Q)even =
$H,(D*(8); Q,) if p=0(4),
by Proposition 1.6. Therefore we have the lemma by K2-Proposition 4.9 (ii)
and K2-Lemma 7.9 (i). q.e.d.
Consider the inclusion
(6.3) 0': Z,[exp(2ni[3)] — O*[x, , z, ], ImO’' = Z,[x],

(cf. (1.2)), the transfer homomorphism

(6.4) to: Qu(0%) — Qu(Z3),

defined by restricting O*-actions to Z; by the inclusion O’, and the classes
(6.5) [0%, 54m*3]e(,,,5(0%)  (in (2.5)).

LEMMA 6.6. to[0%, 54731 =02,
where a'3), 3 =[Z5, S*"*3] is the class in Theorem 3.8 (i).

ProOF. Since Z;[x]=q'Z,q for some qe H, where Z,=S!, the equiva-
riant diffeomorphism of (Z;[x], S4**3) onto (Z,, S#"*3) is defined by multiplying
q. Hence we have the lemma. q.e.d.

PROPOSITION 6.7. (i) Let O, be the Q,-submodule of Q.,(0*) generated
by 16[0*, S4"*3], n=0. Then O, =2,(0%),qq and

O,x 33, by to of (64).

Here 35, is the submodule of G,(Z3) in Theorem 3.8, and so O, is the quotient
module of the free Q.-module Q,{{16[0*, S*"*3]: n=0}} by the submodule
generated by the elements

1631 oV ith-5[0*, 54*3],  n20.
(i) [0*, S4*3]eB,(0*) is of order 243n+1,

Proor. We see (i) in the same way as the proof of Proposition 4.7, by
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Lemmas 6.2 (i) and 6.6. We see (ii), since 16[0*, S4m*3] is of order a‘?),
=3"*1 by (i), Lemma 6.6 and Theorem 3.8 (ii). q.e.d.

PROPOSITION 6.8. (i) Let O and O, be the Q,-submodules of Q,(0%)
generated by [0*, S4"*3], n=0, and 3"*1[0*, S4"*3], n=0, respectively. Then

D= Dl ® DZ’ Dl = Dodd’ DZ =,Dcven’

where O, is the one of the above proposition, and O, is the quotient module of
the free Q,-module Q,{{3"*1[0*, S*"*3]: n=0}} by the submodule generated
by the elements 243"+ 1[0*, S47+3], n=0.

(i) #(D; n C,(0*) = #3;H4j1+3(0%; Lusj—3even:

Proor. (i) By (ii) of the above proposition, o4,,3=3"t1[0*, S*"+3]
is of order 16. Since [O*, S4"*3] is a generator of H,,, 3(0*; Z)=Z,5, We see
that

(%) Xo4n+3 =0 ifand only if xe16Q,,

in the same way as the proof of K2-Lemma 4.3 (ii). By using (*) and the Smith
homomorphism 4 in (5.7), we see that

> iXj04j+3 =0 ifand only if x;€16Q,,

in the same way as the proof (i) of Proposition 5.6. Hence we see the structure of
0, and (i).
(ii) There is a group homomorphism

¢ ZjH4j+3(O*; Qn—4j—3)even
= ZjH4j+3(0*; Z)even ® Qn—4j—3 I D2 n gn(O*)

defined by ¢(z;®x)=Xo4 3, Where z;=pio,;+3. Then, it is clear that ¢ is isomor-
phic by (i). q.e.d.

PrOPOSITION 6.9. (i) The extension
0: Q.’*(D*(8)) - fj*(O*) »

induced by the inclusion O in (1.9), is monomorphic ont he submodule W, DA,

of (6.2).
(ll) Q*(O*)even = DZ @ O(mZC'DQZ) .

Proof. (i) Consider the orientation ignoring homomorphism r: Q,( )
-N,( ). Then r: 3, (D*B8))->N,(D*®)) is monomorphic on W,DQ, by
K2-Theorem 8.12 and Rohlin’s Theorem [2, Th. 16.2]. Hence we see that
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700 = Oor: (3,(D*(8)) —> M,(0%)

is monomorphic on IW,DY,, by Theorem 2.11, (5.4) and K2-Lemma 7.3 (ii).
Thus we have (i).
(ii) Suppose

I+w=0Q for 1eD, and weOIB,®Q,).

Then ri=0=rw by Theorem 2.11, (6.4) and K2-Lemma 7.3 (ii). Hence w=0
by the proof of (i). Therefore we have (ii) by Lemma 7.2. g.e.d.

By the above three propositions, we have the following

THEOREM 6.10. The principal oriented bordism module Q,(0*) of the
binary octahedral group O* is the direct sum

Q*(O*) = Dl ® Dz ® O(QBZ ® Qz)

of the submodules given in the above propositions.

§7. 2. UT*

Finally, we consider the binary icosahedral group I'*.

LEMMA 7.1. (i) #Q,(I*),qa=#Q.(Z,s) if n=3(4), =1 otherwise.

(i) G (M) even =4 jHajs 3(I*; Quraj—3)even x $(TB, 0 G,(D*(8))),
where W, is the one of (5.3).

Proor. In the same way as the proof of Lemma 5.5, we see the lemma by
Proposition 1.6. q.e.d.

Consider the inclusions
(7.2) I;: Z, — I*[x, y], k=345,
such that
ImI; = Z3[(xy)?], Iml, = Z,[x], ImIs = Z[y?], (cf. (1.2)).
PROPOSITION 7.3. Consider the extension
Li: 84(Z) — Q.(I%, k=35,

induced by the inclusion I, of (7.2).
(i) I, is monomorphic on the submodule 3,‘,1<:§*(Zk) of Theorem 3.8.
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(ii) g*([*)odd = 1333,1 ® 1535,1‘

ProoF. The bordism spectral sequences of 3,(BG), for G=I*, Z, (k=3,

5), are trivial by Corollary 3.5, and the inclusion I, induces a monomorphism of

E2-terms in total degree 4n+3 by Lemma 1.7 (i), (1.4) and the structure of Q,

(cf. K2-Theorem 3.6). Hence I,: Q,,.(Z,)— 4, 3([*) is monomorphic, and we
have the desired result by Theorem 3.8.

(i) We have immediately the desired result by (i) and Lemma 7.1 (i).

q.e.d.

LEMMA 7.4. The order of the class [I*, S***4]e Q,(I*) in (2.5) is equal
to 233n+15[n/2]+1'

Proor. It is clear that u[I*, S4"*37 is a generator of H,,,(I*; Z)=Z,,0.
Hence the order of [I*, S47*37] is 24(2)34(3)54(5) for some a(2)=3, a(3)=1,
a(5)=1 by Lemma 7.1. We see that a(2)=3 by Theorem 3.7 and Proposition
1.6.

Consider the transfer homomorphism

I Qans3(I*) — D41 3(Z)) (k=3or9)
induced by I, of (7.2). Then we see that
tr 1%, S4*3] = [Z,, S4I*3] = aif),s

in the same way as Lemma 6.6. Hence ¢, maps the k-primary component of
Q4.+ 3(I*) isomorphically onto ,,,3(Z,) by Lemma 8.1 and Theorem 3.8.
Therefore, a(k) is equal to the order a{®),; of alt), 5, which is 3»*! if k=3 and
5in/21+ 1 jf k=5 by Theorem 3.8 (ii). g.e.d.

PROPOSITION 7.5. Let 3 be the submodule of Q,(I*) generated by the
classes

= 3n+15[n/2]+1[1*, S4n+3], n _2_ 0.

(i) Then 3 is the quotient module of the free Q.-module Q,{{c,: n=0}}
by the submodule generated by the elements 8¢,, n=0.
(i) #C n Q") =#3 Haju3(I*5 Qu-sj-3)even-

Proor. The proposition can be proved in the same way as the proof of
Proposition 6.8, by using the above lemma. q.e.d.

Now, we use the following
THEOREM 7.6 (K1-Theorem 2.18). Q.(Z,) is the direct sum
Q*(Z4) = @2 @ (52, (62 = (52,0 ® (52,1-
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Here , and ©, are the submodules in K2-Theorem 2.18, and &, (=0 or 1)
is the submodule of 3,(Z,) generated by the elements

[EAnt 201 (), n20, wen, (i:Z,cZ,),

and is the quotient module of the free Q. -module Q,{{iE*"*2¢*'1W(w): n=0,
wen}} by the submodule generated by the elements

QE4 24 W (w), Aypyeo(w) (o 22), Byyieq(w, @), o, w'en, nz=0.
ProrosITION 7.7. Consider the extension
I,: Q*(Z4) B Q:1:(1*)

induced by the inclusion I, of (7.2).

(i) Then 1, is monomorphic on the submodule (ﬁz,lcfz*(l‘t) of the above
theorem, which is isomorphic to W, = 3, (D*(8)) of (5.3) by the extension induced
by the inclusion Z, < D*(8).

(“) ﬁ>|=(I*)even =3 @ 14052,1’
where 3 is the one of Proposition 7.5.

PrOOF. (i) We can prove that rol,: §,(Z,)—R,(I*) is monomorphic on
®,,, in the same way as the proof (ii) of Proposition 5.6, by using Theorem 2.7
and K2-Proposition 3.10. The fact that ®, ; ~IB, is seen by Theorem 7.6 and
K2-Theorem 4.8 (iii).

(ii) In the same way as the proof of Proposition 6.9 (ii), we see that
3n1,6,,=0 by the above proof and Theorem 2.7. Therefore, we have (ii)
by (i), Proposition 7.4 (ii) and Lemma 7.1 (ii). q.e.d.

Now, we have the following theorem by Propositions 7.3 and 7.7.

THEOREM 7.8. The principal oriented bordism module Q,(I*) of the binary
icosahedral group I* is the direct sum

Q*(I*) =3® 14(52,1 ® 1333,1 ® 1535,1

of the submodules given in Propositions 7.3, 7.5 and 7.7.
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