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Introduction

The principal oriented bordism module Ώ*(G) of a compact Lie group G

is defined to be the module of all equivariant bordism classes of closed principal

oriented (smooth) G-manifolds, and is a module over the oriented bordism ring
Ω* of R. Thorn (cf. [2]).

Let G be a finite subgroup of the unit sphere S3 in the quaternion field H.
Then, it is well known that G is a cyclic group Zm, a binary dihedral group D*(4m)

or a binary polyhedral group T*9 0*, or /* (cf. (1.1)).
The ί2*-module structure of Ω*(G) is determined by P. E. Conner and E. E.

Floyd [2, Ch. VII] for G = Zpk (p: odd prime), and by K. Shibata [7, §§1-4] for

G = Z2. Also, it is proved by N. Hassani [3] that there is an isomorphism
β*(ZmmO = β*(ZJ®Ω*^*(Zm') if m and m' are relatively prime.

Furthermore, in the recent papers Kl and K2, we have determined Ω*(G)

for G = Z2k, k^2 (Kl-Theorem2.18), and for G==//m = D*(2m+1), m^2 (K2-
Theorem 8.12). As a continuation to these papers, we study in this paper the

Ω^-module structures of ί2s|e(G) for the remaining finite subgroups G of S3, that

is,

G = D*(2m+ίt) ( t : odd ̂  3, m ̂  1), T*, 0* and /*.

Our results are stated in Theorems 4.8, 5.9, 6.10 and 7.8 as follows:

Dβ»(D*(2»+1)) Θ fl'3,,1,

0 2B2) θ Γ' fiφ(Z3) ,

βφί/*) = 3.Θ /4®24 ® /33a.l θ /533.1-

Here

Ωφ(D*(2m+i)) = £m ® 9BW ® Qm 0 Q; (cf. K2-Theorem 8.12),

β*(Z,) = 3ί,o θ 3/fι (cf. Theorem 3.8) ,
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β*(Z4) = φ2 φ (52>0 © ©2}1 (cf. Theorem 7.6),

and £> and 3 are the submodules of Ω*(O*) and Ω*(/*) generated by the classes
[0*, S4w+3] (n^O) and 3M+15["/2]+1 [/*, S4rt+3] (w^O), respectively, where
[G, S4n+3] is the class of the G-manifold S4n+3 with the diagonal G-action.
Further, D, £>', Γ, T', 0 and /* (fc = 3, 4, 5) are the extensions induced by the
natural inclusions

D*(2m+i) -£_> D*(2m+1i) +2- Zt, D*(8) -ZU T* «-ϊl- Z3

D*(8) -2U O*, Zfc -!*->/* (/c = 3, 4, 5) ,

(cf. (4.1), (5.1), (1.9), (7.2)), and these extensions are monomorphic on the sub-
modules written just behind them.

We prepare the results for the homologies of G = Z)*(2m+10, Γ*, O* and /*
in § 1 . The unoriented bordism modules 9ί*(G) are determined in § 2 by Theorems
2.4, 2.7 and 2.11. After preparing some preliminary results in §3, we determine
Ω^G) in §§4-7. Throughout this paper, we often use the notations and the re-
sults of the recent papers Kl and K2.

The author wishes to express his gratitude to Professor M. Sugawara for
his valuable suggestions and reading this manuscript carefully.

§ 1. The homologies of finite subgroups of S3

Let G be a finite subgroup of the unit sphere S3 in the quaternion field H.
Then it is well-known that

(1.1) (J. A. Wolf [10, Th. 2.6.7]) G is a cyclic group Zm of order m
(^1), a binary dihedral group D*(4m) of order 4m (^8), a binary tetrahedral
group T* of order 24, a binary octahedral group O* of order 48, or a binary
icosahedral group /* of order 120. Further, two finite subgroups of S3 are
isomorphic if and only if they are conjugate in S3.

Here, the above groups are given as follows (cf. [10, 5.3, 7.1], [6, §3]):

D*(4m) = D*(4m)[jc, y] = [x, y: xm = y2, xyx = y]'9

(1.2) T* = [x, y, z: x3 = y4 = 1, y2 = z2, xyx~l = z, xzx'1 = yz9

0* = [χ5 y, z, t: x3 = y4 = 1, y2 = z2 = ί2, xjoc"1 = z, xzx"1 = yz,

yzy'1 = z~l, txΓ1 = x"1, ίjr1 = zy, tzt~l = z"1],
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where G = G[x1,..., XM] = [XI,..., xn: #ι,..., Rk] means that G is generated by the
elements x lv.., xn with the relations R^.,.,Rk.

We notice that jD*(2m+1) is denoted in K2 by

which is called the generalized quaternion group.
Now, we consider the (co)homology group of G. According to [6, §2],

we see that

(1.3) H*(G; Z) has period 4,

since G acts freely on S3, and

(1.4) [1, p. 237] #'(G;Z) = #-'(<?; Z) = 0,

#°(G; Z) = Zg (g = »G), #-2(G; Z) = G/D(G),

where SG is the order of G and D(G) is the commutator subgroup of G.

We can see easily by (1.2) that

£>(D*(4m)) = Zm[x2], D(Γ*) = D*(8) [>;, z] ,

D(0*) = Γ*[x, y, z], />(/*) = /*.

Therefore, we have the following results by (1.3), (1.4) and (1.5).

PROPOSITION 1.6.

(1.5)

(i) ; Z) =

ί Z4m if u s 3 (4),

Z2 0 Z2 i/ n s 1 (4), m: euen ^ 2,

Z4 if n = l (4), m: odd ^ 3,

x 0 otherwise.

(ii)

Z24 if n = 3(4),

Z3 i/ n s 1 (4),

0 otherwise.
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Z48 if ns3(4) ,

(iii) ffΛ(Q* , Z ) = Z2 ι/ n = l (4),

, 0 otherwise.

f Z 1 2 0 i/ N E E 3(4),
(iv) //„(/* ;Z) =

t 0 otherwise.

Let // be a subgroup of G. For the induced homomorphism

i*: #„(#; A) > //tt(G; yl) (/I = Z or Z2)

of the inclusion i: H c G, we obtain the following properties.

LEMMA 1.7. ( i) For n = 4/c + 3 fl/td Λ = Z, /* is monomorphic.

(ii) For n = 4/c and Λ = Z2, i* ίs monomorphic.

PROOF, (i) We consider the unit sphere S4k+3 in Hk+ί as the 53-mani-

fold by the diagonal action q(q0,...9 <?fc) = (<7<7o> , qqk)' Then, \JkS
4k+3/K

is the classifying space of a subgroup K of S3, and S4k+3/K is its (4/c + 3)-skeleton.
Consider the covering space

G/H - > S4fc+3/// -U S4k+3/C, (/: // cz G).

Then there is the commutative diagram

; z) -Ji>

where 7 and / are the inclusions. For the upper /*, we have /„,(!) = rl, where

Γs are the fundamental classes and r = #(G/H), since / is the r-fold covering.
Therefore, we have the desired result since 7*(1) and ji(l) are the generators of
Zm and ZSG, respectively.

(ii) When /c = 0, (ii) is clear. Assume that /c^> 1 and consider the commuta-

tive diagram

H4k(H; Z) - > H4k(H; Z2) -̂  H4h^(H; Z)

I- I" 1-
#4fc(G; Z) - , ̂ 4fc(G; Z2) -2-> H4k^(G\ Z)

of the Bockstein exact sequence. Since H4k(K\ Z) = fi~1(Ki Z) = 0 for K = G
and // by (1.4), '̂s are monomorphic and hence we see (ii) by (i). q. e. d.
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We notice the following lemma which is proved easily.

LEMMA 1.8. φ = 0 if and only if φ* = 0, where φ: Z4-+Z2 is a homomor-
phism and φ*: Ext(Z2, Z)-*Ext(Z4, Z) is its induced homomorphism.

Now, we consider the inclusions

0:D*(8)[x, y\ - > 0*[x, y, z, f], 0(x) = t, O(y) = z,

(1.9) Oi 2 :Z 4 - » 0*[x, y, z, ί], ImOi2 = Z4[ί],

0/2 : Z4 - > 0*[>, >>, z, ί], Im Oj2 = Z4[z] ,

(cf. (1.2)), where /2,;2: Z4-^D*(8) = //2 are the inclusions of K2-(l 6), (1.9).
Then

LEMMA 1.10. For the induced homomorphisms

(Oi2)», (Q/2)*: ^+ι(Z4; /I) - > //4Λ+ι(0*; λ), (4 = Z or Z2),

we ftαt e (0i2)* ^ 0 αnrf (O;̂ ),,, = 0.

PROOF. Set Oί=Oj2 and O2 = 0ί2. By [1, Prop. 11.3] and (1.3), if a
e//4(0*; Z) is the maximal generator, then so is αί = O ίs |cαeJίf

4(Z4; Z). Hence,
by [1, Prop. 11.1], the universal coefficient theorem and (1.4), we have the com-
mutative diagram

* 9 Z), Z)

H2(Z4; Z) -̂  /f4 f c + 2(Z4; Z) s Ext(H4k+i(Z4; Z), Z).

For /c = 0, we see that 0^ = 0 and 02Hc^O by (1.4), (1.5) and Lemma 1.8.
Therefore we have the desired results for Λ = Z by the above diagram and Lemma
1.8. The results for A = Z2 follow from these results, since the mod 2 reduction
H4k+ί(O*', Z)->//4fc+1(0*; Z2) is isomorphic by Proposition 1.6 (iii). q.e.d.

LEMMA 1.11. Consider the induced homomorphisms

0*: H4n+2(D*(8); Z2) — * H4n+2(O*; Z2),

fc3*: #4,, + 2(£*(8); Z2) — > H4rt+2(D*(16); Z2),

of 0 in (1.9) and ^3 = /c2>3: /)*(8)->D*(16) of K2-(l 13). // αe#4M+2(Z)*(8);
Z2) satisfies α^O and /c34e(α) = 0, then O*

PROOF. By K2-Lemmas 1.3, 1.7, 1.10 and 1.14, we see that
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*(8); Z) = Z2[i2i,(z)] ® Z2[72Φ(z)]

) = 0, k3J2*(z) * 0,

where z is a generator of H4rt+ ι(Z4; Z). On the other hand,

0*/2*(z) * 0, 0*;2*(z) = 0

by the above lemma. Hence we have the lemma using the Bockstein homomor-
phisms H4n+2(G; Z2)->H4|I+1(G; Z) for G = D*(8), 0* and D*(16). q.e.d.

§ 2. The unoriented bordism module 92* (G)

In this section, we study the principal unoriented bordism modules 9l*(G)
for G = D*(4m), T*, 0* and /* of (1.2).

Consider the Thorn epimorphism

(2.1) μ:9tt(G)—+H*(G ,Z2)

of [2, (8.1)] and the isomorphism

(2.2) h:9lt®Ht(G;Z2)^r*9lt(G)

of [2, (19.3)] such that /7(l®c l ) = Cί, where {cj is a basis of #*(G; Z2) and μCj
= Ci. By using μ and A, 9lHc(G) for G = Z2m and D*(2m+ 1} = Hm(m^ 2) are studied
inKi-§l andK2-§2.

Now, we consider the binary dihedral group

, m ̂  1.

By (1.2), we see easily that there exists a split exact sequence

(2.3) 1 - > Z,[x2m] -5L, /)*(2m+10 [x, j] ϊ£± £>*(2m+1)[^cf, j] —
D

Here, if m = 1, then D*(4) [V, ]̂ = Z4[y].

THEOREM 2.4. TAe extension homomorphism

D: ^(D*^1)) -sr* 9l*(D*(2m+10) (ί: odd ^ 3, m £ 1)

o/ Sl^moί/M/es is ίsomorphίc. The domain ^(D*(2m+i)) (m^2) or
(m = l) is gfίt ^n in K2-Theorem 2.3 or Kl-Theorem 1.22, respectively.

PROOF. By the exact sequence (2.3), we see that D is monomorphic. Hence

we have the theorem by (2.2), since /ίϊ|c(D*(2m+1); Z2) = H5|ί(D*(2m+10; Z2) by
Proposition 1.6 (i). q.e.d.
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Consider the principal G-manifolds

(G, S4"+3), q(q09...9qj = (qq09...9qqj (q9qtett)9

(2.5)
/(α, S») ( i :Z 2 c:G),

for any finite subgroup G of S3 of even order, where (a, Sn) is the Z2-manifold

of Kl-(1.5) with the antipodal action. Then we have the following

LEMMA 2.6. For the epimorphism μ of (2.1), the μ-images

μ[G9 S4«+3]e//4,,+3(G; Z2) = Z2, μ/[α, S4«] e//4/I(G; Z2) = Z2

are not zero.

PROOF. Since S4/l+3/G is the (4n + 3)-skeleton of the classifying space

J5G=WΛ54 π + 3/G, we have μ[G, S4n+3]^0 by the definition of μ. Since μ[α,

S4"]^0 in //4π(Z2;Z2) = Z2 by [2, Th. 23.2], we see μί[α, S4w] = ίφμ[α, 54w]

^rO by Lemma 1.7 (ii). q.e.d.

For the case G=Γ* or /*, we see that Hn(G; Z2) = 0 if n = 4m+ 1, 4m + 2

by Proposition 1.6. Hence we have the following theorem by (2.2) and the above

lemma.

THEOREM 2.7. // G=T* or /*, then the principal unoriented bordism

module 9l*(G) is a free Vl^-module with basis {[G, S4π+3], ί[α, 54"]: n^O},

where the bordism classes are those of (2.5).

By considering Zm = ZWJ[exp(2π//m)]c:S1 cC, we have the Zm-manifold

(2.8) (Zm, S2w+1), c(c0,...,cw)

which is denoted by (T, S2w+1) in Kl- (1.6) or (Tl9 S2n+1) in K2-(2.8) for m = 2l.

By using this manifold and the D*(8)-manifold (β2, S
2n+lxS2n+l) of K2-

(2.10), we have the following 0*-manifolds:

(0*, S4»+3), f(fl,S") (/:Z 2c=0*), (in (2.5)),

(2.9) 0/2(Z4, S
2 w + 1) (Oί2:Z4cO*of(1.9)),

O(j52, S
2w+1 xS2n+1) (0: D*(8) c O* of (1.9)).

LEMMA 2.10. Consider the epimorphism μ of (2.1) for G = O*. Then

μOi2[Z4, S
4«+1]6H4n+1(0*; Z2) = Z2,

μO[fe S2»+1 x S2«+1] e/f4n+2(0*; Z2) = Z2

are not zero.
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PROOF. Since μ[Z4, S
4n+1]^0 in H4π+1(Z4; Z2) = Z2, we have μO/2[Z4,

S4π+1] = (Oί2)*μ[Z4, S
4w+1]^0 by Lemma 1.10. By K2-Lemmas 2.11 and 2.14,

we have μ[β2]^0 in H4n+2(D*($); Z2) and /c3ίlίμ[jβ2] = 0, where DS2] = [β2, S
2/l+1

x 52/1+1] These and Lemma 1.11 show that μO[β2] = O*μ|j52]^0. q.e.d.

By Proposition 1.6 (iii), Lemmas 2.6, 2.10 and (2.2), we have the following

THEOREM 2. 11. The principal unoriented bordism module 9l*(O*) is a
free 91^-module with basis

{[O*, S4"+3], i[α, S4n], Oi2[Z4, S
4"+1], 0[)52, S

2w+1 x S2w+1]: n ^ 0},

where the bordism classes are those of (2.9).

Finally, we notice the following

LEMMA 2.12. Let G=>H be finite subgroups of S3 of even order and
i: HczG be the inclusion. If$(G/H) is odd, then

[G, S4"+3] = i[H, S4"+3] in K4n+ι(G),

w/zerέ? (G, S4n+3) and (H, S4n+3) are the ones in (2.5).

PROOF. Consider the principal G-bundle Gx HS4n+3-+S4n+3/H. Then
its classifying map is the projection i: S4"+3/#-»S4w+3/G. Since #(G/#) is
odd, we see that i*: H4n+3(S4n+3/H', Z2)->ff4M+3(S4w+3/G; Z2) is isomorphic,
and hence the Stiefel- Whitney number of i[//, 54π+3] coincides with the one of
[G, S4w+3]. Thus we have the lemma by [2, Th. 17.2]. q.e.d.

§3. Preliminaries to the oriented bordism module Ω*(G)

Consider the homomorphism

(3.1) μ:ΩM(G)— + fiw(G; Z)

for a finite group G defined in the same way as μ of (2.1) (cf. [3, §6]). By [2,
(7.2)], this is the edge homomorphism

(3.2) Ωn(G) = Ωn(BG) = Jn>0 - » £?.0 <= - <= £W

2,0 = ^W(BG; Z) = Hn(G; Z),

in the bordism spectral sequence {Er

p>q9 dr

ptq} for (BG, *). Further, it is known

that

(3.3) [2, (14.1)] The bordism spectral sequence {Er

ptq9 dr

ptq} is trivial
modtf, that is, lmdr

ptq is an odd torsion group, where <£ is the class of odd tor-
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sion groups.

PROPOSITION 3.4. Assume that H2n(G' > Z) = 0 for all n^O. Then
(i) (cf. [4], [5]) μof(3>Λ)isepimorphic.
(ii) The bordism spectral sequence for (BG, *) is trivial.

PROOF. We see easily (i) by using (3.2), (3.3) and the theorem of C. T. C.
Wall for the structure of Ω* (cf. K2-Theorem 3.6).

We see (ii) by (i) and [2, Th. 15.1]. q. e. d.

By (1.3), (1.4) and (ii) of this proposition, we have

COROLLARY 3.5. // G is a finite subgroup of S3, then the bordism spectral
sequence for (BG, *) is trivial.

REMARK 3.6. By [4], G has periodic cohomology if and only if H2n(G;
Z) = 0/or all n^O.

Further, we use the following

THEOREM 3.7 (cf. Th. 14.2]). The canonical homomorphism

θ:an(G)—+ΣP+9=nBllίG ,Ωqy

is isomorphic mod ̂ , where Ή is the class of odd torsion groups.

Now, according to [2] and [7], we recall the Ω^-module structure of Ω*(Zt)
(t: odd ̂ 3) as follows:

THEOREM 3.8 ([2, Th. 46.3], [7, Th. 6.3]). (i) Consider the submodule
3,e(ε = 0, 1) of Ω*(Zf) generated by the elements

«(4fί+2β+ι = [Z,, S4«+2ε+1] (in (2.8)), n ̂  0.

Then, Ω*(Zt), t: odd ^3, is the direct sum

and 3r.ε *'s the quotient module of the free Ω*-module ΩHί{{α^+2ε+ι :
by the submodule generated by the elements

β(t) — V 1 1

P4n+2ε+l — L* j =

where the coefficients Vty eί24ί are given in [7, Prop. 6.7].

(ii) Let ί = Πi/7?ί (^i^l) be the prime decomposition of t. Then the order
α(2«+ι ofz(ίl+l in Q*(Zt) is given by
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β& 1 = ΠiPΪ l+h, I, = C(2n + l)/2(Pί - 1)] .

Let G be any finite subgroup of S3. Consider the orbit manifold S4n+3/G
of the G-manifold (G, S4"+3) in (2.5), the principal G-bundle ξ = (S4n+3, π,
S4n+3/G) and its associated 4-plane bundle ξ by the inclusion GcS3c:O(4).
Then, the following is known.

THEOREM 3.9 [8, Th. 3.1], The tangent bundle τ(S4n+3/G) of S4n+3/G
satisfies

τ(S4n+3/G)@θί =O + l)f,

where θ1 is the trivial line bundle.

LEMMA 3.10 [8, Lemma 7.1]. Let vv==]Tvv/e#*(J30(4); Z2) be the uni-
versal Stiefel'Whίtney class, and j: S3 c0(4) be the inclusion. Then

j*w = 1 + w,

where u is the generator of H4(BS3 Z2) = Z2.

LEMMA 3.11. Let G be a finite subgroup of S3 of even order, and i: BG
-*BS3 be the induced map of the inclusion GcS3. Then i*: H*(BS3; Z2)->
H*(BG; Z2) is monomorphic.

PROOF. Let {£?•*} be the Serre cohomology spectral sequence of the
bundle

53/G - >BG - >θS3.

Then, by the easy calculations, we see that E4fI»° = #4ll(BG; Z2) and E$n °
= £4

0

Π'°. Thus we have the lemma. q. e. d.

By Theorem 3.9 and the above lemmas, we have

LEMMA 3.12. The Stiefel Whitney class w(τ(S4n+3/G)) of the tangent
bundle τ(S4n+3/G) is given by

1 if n ̂  1, = 1 if n = 0,

where veH4(S4n+3IG; Z2) = Z2 is the generator.

PROPOSITION 3.13. Let G be any finite subgroup of S3 of even order. Then

[S4"+3/G] = 0 in Ω4n+3.

PROOF. Since dim(S4w+3/G) is odd, all the Stiefel- Whitney and Pontrjagin
numbers of S4n+3/G are zero by the above lemma. Hence we have the proposi-
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tion by [9, §8, Cor. 1]. q.e.d.

§4. Λ*(D*(4m))

In Kl and K2, we have already studied the Ω^-module structure of Ω*(G)
for G = Z2k (fc^2) and Z)*(2m+1) (m^2). In this section, we study the case that
G is the binary dihedral group

D*(2m+ 1 ί) = D*(2m+ 1 1) [x, y], x = exp (πί/21"- 1t)9 y = j,

for m^l and t: odd ̂ 3, by using the split exact sequence

(4.1) 1 - > Z,[x2w] J21> Z)*(2W+1) ;=± D*(2m+1)[>', J>] - > 1
D

of (2.3), where D*(4) [xf, j] = ZJ>] if m = 1 .

For a finite abelian group A, denote by Aeveπ and Aodd the 2-primary and odd
components of A, respectively.

LEMMA 4.2. (i) «ί2n(D*(2m+10)eveΠ = «βΛ(ί>*(2m+1)).

fiΛZ,) ;/ ns3(4),
(ii)

1 otherwise.

PROOF. By the structure of Ω* (cf. K2-Theorem 3.6) and Proposition 1.6,
we see easily that E2 -terms of the bordism spectral sequence of Ω#(BD*(2m+ 1 1))
satisfy

2>»+^ Ωq) ,

Hp(ZtιΩq) if ps3(4), * s 0(4),

0 otherwise.

Thus we have the desired results by Corollary 3.5. q. e. d.

PROPOSITION 4.3. The extension homomorphism

D : βs!e(D*(2w+ 0) - > δ*(D*(2m+ 1 ί)) ,

induced by the inclusion D in (4.1), is monomorphic and

PROOF. The former is clear by the split exact sequence of (4.1), and the latter
is shown by this result and the above lemma. q. e. d.
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Now, consider the D*(2m+1 f)-bordism classes

(4.4) 5J&3 = [D*(2m+10, S4"+3] (n £ 0),

where (Z)*(2w+1ί), S4"+3) are the ones in (2.5). Also, let

(4.5) tD;:Ωt(D*(2»+*t)) ̂

be the transfer homomorphism induced by the inclusion D': ZfcD*(2m+10 in
(4.1), i.e., the homomorphism defined by restricting D*(2m+1 fractions to Zt.

Then, we see immediately the following

LEMMA 4.6. tD^n

t

+3 = α(

4^+3,
where α^+3 = [Z,, S4w+3] is ί/ie class in Theorem 3.8 (i).

PROPOSITION 4.7. (i) Let 3Dm§t foe ίfce Ω#-submodule of Ω*(D*(2m+1t))
generated by 2m+1δ%'n

t

+3, n^O, w/zere ΦjfcVa is the class o/(4.4). Then

Here 3ίfι w ί/ze submodule of Ω*(Zf) in Theorem 3.8, and so Dm>ί 1*5 ί/zβ quotient
module of the free Ω*-module Ω^t{{2m+lδ^n

t

+3: n^O}} by ί/ie submodule gener-
ated by the elements

/ .
2(n-j)°4j+39 Λ =

ί/ze coefficients Vty are those in Theorem 3.8 (i).
(ii) Consider the extension

induced by the inclusion D' in (4.1). Then

D' /γ(r) _ Om+lSm.fα4π+3 — z °4ίι+3»

and so D' maps 3ίfι isomorphically onto ΦOT>f.

PROOF, (i) We notice that 2m+1δJ I

t

+3eβJ|l(D*(2l"+10)odd by Theorem 3.7
and Proposition 1 .6. Hence we see that tD>Ω4n + 3(£>*(2m+ 1 ί))odd = 3r> x n Ω4n + 3(Zf)
by the above lemma and the definition of 3r,ι Thus we have (i) by Lemma 4.2

(ϋ)
(ii) We see easily by definition that the class ίβΊ>/α(

4

ί^+3 eΩ^Zj) is re-
presented by Zf ( = Z,[x2m]>manifold

D*(2m+1t)xZtS
4n+3 =

with the ZΓaction given as follows :
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for 0^/<2m, ε = 0, 1. Also the equivariant diffeomorphism of (Zf[x"~2m], S4/I+3)
onto (Z,, S4n+3) is defined by multiplying j. These show that tD.D'<x,(ίl+3 =
2m+1α^+3, and we obtain (ii) by the above lemma and (i). q.e. d.

Now, we have immediately the following main theorem of this section, by
Propositions 4.3 and 4.7.

THEOREM 4.8. The principal oriented bordism module Ω*(D*(2m+lt)) of
the binary dihedral group D*(2m+1f) (m^l, t: odd^3) is the direct sum

where the summands are the 2-primary and odd components and are given in
Propositions 4.3 and 4.7, respectively.

§5. Λ»(T*)

In this section, we study the binary tetrahedral group T*.
It is easy to see by (1.2) that there exists the split exact sequence

(5.1) 1 > D*(8) [y, z] -̂  T*[x, y, z] ;=± Z3[jc] > 1.

Now, we use the direct summands

(5.2) fl2, generated by [D*(8), S4«+3], n ^ 0,

and

(5.3) ΏU2, generated by /E4n+3PF(ω), n ^ 0, ωeπ, (/: Z2cD*(8)),

of β#(D*(8)), which are given in K2-Theorem 4.8 (i) and (iii). The r-images of
the classes in (5.3) satisfy the following equalities by K2-Lemma 4.5:

(5.4)

where r: Ω*( )->9l*( ) is the orientation ignoring homomorphism.

LEMMA 5.5. ( i ) * βw(T*)odd = # A,(Z3) .

(ii) # A,(T*)even = *((fl2 ® 2B2) Π

PROOF. By Corollary 3.5, the bordism spectral sequence of Ω*(G) is trivial
for G=T*, Z3 or D*(8). Also, by the structure of Ω* (cf. K2-Theorem 3.6)

and Proposition 1.6, we see that
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ί /?P(D*(8); Ωq) if p = 3 or 0(4),
flp(T*;Ω,)even =

[ 0 otherwise.

Thus we have (i) and #Ωn(T*)even is equal to

Π ,(/

by K2-Proposition 4.1 (ii). q.e. d.

PROPOSITION 5.6. The extension

induced by the inclusion Tin (5.1), is monomorphic on the submodule £2©$B2

o/ (5.2) an d (5.3).

PROOF, (i) In the first, we prove that Tis monomorphic on £2. Consider
the Thorn homomorphism μ: Ω*(T*)^H*(T*', Z) of (3.1). Then μΓ[D*(8),
S4/l+3] is a generator of the 2-primary component Z8 of //4n+3(T*; Z) = Z24

by (*) in the proof of K2-Lemma 4.3 (i), Proposition 1.6 and Lemma 1.7. Hence,
T[D*(8), 54M+3] is of order 8 by K2-Theorem 4.8 (i), and we see that

(*) xT[D*(8), S4n+ 3] = 0 if and only if xe&Ω*9

in the same way as the proof of K2-Lemma 4.3 (ii).
Consider the Smith homomorphism

(5.7) Δ:Ωn(G) - >QB-4(G),

which is an Ω^-module homomorphism, defined as follows (cf. K2-(4.6)): For
a principal oriented G-manifold (G, Mn), we can take a differentiate equivariant
mapφ: (G, MW)->(G, S4N+3) to the G-manifold (G, S4w+3) in (2.5) for 4N + 3
>n, which is transverse regular on S4N~l, since S4N+3/G is the (4N + 3)-skeleton
of BG. Then A is defined by

,Af»] = [G, φ-KS4"-1)].

It is easy to see that

JΓ[D*(8), S4^+3] = T[D*(8), S4^1] if ^l, =0 if = 0.

Assume that
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= 0 ( * e Ω ) .

Then, by applying An = A° -°A (n-times), we have jcnΓ[D*(8), S3]=0 and so xn

E 8Ω* by (*). Thus xj e 8Ω# for 0 ̂  j ^ n, and we see that T is monomorphic on
£2 by K2-Theorem 4.8 (i).

(ii) Since r: βl|l(D*(8))->.9lJ|l (D*(8)) is monomorphic on 2B2 by K2-Lemma
4.5, we see that Γ°r=r°T: Ω*(D*(8))-»9l*(Γ*) is also monomorphic on 2B2

by (5.4), Theorem 2.7 and K2-Theorem 2.13.

(iii) Finally, we prove the proposition. Assume that

/ + w = 0 (/ e T£2, w e Γ2B2) .

Since T[D*(8), S4''+3] = [T*, S4n+3] in ^R4π+3(T*) by Lemma 2.12, we see that
r/ = 0 = rw by the T-images of the equalities of (5.4) and Theorem 2.7. Thus
w = 0by(ii). Therefore we have the proposition by (i) and (ii). q. e.d.

By the split exact sequence (5.1) and Lemma 5.5 (i), we have immediately
the following

PROPOSITION 5.8. The extension homomorphίsm

induced by the inclusion T': Z3cΓ* in (5.1), is monomorphic, and

Imr = fl,(T*)odd.

By the above two propositions and Lemma 5.5, we have immediately the fol-
lowing

THEOREM 5.9. The principal oriented bordism module Ω*(T*) of the binary
tetrahedral group T* is the direct sum

fl*(T*) = T(£2 Θ 8B2) θ Γ' fi^Za) ,

where the summands are the 2-primary and odd components, and are given in
Propositions 5.6 and 5.8, respectively.

§6. Λ*(0*)

In this section, we study the binary octahedral group 0*.
Consider the direct summands

(6.1) 2B2 and &2 of β1|l(D*(8)),

of (5.3) and K2-7.1, respectively, (cf. K2-Theorem 8.12).
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LEMMA 6.2. (i) #ΩB(0*)odd = *ΩB(Z3) if n = 3 (4), = 1 otherwise.

(ii) *A,(0*)eveπ = SΣjH4J+3(0* , Ωn_4,._3)even X *((W2®&2) Π A,

PROOF. In the same way as the proof of Lemma 5.5, we see that

if p = 3 (4), =0 otherwise,

if P = l,2(4),
*; Ω,)even = _

); Ωβ) if ps

by Proposition 1.6. Therefore we have the lemma by K2-Proposition 4.9 (ii)

and K2-Lemma 7.9 (i). q.e.d.

Consider the inclusion

(6.3) 0':Z3[exp(2πi/3)] - , 0*[x, y, z, ί], ImO' = Z3[x],

(cf. (1.2)), the transfer homomorphism

(6.4) ί0 :0*(0*) - >Ω*(Z3),

defined by restricting 0*-actions to Z3 by the inclusion 0', and the classes

(6.5) [0*, S4«+3] e 04«+3(0*) (m (2.5)) .

LEMMA 6.6. ίσ,[0*, S4^3] = α(

4

3

n

)

+3,
α4

3

rt

)

+3 = [Z3, S
4n+3] zs the class in Theorem 3.8 (i).

PROOF. Since Z3\_x'] = q~ίZ3q for some qεH, where ZjcS1, the equiva-
riant diffeomorphism of (Z3[x], 54w+3) onto (Z3, 5

4n+3) is defined by multiplying
q. Hence we have the lemma. q.e.d.

PROPOSITION 6.7. (i) Let O t be the Ω^-submodule of Ω*(0*) generated

by 16[O*, S4"+3], n^O. T/ien C^Ω^O*)

Oι*33,ι ^ h. of (6.4).

33,1 ίs the submodule o/ΩJ|c(Z3) ΐ n Theorem 3.8, αnrf so Ox is the quotient
module of the free Ω^module Ω*{{16\Ό*9 S

4n+3]: π^O}} fcy ίftβ submodule
generated by the elements

(ii) [0*, S4w+3] eΩ^O*) is of order 243Λ+1.

PROOF. We see (i) in the same way as the proof of Proposition 4.7, by
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Lemmas 6.2 (i) and 6.6. We see (ii), since 16[0*, S4w+3] is of order a%>+3

= 3n+1 by (i), Lemma 6.6 and Theorem 3.8 (ii). q.e.d.

PROPOSITION 6.8. (i) Let Ό and Ό2 be the Ω*-submodules of Ω*(O*)

generated by [0*, S4π+3], n^O, and 3"+1[0*, S4M+3], n^O, respectively. Then

where O t is ί/ie one of the above proposition, and O2

 ίs ^e quotient module of
the free Ω^-module O*{{3"+1[0*, S4ll+3]: n^O}} by the submodule generated
by the elements 243W+1[O*, S4w+3], n^O.

(ii) #(Ό2 n fiB(0*)) = *Σj

PROOF, (i) By (ii) of the above proposition, o4π+3 = 3'l+1[0*, S4n+3]
is of order 16. Since [O*, S4/I+3] is a generator of //4n+3(0*; Z) = Z48, we see
that

(*) xo4n+3 = 0 if and only if XS16Ω*,

in the same way as the proof of K2-Lemma 4.3 (ii). By using (*) and the Smith
homomorphism A in (5.7), we see that

Σjxj°4j+3 = 0 if and only if X j 6 16Ω#,

in the same way as the proof (i) of Proposition 5.6. Hence we see the structure of

O2 and (i).
(ii) There is a group homomorphism

*'9 Z)even ® Ωn_4 7._3 — -, 02 n Ωrt(0*)

defined by φ(Zj® x) = xo4j+3, where z7 = μo4j+3. Then, it is clear that φ is isomor-
phic by (i). q. e. d.

PROPOSITION 6.9. (i) The extension

0:fl,(D*(8))— >fl,(0*),

induced by the inclusion 0 in (1.9), is monomorphic ont he submodule

of (6.2).
(ii) β*(0*)even = 02 0

PROOF, (i) Consider the orientation ignoring homomorphism r: Ω*( )

->9lφ( ). Then r: Ω*(D*(8))->9l*(D*(8)) is monomorphic on £B2Θ£2 by
K2-Theorem 8.12 and Rohlin's Theorem [2, Th. 16.2]. Hence we see that
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is monomorphic on 2B2©&2, by Theorem 2.11, (5.4) and K2-Lemma 7.3 (ii).

Thus we have (i).
(ii) Suppose

/ + vv = Q for /eO 2 and weO($B20Q2).

Then r/ = 0=rw by Theorem 2.11, (6.4) and K2-Lemma 7.3 (ii). Hence w = 0
by the proof of (i). Therefore we have (ii) by Lemma 7.2. q. e. d.

By the above three propositions, we have the following

THEOREM 6.10. The principal oriented bordism module Ω*(0*) of the
binary octahedral group O* is the direct sum

of the submodules given in the above propositions.

§7. £*(/*)

Finally, we consider the binary icosahedral group /*.

LEMMA 7.1. (i) #Ωπ(/*)odd = #Ωrt(Z15) if n = 3(4), =1 otherwise.

(ii) *AX/^ven = *Σ;#4; + 3(/*; βn-4;-3)even >< K^2 Π ΩΛ(D*(S») ,

where $B2 is ί/ie one of (5.3).

PROOF. In the same way as the proof of Lemma 5.5, we see the lemma by
Proposition 1.6. q.e.d.

Consider the inclusions

(7.2) Ik:Zk - >/*[*, y], fc = 3,4, 5,

such that

Im/3 = Z3[(x}02], Im/4 = Z4M, Im/5 = Z5[j;
2], (cf.(1.2)).

PROPOSITION 7.3. Consider the extension

induced by the inclusion Ik of (7.2).
(i) Ik is monomorphic on the submodule 3fc,ic:^*(Zfc) of Theorem 3.8.
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(ii) β*(/*)βdd = / 3 33,lθ/535,l

PROOF. The bordism spectral sequences of Ω*(£G), for G = /*, Z f c (fc = 3,
5), are trivial by Corollary 3.5, and the inclusion Ik induces a monomorphism of
E2 -terms in total degree 4n + 3 by Lemma 1.7 (i), (1.4) and the structure of Ω*
(cf. K2-Theorem 3.6). Hence I k : Ω4n+3(Zk)-*Ω4n+3(I*) is monomorphic, and we
have the desired result by Theorem 3.8.

(ii) We have immediately the desired result by (i) and Lemma 7.1 (i).
q. e.d.

LEMMA 7.4. The order of the class [/*, S4n+4] e Ω*(/*) in (2.5) is equal
to 233Λ + 15i>/2J+ 1.

PROOF. It is clear that μ[/*, S4"+3] is a generator of //4M+3(/*; Z) = Z120

Hence the order of [/*, S4»+3] is 2*< 2>3 f l< 3>5«< 5> for some α(2)^3, 0(3)^1,
α(5)^l by Lemma 7.1. We see that α(2) = 3 by Theorem 3.7 and Proposition

1.6.
Consider the transfer homomorphism

tlk : Ω4n+ 3(/*) — * Ω4n+ 3(Zfc) (k = 3 or 5)

induced by Ik of (7.2). Then we see that

f/k[/*, S4''+31 = [Zk,

in the same way as Lemma 6.6. Hence tlk maps the /c-primary component of
^Un+3(/*) isomorphically onto ί54n+3(Zfc) by Lemma 8.1 and Theorem 3.8.
Therefore, a(k) is equal to the order a(^+3 of 0^+3, which is 3"+1 if /c = 3 and
5C«/2]+i if /c = 5 by Theorem 3.8 (ii). q.e.d.

PROPOSITION 7.5. Let 3 be the submodule of β*(/*) generated by the
classes

Cn = 3«+i5[«/2]+i[-/*9 s4n+3~]9 n ̂  0.

(i) Then 3 z's ί/ie quotient module of the free Ω^-module Ω#{{cn: n^
by the submodule generated by the elements 8<rn, w^O.

(ii) *(3 Π βπ(/*)) = *Σy

PROOF. The proposition can be proved in the same way as the proof of
Proposition 6.8, by using the above lemma. q. e. d.

Now, we use the following

THEOREM 7.6 (Kl-Theorem 2.18). Ω^(Z4) is the direct sum

Ω*(Z4) = ξ>2 ® (S2, (52 = (52>0 © ©2 t l.
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Here «§2

 an^ ®2 are the submodules in K2-Theorem 2.18, and (52,ε (β = 0 or 1)
/5 f Λ e submodule of Q*(Z4) generated by the elements

iE4n + 2ε+ 1 W(ω^ n ^ Q, CO 6 7ϋ, (ί I Z2 C Z4) ,

and is ίfce quotient module of the free Ω*-module Ω+{{iE4n+2*+ίW(ω): n^O,
ωeπ}} by ί/ze submodule generated by the elements

2iE*»+2*+ίW(ω), A2n+ε>2(ω) (|ω|l 2), B2ll+<>2(ω, ω'), ω, ω'eπ, n £ 0.

PROPOSITION 7.7. Consider the extension

/4:fi*(Z4) - >Ω*(/*)

induced by the inclusion I4 of (7.2).

(i) T/zen /4 is monomorphic on the submodule (52,ι
c:^*(^4) <?/ ίΛe above

theorem, which is ίsomorphic to 2B2c:ί1Hς(/)*(8)) of (5.3) by the extension induced
by the inclusion Z4cD*(8).

(ii) Ω*(I )mm = 3 Θ /4©2f l,
where 3 is ί/ze one of Proposition 7.5.

PROOF, (i) We can prove that ro/4: ΩJ!ί(Z4)-> 91^(7*) is monomorphic on
(52jl in the same way as the proof (ii) of Proposition 5.6, by using Theorem 2.7
and K2-Proposition 3.10. The fact that (52>1^202 is seen by Theorem 7.6 and
K2-Theorem 4.8 (iii).

(ii) In the same way as the proof of Proposition 6.9 (ii), we see that
3n/4(52,ι=0 by the above proof and Theorem 2.7. Therefore, we have (ii)
by (i), Proposition 7.4 (ii) and Lemma 7.1 (ii). q.e.d.

Now, we have the following theorem by Propositions 7.3 and 7.7.

THEOREM 7.8. The principal oriented bordism module Ω*(I*) of the binary
icosahedral group I* is the direct sum

fl*(/*) = 3 θ /4®2 f l θ /333,ι θ /535,ι

of the submodules given in Propositions 7.3, 7.5 and 7.7.
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