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§ 1. Introduction

Consider a rarefied monoatomic gas composed of a large number of (say,

N) molecules moving in space according to the law of classical mechanics and

colliding in pairs from time to time. Assume that the motion is specified by
giving the intermodular forces, which are supposed to be given by pair forces

only. Let Nu(t, x)dx be the number of molecules with velocities belonging to

dx at time t. Then the time evolution of the density u(t, x) in the spatially

homogeneous case is given by the following Boltzmann equation :

(1.1) ft = {u(t,x')u(t,y')-u(t,x)u(t.y)}
( 0 , π ) x ( 0 , 2 π ) x R 3

x \x-y\I(\x-y\, 0) sin θdθdedy,

where x' and y' stand for the velocities after collision of molecules with velocities
x and y, / is the differential scattering cross section and 0(e) is the collatitude

(the longitude) which measures the scattering angle formed by y — x and y' — x'.

When the pair forces are determined by the power-law potential proportional

to p~4 (Maxwellian molecules), |x — y|/(|x — y|, 0) becomes a function of 0 alone;
here p is the distance of the colliding molecules. For these materials, see Uhlen-

beck and Ford [17]. In this case Tanaka [14] constructed the associated Markov

process by making use of the stochastic integral equation based upon a Poisson

random measure.

The purpose of this paper is to prove the propagation of chaos for two-
dimensional analogous model of non-cutoff type by using similar stochastic inte-

gral equations.

Propagation of chaos was first discovered by Kac [7] for a model of the

Maxwellian gas of cutoff type. The statement of propagation of chaos for (1.1)

in the sense of Kac is that if un = un(t, x lv.., xπ) is the solution of the forward

equation of n-molecules
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= ~Σ. \
l<J ( 0 , π ) x ( 0 , 2 π )

x \xί-Xj\I(\xi-xj\9 θ)sinθdθde,

with chaotic initial data /Λ = /® ®/ (fl-f old outer product of a probability den-
sity/on #3), then, for each ra^l, the marginal density um\n in xls..., xm of un(t,
x !,..., *„) splits as ft -» oo into the m-fold product of the solution u = u(t9 x) of
(1.1) with w(0, x)=/(x). This statement was verified by McKean [9] [10],
Johnson [5], Ueno [16], Tanaka [13], Grϋnbaum [3] and recently by McKean
[11], Berresford [1] in various cases. However these results are restricted to the
cutoff case; the methods are more or less analytic and do not seem to work for the
non-cutoff case.

The emphasis of this paper is on the non-cutoff type. We deal with the
following two-dimensional model analogous to Maxwellian molecules, which is
still of non-cutoff type. We consider a number of molecules moving on the
plane according to the pair forces determined by the potential proportional to
p~2. The Boltzmann equation is

(1.2) = \

where r is the impact parameter which measures the distance from the direction
given by y — x the colliding angle θ e ( — π, π) is determined by the relation

(1.3) 0 = sgn

the velocities x' and y' after collision of molecules with velocities x and y are
expressed by

,_ x+y , R x-y , _ x+y _R x-y
x — 2 ^ ' 2 ' y -- 2 — 2

with the rotation R of angle 0:

cosθ — sin θ
(1.4) R = B

sin θ cos θ

*) C^(Rk) denotes the space of real C^-functions on Rk with compact supports, throughout.
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y-x

T

By (1.3) we have \x — y\dr — Q(Θ)dθ with some positive (even) function Q(θ) having
the singularity at 0 = 0:

β(0)~ const. |θ|-3/2, 0->0.

Therefore the equation (1.2) yields

(1.5)

where <2(d0) is a measure on ( — π, π) satisfying

(1.6) Q(dθ) = Q(θ)dθ, Q(θ) ^ 0, (Λ \θ\Q(dθ) < oo,

Q(dθ) = oo (non-cutoff) .
π

The non-cutoff property makes the situation difficult and even the existence of the
solutions of (1.5) seems to be unknown.

In this paper we consider only probability measure solutions of the follow-
ing equation :

(1.7) . , = {φ(χ')-φ(χ)}Q(dθ)u(t9 dx)u(t, dy),

As in Tanaka [14] a Markov process {̂ (0, t^.0} associated with (1.7) can be
constructed as the solution of the stochastic integral equation

(1.8) X(t) = X(0) + a(X(s - ), Y(s, α), θ)p(dsdθdd) ,
JSt

where p(ω, dsdβda) is a Poisson random measure on Rlx( — π, π)x(0, 1] with
mean measure dsQ(dθ)du9 S, = [0, f] x( — π, π)x(0, 1], α(x, y, θ) = x' — x and
{Y(i), ί^O} is a process defined on (0, 1] such that Y(t) has the same distribution
as that of X(t-) for each fixed t. In the same way (even simpler) as in [14] the

existence and the uniqueness (in the law sense) of solutions of (1.8) can be proved
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under the assumption that the initial distribution /has finite first absolute moment.
Denote by Pf the probability measure on the path space of the Markov process

{X(t)9t^.Q}. Next we consider the Markov process Xrt = {(Ar

1(r),. 5 ^M(0)»
f^O} of n-particles with generator given by

(1.9)

v' — • » , n
Λ . -- -- 1_ ̂  -- - j

Let the Markov process Xn start with initial distribution f® -®f and, for a posi-
tive integer m (<n\ denote by Pm\n the probability measure on the path space of
{(JiO),..., Xm(t)\ ί^O}. Then our main result is stated as follows.

If \ \x\2+δf(dx) < co for some δ > 0, then for each m
JR2

(1.10) Pm]n - >^m^®~Pf, n->oo.

(1.10) implies the propagation of chaos: The (marginal) distribution um\n(f)
of (Xι(t)9...,Σm(t)) splits as n->oo into the m-fold product of the probability
distribution u(i) of X(t).

The main part of the paper is §6 in which the proof of (1.10) is given. The
preceding sections are preparations for this. In §2 we introduce a metric p
between probability distributions in R2 and prove some properties of p which
will be used in § 6. We list some general (known) properties of Poisson random
measures in § 3. § 4 and § 5 are for the existence and the uniqueness of the solu-
tions of the stochastic integral equations associated with (1.7), (1.9), and some
moment estimates of the solutions. As an immediate consequence of the results
in § 6 the law of large numbers is stated in § 7, and finally in § 8 a remark to the
one-dimensional analogous model is given.

The author wishes to express his thanks to Professor H. Tanaka for valuable
advices and constant encouragement.

§ 2. A metric between probability distributions in R2

Let & be the class of all probability distributions / in R2 with \ \x\f(dx)

< oo, and define

(2.1) P ( f , g ) = inf ( \x-y\h(dxdy)9
he^f,g JR*
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where «^/jff is the class of probability distributions h in R4 with h(A x R2)=f(A)
and h(R2 x A) = g(A), A e &(R2). An alternative expression of p is

(2.2) p(/, 0) = inf E{\X - Y\}9 f,gε&9

where the infimum is taken over all pairs of R2 -valued random variables X and
Y defined on a suitable probability space (Ω9 &", P) whose probability distribu-
tions are /and g, respectively.

It is easily proved that p gives a metric on ̂  and so in this section we discuss
some other properties of p for the later use.

Let ^L = {/6^:/(|x|gL)=l}. For any /e^, we define a probability
measure /L 6 3PL by the relation

JR2 JR2

for any bounded continuous function φ in R2, where

Γ ψ(x)9 \x\ ̂  L,
iM =

), |x| > L.

Let ΦL be the set of all Lipschitz continuous functions φ: R2^Rl with Lipschitz
constant <Ξ1, φ(0) = 0 and φ(x) = φ(Lx/\x\) for |x|>L. Then we can prove the
following

PROPOSITION 2.1. For given ε>0 and L>0, there exist a positive constant
K = K(ε, L) and a finite subset Φε

L of ΦL such that

(2.3) p(/,0)^KmaxΓ( φ(x)f(dx) - ( φ(x)g(dx)\
φeΦLJR2 JR2 J

PROOF. First we prove that

(2.4) P(fL9gL)^Ksup\\ φ(x)f(dx)-\ φ(x)0(Λc)Ί + β/2.
φeΦi, L J Λ 2 JR 2 J

Choose a countable family {<An}«^i which is dense in Co(Λ2) with respect to the
uniform topology, and put

d(f, 9) = Σ Γ
B

for /, # e ̂ L. Then ^L is a compact metric space with this metric d and we can
easily show that ^-convergence is equivalent to p-convergence in «^L. Since
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, g)/d(f, g) is a continuous function on the compact set O^x^X— {(/» 9)
^L: p(/, #)g;ε/4}, there exists a positive constant K1=X1(ε, L) such that

p(/, g)<*Kιd(f, g) for (/, 0)e(^Lx ^L)ε. Hence we have

(2.5) pi/, g) ^ K,d(f9 g) + 6/4

for any /, # e ̂ L. Because of the relation

d(f, 0) ̂  Σ I f -Ψn(xmdx) - \ Ψn(x)0(dx) + β/4
« = ι l J κ 2 Jκ2

for some m = m(ε), we have

R2 JR*

with ^ε = Σ«=ι ±Ψn

 e ^o(^2)> where ± is chosen according to

\ φn(x)f(dx)-( ψn(x)g(dx}^Q or <0.
JR2 JR2

If we put

, M=max
dx

then φε(x) is a Lipschitz continuous function with Lipschitz constant <Π,
= 0 and we have

ΓΓ Γ Ί(2.6) d(f, g) ^ M \ φε(x)f(dx) — \ φε(x)g(dx) + ε/4.
LJR2 JR2 J

Inserting (2.6) to (2.5) and taking K = K^ M, we have

φε(x)f(dx) — \ φε(x)g(dx) + ε/2

for each /, g e «^L and hence

R2 JR2

for any /, g e ̂  which implies (2.4). Finally if we choose a finite subset Φε

L

= {<Pi>---9<Pn} °f ΦL so tnat πiin max |φ(x)-φfc(x)|<ε/(4X) for any φeΦL,
l£k£n \x\£L

then (2.3) follows immediately from (2.4).

PROPOSITION 2.2. For given ε>0 ί/ierβ exists a transition function Pf,g(x,
B\ x e R2, B e &(R2) (/, g. e ̂ ) which has the following properties.
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(2.7) P f ) 9 ( x , B) is a (Borel) measurable function of (x, /, g) e R2 x
for each fixed B e &(R2).

(2.8) Pf,g(x, •) is a probability measure on R2 for each fixed (x,/, g).

(2.9)

(2.10) R2 R2 \x - y\f(dx)P*ftβ(x, dy) ^ p(f, g) + ε.

If /and g are fixed, then it is evident that there exists P/./x, •) satisfying
(2.8) ~ (2.10). The crucial point of this proposition is how to choose a transi-
tion function which is measurable as stated in (2.7). This might be rather techni-

cal matter, and its exact construction is somewhat complicated as will be given
below. First we prepare an elementary lemma.

LEMMA 2.3. Let (Ω, « ,̂ P) be a probability space and (A, j/) be a
measurable space. Let Xλ and Yλ be R2-valued random variables on (Ω, ̂ ,
P) such that Xλ(ω) and Yλ(ω) are j/®^ -measurable. Then there exists a
(regular) conditional probability distribution Pλ(x, •) of Yλ given Xλ such that

PΛ(x, A) is jtf®&(R2)-measurable for each fixed Ae&(R2).

PROOF. For each integer n^l and for any lattice point (/, m)eZ2, we set
Crt(/, m) = [/2-", (/ + 1)2-") x[m2-", (m 4-1)2-") and denote by Cn(x) the cube
containing x. We put

p(.)(jc A) = P{XλeCΛ(x)9YλeA]
rλ (x, A) p{χλ€cn(x)} '

(x,djO, ψeC

Then Ψ"(x) is ja/®^(JR
2)-measurable, and so the set

Eψ = {(A, x) e A x #2: lim Ψ"λ(x) exists}
n-»oo

is also measurable. Using the convergence theorem of martingales, we can prove
that the A-section E^ — {xeR2\ (A, x)eE^} has full /rmeasure, where fλ is the
probability distribution of Xλ. Taking a countable family {ψk}, fc^l, which is

dense in Co(#2) with respect to the uniform topology, we put £= n k^ιEψk

 and
Eλ= n^ijE^. Then Ee#?®&(R2) and/λ(£Λ) = l. Moreover for each (A, x)

6 E there exists a unique measure PA(x, ) which is defined by

, dy) = lim ( φ(y)P^(x, dy), ψ e
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We next define Pλ(x9 - ) for (A, x) &=£ to be an arbitrarily fixed probability measure

P(.) on R2, and finally redefine Pλ(x, .) = P ( . ) f o τ (A, x) such that PA(x, #2)^1.
Thus constructed Pλ(x, .) is the conditional probability distribution we were

looking for.

Now we prove Proposition 2.2. For any ε>0 which is fixed throughout the

proof, we put

r ΛΓ(e, /) = min {n e N: ( |x|/(dx) < ε/8} ,
I J w > »

n

Then each &>n is a Borel set and & is the disjoint sum U «^ι^V Therefore it is

sufficient to prove that, for each pair (m, n), there exists Pftβ(x> B) satisfying

(2.7) ~ (2. 10) when (/, g) is restricted to 0>mx0>n.
Let ξ be a Borel isomorphism: R2-^R1', it is fixed throughout the proof.

Define a probability distribution /* in Rl by f*(A)=f(ξ-l(A))9 Aε@(R^\ let

X*(a) be the right continuous inverse of the distribution function of/*, and put
Ar

/(a) = ̂ ~1(XJi(a)). Then Xf(a) is an /-distributed, R2 -valued random variable

defined on the probability space ((0, 1], dα); it is also a measurable function of
(/, α) e 0> x (0, 1], because

{(/, α): xχα)6{- Hί-oo, ί])} = {(/, α): XJ(α) ̂  ί}

= {(/,«):/*((- oo, ί]).^α}

From now on we assume that /e^m and g£&n, m and n being fixed. Let
JV = max(m, n) and put

α)| ^ N,

0, |Jf/α)| > N.

Taking a positive constant <5, we also put

where [x], = (fcί, W) for x 6 c^(fe, /) Ξ [jta, (fc + l)ί) x [ »,. (/ + 1)5). Then the map-
ping ^m x (0, 1] B (/, α)»-* ĵ.(α) e Γ is Borel measurable. Here Γ is the finite set
defined by

Γ = Γ, = {y = (fc<5, W) : ca(fc, /) n (|x| ̂  N) ^ 0} .

Next for τ>0 which will be determined later and for each Borel subset A of (0, 1]
we denote by \_A]τ the Borel set A n (0, tA), where
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Putting 4} = {αe(0, 1]: X'f(oi) = y} for yeΓ and A= U ve/-[Λ}]τ, we define
*}"(«) -by

Since |X}(a)-;tyr(a)|g(N+VT%^(a), we have

(2. 1 1)

^ (N + VT<5) (2N + 2δ)2 τ/δ2.

Moreover, the mapping 0>m x (0, 1] 3 (/, α)ι-^X^>τ(α) e Γ is Borel measurable;
in fact, the set {(/, α) : χA(<x) = 1 } is measurable, since it is equal to

U {(/,«):« 6 [A>],}
yεΓ

= \j {(/, α): «6X'}, M} Π «Vα]| < \A}\τ}
yeΓ

= W<(/, α):XJ.(α) = y,
yeΓ I

We can also define X* τ for gεέPn and prove that it has similar properties. De-
note by fδ>τ (gδ τ) the probability distribution of Xδfτ (Xδ'τ) and put &*m
= {fδ'τ' fε&m}* 0*n = {9δ'τ' 9E^n} Then obviously &*m and ^* are
finite sets. It is also obvious that for each pair .(/*, g*) from 0>*m x &\ there ex-
ists a transition function Qf$^(u, .) satisfying the following conditions.

(i)

(ϋ)

Because the mapping 0>m x ^Π3(/, g)*-+(fδ'τ, g*'τ)e&m x ί̂ is measurable,
Qftβ(u, B) = Qfδ,τtgδ, c(u9 B) is jointly measurable in (/, 0, u)G^>

mx^>

nxR2 for
each Be&(R2). Next we apply Lemma 2.3 to have a conditional probability
distribution #/(*, ) of Xδ

f*
τ given Xf9 which has the following properties.

(iii) Rf(x9 B) is Borel measurable in (/, x)e&mxR2 for each Be&(R2).

(iv)

*) 1/11 denotes the Lebesgue measure of A, and rr=max {nτ: nτ^r] for a real number r.
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Using Lemma 2.3 for Xδ

g^ and Xg9 We can also choose a conditional probability

distribution Rg(v, .) of Xg given Xδ

g>
τ such that

(v) Rg(v, B) is Borel measurable in (g9v)ε0>nxR2 for each Be@(R2).

(vi) \ ^g* r(dv)Rg(v9 .) = 0(.).

Choosing first <5 = 8/16^/2 and then τ>0 so that

(N + VTδ) (2N + 2<5)2 τ/δ2 ^ β/16,

we put

Pj ./x, 5) == ( ( 2Rf(x, du)Qf>g(u9 dv)Rg(v, B).

From the construction it is clear that P f t g ( x , •) satisfies (2.7) and (2.8) for (/,
g, x)e0>mx0>nxR2. The relations (2.9) and (2.10) are also valid because

f(dx)Pε

ftg(x9 B) = \ \ \ J(dx)Rf(x9 du)Qf)β(u9 dv)Rg(v9 B)

and

f(dx)Rf(x, du)Qf<e(U, dv)Rβ(v, dy)

\v-y\g *(dυ)Kjίv,dy)
R2JR2

lXJίa) - χj 1(a)|</a| + similar terms
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^ P(f, g) + 4{ε/8 + VT - β/16/2" + e/16}

Here we have used (i), (ii), (iv), (vi) and (2.11). The proof of Proposition 2.2
is completed.

§ 3. Poisson random measures

In this section we state preliminalies from Poisson random measures for later

sections.
Given a σ-finite measure space (S, λ) in which each single point set is measur-

able, we denote by Λλ(S) the space of all measures μ on S which are expressed
as (at most) countable sums of <5-measures and satisfying μ(A) < oo for any λ-
finite set A. Here a <5-measure means a probability measure on S with unit mass
at some point of S. Let (Ω, J5", P) be a probability space.

DEFINITION. A mapping p: O.-*ufλ(S) is called a Poisson random measure
with mean measure λ, if the following two conditions are satisfied.

(i) p(A) is ^-measurable for each A-finite set A.
(ii) For any disjoint A-finite sets A19...9 Ak,

P{p(Aj) = nj9j = I,.".., k} =

Here p(^4) = p(ω, A) is a short for (p(ω)) (A).

The existence of a Poisson random measure with given mean measure is well-
known.

In this paper we are concerned only with the case S = RlxS and dλ =
dtμt(dσ), where {μ,, ί^O} are σ-finite measures on some measurable space (S, ̂ ).
Suppose that an increasing family {^"f, ί^O} of sub-σ-fields is given in (Ω9 "̂, P).
A real valued function a(t, σ, ώ) defined on R I x S x Ω is called .^-predictable,
if α(ί, σ, ω) is .^-measurable; here JΓ is the (smallest) sub-σ-field on Rl x S x Ω
generated by all functions α(ί, σ, ώ) satisfying the following conditions.

(i) α(ί, . , .) is ^® ̂ -measurable for each fixed t eR$..

(ii) a( , <τ, ω) is left-continuous for each fixed (σ, ω) e S x Ω.
A Poisson random measure p on βj x S defined on (Ω, ̂ ", P) is said to be ^>
adapted, if (i) p(A) is ^-measurable for each A e & ( [ Q 9 ' f ] ' x S ) 9 teRl, and (ii)
for each ί^O the σ-field induced by {p(A)9 Ae&((t, oo)xS)} is independent of
&Ί. If p is such a Poisson random measure with mean measure dλ=dtμt(dσ)
and if an .^-predictable a(t, σ, ω) satisfies
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(3.1) E< \ \a(s9 σ, ω)\μs(dσ)ds> < oo, teR].,
[0,r]χS

then

(3.2) \ a(s9 σ, ω)p(dsdσ) - I a(s, σ, ώ)μs(dσ)ds
[0,ί]χS [0,r]χS

is an .^",-martingale, and in particular

i f ) ( Γ 1E{ \ α(s, σ, ω)p(dsdσ)> = E{ \ a(s, σ, ω)μs(dσ)ds>.
( } ) ( J )
[0,ί]xS [0,ί]xS

The following martingale characterization of ^-adapted Poisson random

measures is well-known.

THEOREM 3.1 (for example, see [18]). Let pbea mapping: Ω-*Λλ(R j x 5)
and assume that p(ω, {t} xS) = 0 or 1 for any teR}. with probability one. Let

{β^v ί^O} be an increasing family of sub-σ-fields of ^. Then, (3.2) is an
^t-martingale for any &t-predictable a(t, σ, ω) satisfying (3.1) if and only
if p is an ^t-adapted Poisson random measure with mean measure dλ = dtμt(dσ).

§4. Stochastic integral equation and the Markov process associated with

(1.7)

Given a measure Q(dθ) on ( —π, π) satisfying (1.6), we consider the equation

(4.1) iL ' — = \ {φ(x') — φ(x)}Q(dθ)u(t, dx)u(t, dy) ,

-sin0 \
lφε

sin θ cos θ J

and construct a Markov process associated with (4. !) = (!. 7) making use of the
stochastic integral equation as in H. Tanaka [14].

We put a(x9 y, Θ) = x'-x9 S=(-π, π)x(0, 1] and 5r = [0, ί]xS. Taking
a suitable probability space (Ω, &, P) with an increasing family of sub-σ-fields
{^J, we suppose that there is given an ^-adapted Poisson random measure
p(α>, dsdθda) on Rl x 5 with mean measure dsQ(dθ)du. Given an J*"0-measur-
able random variable X(0) with values in R2, we consider the stochastic integral
equation

(4.2) X(f) = JP(0) + ( fl(Jf(s-), 7(s, α), θ)p(dsdθd*\ t ^ 0.
J s t
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If there exist an ^-adapted process {X(l, ω), ί ̂ 0} on R2 and a process {Y(t, α),
ί^O} defined on the probability space ((0, 1], rfα) such that (i) 7(0 has the same
probability distribution as that of X(t — ) = limX(t — ε) for each ί and (ii) (4.2)

ε l O

holds with probability one, then {X(t, ω)} is called an ^-adapted solution of (4.2).
The stochastic integral equation of this type was treated by [14] in the case of the
3-dimensional Maxwellian molecules. Owing to the estimates

(4.3)

\a(x,y,θ)\ £ s n --

\a(x,y,θ)-a(x1,yl,θ)\ ^ s n

the method of [14] can be applied, even in a much simpler way, to prove the
following

THEOREM 4.1. Let f be a probability distribution belonging to &, and
assume that X(0) is an ^Q-measurable, /-distributed, R2-υalued random vari-
able. Then there exists an ^t-adapted solution X(t) of (4.2) satisfying

\ E{\X(s)\}ds<co for too. The uniqueness in the law sense holds: If (X(t)}
jo ^
and {1(0} are &t-adapted solutions of (4.2) with the same initial distribution

and satisfying the above integrability condition, then {X(t)} and
are equivalent, that is, they have the same finite dimensional distributions.
The probability distribution u(t) of X(t) solves (4.1) 'with w(0)=/.

We make a remark about the stochastic integral equation (4.2). Given
/e &, we denote by u(t) the solution of (4.1) with w(0) =/ constructed in Theorem
4.1. Let {Y(t, ω, α), ί^O} be any ^-predictable process such that, for each
fixed t and ω, the probability distribution of Y(t, ω, . ) as a random variable on the
probability space ((0, 1], dα) is tι(ί) ( = w(ί — )). Owing to (4.3), the stochastic
integral equation

(4.4) X(t) = 1(0) -f [ a(X(s-)9 Y(s, ω, α), θ)p(dsdθd*)
JSt

can easily be solved by iteration for any J^Ό-measurable 1(0) with £{|l(0)|}<oo.

THEOREM 4.2. Let.$(Q) and {Y(t, ω, α), ί^O} be as above, and {1(0, t ̂ 0}
the solution of (4.4). Then any finite dimensional probability distribution of
{1(0, f^O} is determined only by f and the probability distribution of 1(0),
that is, it is independent of the choice 0/1(0) and [Y(t, ω, α), ί^O} as far as they
satisfy the stated conditions. In particular, (fl(0) is f-distributed, then.{£(i)}
is equivalent to {X(t)} of Theorem 4.1.

PROOF. Take a partition A of a finite interval [0, T]: 0=f 0 <fι <•••<'«
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= T, and put 2l(0) = 0, A(t) = tk.ί for tk.ί<t^tk (l^k^n). We consider the
stochastic equation

1̂ (0 =. 1(0) + { a(XΔ(Δ(s)\ Y(s, ω, α), θ)p(dsdθda), Q£ t £T.
JSt

As in [6] for the diffusion case, we can prove that E{\X(t)-XA(t)\}-+Q as \Δ\
= max ttk-f*-ι)->0 for 0^ί<ΞT. Since for s<ί

= exp [i(ξ, l,(s)) + {exp i(£, α(l̂ (τ)), j, θ)) - l}dτQ(<ί0)ιι(τ,
(s , ί]x(-π,π)xJR 2

any finite dimensional probability distribution of {%Δ(t\ Ogf^Γ} does not de-
pend upon the choice of {7(ί, ω, α)} and hence the same holds for {1(0, O^ί
<; T}. The proof is finished.

Let {X(t\ ί^O} be an ^-adapted solution of (4.2) with initial distribution
/e .̂ Then it is a Markov process associated with (1.7) in the sense of McKean
[8]. In fact, if u(t, .) = P{X(t).e . } and if P/ί, x, ..) denotes the probability dis-
tribution, at time ί, of the solution l(ί) of (4.4) with initial value 1(0) = x, then

(4.5) P/ί, x, . ) = R2

P/S» x' )̂̂ ω(ί - «, y, - X 0 ̂  s ^ ί,

(4.6) P{X(ί) e ̂ I^ J = PM(s)(ί - s, X(s), A), a. s., 0 ̂  s ̂  ί, A e &(R2) ,

and u(t) is a solution of (4.1) with initial distribution/.

The following estimate (4.7) will be used in § 6.

LEMMA 4.3. Assume that \ |x|2+V(^*) < °° for some <5^0 and let
JR2

(X(i), ί^O} be an & '^adapted solution of (4.2) with an /-distributed initial value
X(Q). Then

(4.7) E{\X(t)\2+*} ^ £{|AT(0)|2+i}exp(24+3iMO, t ̂  0,

where M = s n Q(dθ). When <5 = 0, we have E{\X(t)\2} = E{\X(0)\2}.

PROOF. Define {Xk(t)9 t ̂  0}, k = 0, 1 , 2, . . . , by

Xk(t) = *(0) + βί̂ .̂ s-), 7,̂ (5, α), θ)p(dsdθdx),
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where {Yk~ι(s, α), s^O, αe(0, 1]} is chosen so that (i) it is Borel measurable in

the pair (s, α) and (ii) Yk-ι(s, .) has the same probability distribution as that of

Xk.ί(s — ) for each s. Then, by the same method as in the proof of Theorem A

of [14], we can prove that a suitable choice of the sequence {Yk(s, α)}^=0 implies
the almost sure convergence of {XkWk=o to a solution X(i) of (4.2). There-
fore (4.7) follows immediately from

(4.8) E{\Xk(t)\2+δ} ^ E{|AΓ(0)|2+«}exp(24+3*MO, t ̂  0, k £ 0

which can be proved in the following way. Using the transformation formula

of the stochastic integrals

φ(Xk(t)) = φ(X(0)) + \ {φ(Xk.ί(s-)
JSt

-Λs-), Y^s, α), θ))

with φ(x) = \x\2+Λ

9 we have

E{\Xk(t)\2+>}

\\
wS t

E{\Xk. ,(s)|2+J}ί/s

which yields (4.8). In the above we have used the estimate

(4.9) \x + a(x, y, θ)\
2+s - 2+i

\x\2

\a(x, y, 0)|(|x + a(x, y, 0)| +

. θ

sin -^-

g 23+3a

Finally, when δ=0, we have

E{\X(t)\*} - E{\X(0)\*}

sin
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[]X(s-) + a(X(s-), Y(s, α), 0)|2 - \X(s

{\x'\2 - \x\2}Q(dθ)u(s, dx)U(s, dy)

'\2 + \y'\2-\X\
2-\y\2}Q(dθ)u(s,dx)u(S,dy)

= 0.

The proof is finished.

§5. n-particle motion

In this section we consider the time evolution of the velocities of n-particles.
It is described as a Markov process on R2n determined by the forward equation:

(5.1) - r < " ( / , •), <K )>

' i. V*^
-π,π)*R2n

x = (xί,...,xH)eR2»,

where x\ = + R 1 . *'; - y - R with the rotation

R=R(Θ) given by (1.4), and Q(dθ) is the measure on (-π, π) satisfying (1.6).
On a suitable probability space (Ω, &, &t, P) we can construct a Markov

process associated with (5.1) by solving the following stochastic integral equation:

(5.2) J((i) = ̂ (0)+ Σ α(Γ,(s-), J/s-), θ)pίj(dsdθ), 1 :g i g n,
jΦi JU t

where t/, = [0, ί]χ(-π, π), X*;, x^, θ) = χ;.~χί and {pu(dtdΘ\ l^i, ^n} is a
system of ^-adapted Poisson random measures on #ix( — π, π) with common
mean measure dtQ(dθ)/n satisfying the following properties.

(5.3) (pedicle), i ̂  j} is an independent family.

(5.4) ftXD = p'άn i *Ί, for Γ e &(Rl x ( - π, π)) .

THEOREM 5.1. Lei {ptj(dtdθ), l^ί, j^n} Z?e as afeot e, and assume that
Xt(0)9 l^ϊ^n, are & ̂ -measurable independent R2-valued random variables
with common probability distribution f in 0*. Then we have the following
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assertions.
(i) There exists a unique ^radapted solution Xn(t) = C^ι(0» » ^«(0)

of (5.2), and the probability distribution u(t, .) of Xn(t) satisfies (5.1) for

(ii) // { \x\2**f(dx)'< oo for some δ ^ 0, then
JR2

(5.5) EίlJ^OI2**} ^ £{|XΊ(0)|2+a}exp(24+ 3ΆfO, t> 0, 1 £i"^ n,

where M=\ sin— Q(dθ). In the case <5 = 0, we have
J-π 2*

Σl*ι(0ί2 =

PROOF, (i) The existence and the uniqueness of the solution follow from
the general theory of stochastic differential equations due to K. Itό [4]. In fact,
if we put for 1 ̂  i ̂  n

jΦUVt' l ' ' IJ '

then we can prove that X^(t) = (Xk

ί(t)9 ..,X^(t)) converges uniformly on each finite
Mnterval as fc->oo with probability one, and that the limit Xn(t) = (Xl(t)9...9

Xn(t)) is the unique ^-adapted solution of (5.2). The last part of (i) follows
from

Σ\
i<jJUt

where ^eQ(R2"); here we have put Zχs-)= Ji(s-) + 0(̂ (5 -);J;(s-), 0)
and Jχs-) = Z/s-)-α(Zi(s-), J/s-), θ).

(ii) Using the formula

with φ(x)=\x\2+> and then noting (4.9), we have
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t E{\Xϊ(s)\*+Λ}ds, k ̂  0.
o

Therefore we obtain

and hence (5.5). When 5=0, we use

φ(Xi(t)) = φ(Xm + Σ f . ί<K*i(s-) + 0(^(s-), X/S-), 0))
;*ίJl/ t

with φ(x) = |x|2, and obtain

ί=l

= Σ {l (̂(5 - ) + a(Xfr - ), Xj(s - ), θ)| 2 - \Xt(s - )
i<jJUt

= Σ Γ {l^(s-) + a(Xι(s-l J/s-),
i<jJUt

= Σ.ί {l^(s-)|2
i<ί/JC/t

= 0.

This completes the proof.

§ 6. Propagation of chaos

Let /be a probability measure in R2 belonging to ,̂ that is, \ \x\f(dx)

<oo. For a given positive integer n, let Xn(t) = (Xί(t)9...9 Xn(t)) be a Markov
process with generator

Gn*(x) = - - Σ
'* i<j

x = (Xl,...,Xa)eR2«,

and with initial distribution /® ®/(n-fold product); it was constructed in §5
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as a solution of (5.2). For fixed positive integer m (^n), we denote by Xm\n(t)
the first m coordinates of Xn(t). Then almost all sample paths of Xm\n belong to
the space Wm of all #2m-valued right continuous functions on R$ having left
limits. On this space we consider the Skorohod topology induced by the metric

J«(w, *) = Σ 4r {inf [ sup | w(t) - w(λ(t)) | + sup \t - λ(t)\\ Λ 1} ,
fe=l ̂  0£t£k 0 £ f £ f c

where the infimum is taken over all homeomorphisms λ: [0, fc]->[0, k] with
A(0) = 0 and λ(fc) = fc. Then the topological Borel field 3$m of Wm coincides with
the σ-field generated by cylinder sets. We denote by Pm\n the probability measure

on (Wm, &m) induced by the process Xm\n. We also consider the Markov process
X={X(i)9 ί^O} associated with (4.1) having initial distribution /, and denote by
Pf the probability measure on (Wl9 ^Ί) induced by X. We have the following
propagation of chaos.

THEOREM 6.1. Assume that \ \x\2+δf(dx)<ao for some <5>0. Then for
JR2

each fixed ra^l

Pm]n - > P ® ® f a s n-*oo.

For the proof, it is enough to show the following theorem, which is slightly
stronger.

THEOREM 6.2. Let f be the same as in Theorem 6.1 and m be a fixed posi-
tive integer. Then for any ε>0 and Γ>0 there exists a positive integer n0

(^m) such that the following statement holds: 7/n^n0, then on a suitable prob-
ability space we can construct

(i) n independent solutions X^(t\,..,Xn(t) of (4.2) with initial distribu-

tion f , and

(ii) a solution (Xγ(t\...,Xn(t)) of (5.2) with initial distribution /® ®/
such that

E{ sup \Xtf) - Xi(t)\} < ε, 1 ̂  i ̂  m.

The proof of Theorem 6.2 is divided into some steps. Let n (^ w) be fixed.
On a suitable probability space (Ω, "̂, P) we choose an independent family
{Pi^dtdθdot), l^ί, j^n} of Poisson random measures on #jx( — π, π)x(0, 1/n]
with common mean measure dtQ(dθ)da, and independent, identically /-distributed
random variables {̂ (0), l^z^/i}. We also assume that {̂ (0), l^ign} and
{Pij(dtdθdx), 1 ̂  i, 7 ̂  n} are independent. If we put
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\ Pίj(A), LgiJ g n',AeΛ([0, ί]x(-π, π)x(0,

then pij(dtdθd<x), 1 g ί, 7 5Ξ n, are .̂ -adapted. We define

Γ e @(Rl x ( - π, π) x (0, 1/n]), 1 ̂  i, j ^ n,

and also

for Γ e ̂ (Ri x ( - π, π) x (0, 1]), where Γ, = {(ί, 0, α) e Λ j x ( - π, π) x (0, 1/n] :
(ί, 0, α + (y-l)/n)eΓ}. Note that ρ,(dtdθd<x), l^ i^w, are independent, J*>
adapted Poisson random measures on Λ |x( — π, π)x(0, 1] with common mean
measure dtQ(dθ)d<x, and that

P^dtdβ) = Pttdtdθ (0, !/«]), 1 g ί J ̂  n

are ^",-adapted Poisson random measures on J?j x ( — π, π) with mean measure
dtQ(dθ)jn. Therefore, from the results in § 5, there exists a unique ^",-adapted

solution XB(0=(X1(ί), .., ^B(0) of

(6.1) TO = XflS) + £ α( J((5 - ), J/s - ), θ)ptj(dsdθ), l^iϊn.
jϊiJUt

For the proof of Theorem 6.2 it is convenient to express (6.1) in the following
form :

(6.2) Xft) = Xi(0) + α(^(s-), Z(s-, ω, α), θ)p{dsdθdoί),

where X(ί, ω, α) = X/ί) for a e / j = ((j— l)/n, j/n]. Let u(ί) be the probability
distribution at time ί of the Markov process with initial distribution / which is
associated with (4.1). Then we can prove the following

LEMMA 6.3. Let Xt(t)9 l girg ' n, X(t, ω, α) and u(i) be the same as above.
Then for any ε>0 there exists a process Yε(t9 ω, α) having the following proper-
ties.
(6.3) Yε(t, ω, α) is ^-predictable.
(6.4) The probability distribution of Yε(t9 ω, .) is u(t — ) for fixed ω.

(6.5) E\{ \X(t —, ω, α) — Yε(f, ω, α)|rfα> ^ E{p(f(t — 9 ω), w(ί —))} + ε,

where f(t — 9 ω) is the probability distribution of X(t — 9 ω, •) on αe(0, 1] /or
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each fixed ω.

PROOF. Take a Borel isomorphism ξ: R2-+Rl. Since /(f — , ω) and u(t — )
belong to ,̂ we can apply Proposition 2.2 to have a transition func-
tion /%_,„).„<,_)(*, 5), xeK 2 , fle^(K2) satisfying (2.7)~(2.10). *(*-, ω, α),
α e / y , is the constant Xj(t— ) for fixed (ί, ω). Therefore we may consider

P}(f, ω, .) = Pj (t-,ω),M(ί-)(*/ί-), •), 1 ^ J ̂  w,

as probability measures in R2. Denote by YJ(t, ω, β\ /?e(0, 1], the right con-
tinuous inverse function of the distribution function P}(ί, ω, £"*((— oo, x]))
and put

yε(ί, ω, α) = r1(yy(ί,ω, nα-j+1)), αe/,,

Then yε(ί, ω, α) satisfies (6.3)^(6.5). In fact, (6.3) is clear from the construc-
tion, and as for the rest we use (2.9), (2.10) and the relation

n|{αe/,.; 7ε(ί, ω, α)eΓ}|*> = P /f, ω, Γ),

to obtain

|{αe(0, 1];P(/, ω,α)eΓ}| = -J- Σ^'yΛ ω»

= \
^ Λ

and

-, ω,α) - P

= \ \
J Λ 2 J

Therefore the lemma is proved.

Using this process Yε(t, ω, α) we consider the following integral equations:

(6.6) Xi(t) = Xi(0) + Λ(ΛΊ(s-), 7ε(s, ω, α),
JSt

*) |A | denotes the Lebesgue measure of Ac(0, 1].
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By Theorem 4.2, for each ϊ, there exists a unique ^-adapted solution (X&f),

ί^O} of (6.6) which is equivalent in the law sense to the Markov process associated

with (4.1) having initial distribution/.

LEMMA 6.4. {Xfc), ί^O}, I g ΐ ^ n , are independent.

PROOF. For each i we define

Pί(A) = χA(s, 0, y (s, ω, x))Pi(dsdθd^ A ε <%(Rl

+ x ( - π, π) x R2) .

K j . x ( - π , π ) x ( 0 , l ]

Then {p\(dtdθdy}, l^ i rgn} are ^-adapted random measures on jR|x( — π,
π)xR2 with the common mean measure dtQ(dθ)u(t, dy):

E{p\(A)} = £J J χΛ(s, 0, 7'(s, ω,

« x ( - j e , j r ) x ( 0 f l ]

Xx(s, 0, ^)Φ, dy)Q(dθ)ds.
π , π ) x R 2

Since the equation (6.6) can be written in the form

+ α(^f(5-), j, θϊpftdsdθdy), 1 ̂  i ̂  n,

for the proof of Lemma 6.4, it is enough to show that {p^(dtdθdy), l^i^n}

are independent Poisson random measures. Put S=Σ?=15f (direct sum) for

S£ = (-π, π)χβ2, and define p*(^)=Σ?=ι^(^i)» ^i = ̂  Π W x 5έ), for each
Borel set A c Λ j x S. Since

α(s, 0, α, ω) = χBί(0, P(s, ω, α))

is ^-predictable for Bi€&((-n, π)xR2) and {p^dtdθda), l^i^n} are inde-

pendent ^-adapted Poisson random measures with mean measure dtQ(dθ)da,

Σ{ J (̂0, Yε(s, ω,
[0,ί]xS,

χBί(0, 7e(s, ω,
[0, f]xSf

is ^-martingale. Hence, for B = Σ ?= i Bi9

P*([0, ί] x B) - u(s, B)Q(dθ)ds
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χβί(0, jOιι(s,

is also J*>martingale. Therefore Theorem 3.1 implies that {p^dtdθdy), l^i
^rc} are independent Poisson random measures. This implies the independence
of

To estimate the difference between X4(i) of (6.6) and X^t) of (6.2), it is con-
venient to consider the following auxiliary stochastic integral equations :

(6.7) Xf(0 = Xi(0) + ( a(X£s-)> 7ε(s, ω, α), θ)p£dsdθd<*)9 1 ̂  i ̂  n.

By Theorem 4.2, (6.7) has a unique solution which is equivalent in the law sense
to

LEMMA 6.5. For each T>0 and an integer w>0, there exists a positive
constant c, independent of n and ε, such that

E{ sup \X£t) - Xi(t)\} ^ c n-1/2, 1 ̂  i ̂  m.

PROOF. By the smoothness of α(x, y, θ) expressed in (4.3) and the defini-
tion of Poisson random measures {p^dtdθda), Ig ί rgn} and (p^dtdθda), l^i
^n}, we have

(6.8)

\a(Xfc-)9 Yε(5, ω, α), 0)- a(Xi(s^)9 Y (s, ω, α),

+ Σ 1^(^(5-), y*(5, ω, α + 0 - l)/n),,
J < l[0,ί]x(-«.ιc)x(0,l/π]

+ Σ J |fl(^-), y^ ω, α + (j - l)/n), θ)\Pj{dsdθd*)
J < I [ 0 , f ] χ ( - π , π ) x ( 0 , l / n ]

g ί I JΓ,( j - ) - Xt(s - ) I sin -f Pl(dsdθdx)
Js« ^
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sin|-

Σ
j < i

sn - Pji(dsdθd*)

for each l g i r g w . Taking the expectation of both sides of (6.8) and putting

M = sin y [ Q(dθ\ we have

Λ J

s9 ω,

Therefore Schwarz's inequality implies that

here we put μ = £{|̂ έ(0)| 2} = ( |x|2/(^) Hence we have
JR2

(6.9)

for l^ i^m by GronwalΓs inequality, where cl and c2 are positive constants
depending only on m, M and /. Taking the supremum of (6.8) for 0:g t g T and
using (6.9), we have

(6.10) E{ sup ^ c3exp(c4Γ) n- 1/ 2

for each l^rgm. (c3 and c4 are positive constants depending on m, M and
/. ) Thus the lemma is proved.

Next let us estimate the quantity E{ sup 1^(0-^(01} for a given Γ>0.
O^ί^ΓFor this purpose it is essential to prove the following lemma.

LEMMA 6.6. For fixed l^j<k^n and φeΦε

L*\ there exists a positive
constant c' depending only on M and f such that

*) See § 2 for terminology.
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(6.11) .|£{φ(*χt)M*t(0)} - Mj(ί)| g c'exp(c't) n->/2^ ,

where Mφ(t) = E{φ(X(t))} ( = J^M*, <f jθ)

PROOF. Take a new Poisson random measure

H(Γ> = Σ.JUΛ) + PkAΓj), Γ e Λ(RΪ x ( - π, π) x (0, 1]) ,

on /?|x(-π, π)x(0, 1] with mean measure dtQ(dθ)dx, where Γf = {(f, 0, α)e
7?ίx(-π, π)x(0, 1]; (ί, θ, α+(i-l)//r)eΓ}. We consider the stochastic in-
tegral equation :

(6.12) X{(ί) = Xk(V) + a(X{(s-\ Y'(s, ω, «), θ)p{(dsdθd*) .
Jst

The existence and the uniqueness of ^-adapted solution are easily proved. We
will notice that the probability distribution of X{(t) is the same as that of Xk(t)
(and of X(t))9 and that X{(t) is independent of Xj(t) because the Poisson random
measures p{ and pj are independent. (See the argument used in the proof of
Lemma 6.4.) Therefore M*(t) = E{φ(Xj(t))φ(X{(t))}, and hence

(6.13)

= \E{φ(Xj(t)) (φ(Xk(t)) -

for φeΦi Next applying the transformation formula of stochastic integrals
for

= ί βί̂ s-) - ̂ (s-), 0,

- ), y£(s, ω, α + ( - l)/n), β)ptj(dsdθdx)
[0,f]x(-π,π)x(0,l/«]

5-), 7ε(s, ω, α + 0'-l)/n), θ)pkJ(dsdθdθL),
[0,"ί] χ(-π,π)x(0,l/π]

we obtain

[0,r]x(-π,π)x((0,n-/j)
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[0,r]x(-π,π)x(θ, l/n]

Hiroshi MURATA

- \Xjs-) - X{(s-)\2}pk(dsdθd«)

-) + a(Xk(s-), Y*(s, ω, α + ( - l)/n), θ)|2

- \Xk(s-) - Xi(s-)\2}pkJ(dsdθdx)

(s-) - XJ

k(s-) - a(X{(S-), Y<(s, ω, α + ( - !)/«), θ)\2

[0,r]x(-π,π)x(0, l/π]

- \Xk(s-) - Xί(s-)\2}Pllj(dsdθdx)

sin 4 pk(dsdθd<x)

tO,r]x(-π,π)x(0, l/ Λ ]

sin pkj{dsdθda)

[0,f]x(-π,π)x(0,l/n]

in the above we have used

+ iJ?λ(S-)-liί(s-)|2].|sin|-

•_ θsm V z

IΛ I »

g \a(x,y,θ)\{\a(x,y,θ)\+2\z\}

sin^-

sm

Therefore we obtain

E{\Xk(t) - Xί(t)\2}

£ 3M\Έ{\Xk(s) -
Jo

,/α) I y (s, ω, α)| 2 dα ds.

Using Holder's inequality and the estimates (4.7), we have
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E{\Xk(t) - Xί(t)\2} ^ 3M\Έ{\Xk(s) - Xi(s)\2}ds
Jo

where we put μ=\ \x\2f(dx) and v = \ \x\2+δf(dx). Hence there exist posi-
J*2 }R2

tive constants cs and c6 depending only on M and / such that

E{\Xk(t) - *ί(OI2} ^ c5exp(c60 n-*/<2 +*>.

Combining this with (6.13), we obtain

\E{φ(Xj(f))φ(Xk(i))} ~ M2(OI ^ c'exp(c'f)' n~'IW*

with c' = max{(c5/i)1/2, c6/2}, which implies the lemma.

LEMMA 6.7. For each T>0 αnrf ε>0,

E{ sup IJXO - Xt(t)\} ^ Kε n-V4(2+δ) + c" ε,

where Kε is a positive constant depending on M, /, T and ε, and c" is a positive
constant depending on M,f and T.

PROOF. Using the smoothness of a(x, y, θ), we have

(6.14) 1^(0-^(01

^ ( lαί^s-), J(s~, ω, α), Θ) - fl(ί,(s-), Yε(s, ω, α), β)\ptfsdθd*)
JSt

^ ( [\Xi(s - ) - Xt(s - ) | + I X(s - , ω, α) - Yε(s, ω, α)|] . I sin -f- p^dsdθda) .
JSt \ £

By the relation (6.5) we have

-) - Xt(s-)\ + |J(s-, ω, α) - y«(s, ω, α
Jo

Af £{| JXs-) - !<(s-)| + p(/(s~, ω), u(s-))}Λ + Λίte,
o

where/(s-, ω) and w(s-) are probability distributions of X(s-9 ω, .) on (0, 1]

and X(s—) on Ω respectively. Let/(s —, ω) be the probability distribution of
X(s — 9 ω, α), where X(s — , ω, α) = X/s —) for αe/,, l^ jrgn. Then
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-, ω), «(s-))}

-, ω), «(

-, ω),

and so

.Σ |*/s)-*

-, ω), «(s-))}<fc + Mίε.

Put </(J(ί), ^(0)=Σ?=1£{l-^, 0)-^i(OI} and sum up (6.15) in /. Then Gron-
wall's inequality says that

(6.16) d(X(t\ 1(0) ̂  M\± {Έ{p(J(s-, ω), u(s-))}ds + nfβlexp(2ΛfO.
U = l J θ )

Inserting (6.16) to (6.15), we have

(6.17) £{|Xf(0 - £, (f)l}

g M(' E{\ J((s) - Xfc)\}ds + M{' £{p(/(s-, ω),
Jo Jo

+ M2Γ |(S£{p(/(t;~, ω), w(t;~))}rfι; + sε\

+ Mίε.

Therefore for the estimate of the quantity £{1^(0—^(01} ^ is enough to calcu-
late £{p(/(s-, ω), w(s-))}, O^s^T. Proposition 2.1 implies that there exists
a constant K = K(ε, L) such that

JR2
K EJmax Γ( φ(x)f(s-9 ω, dx) - ί

ί e φ ^ L j Λ 2 J

-, ω),/(s-, ω)L)} -f p(u(s-), M(S-)L) + ε.

Since
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E{p(f(s -, ω), f(s -, ω)t)} g E \ ( \ x |/(s -, ω, dx)\
()\x\>L }

and similarly p(u(s — ), u(s-)L)<^μ/L, we can choose large L = L(ε) so that

^ K £ { max Γ \ φ(x)f(s - , ω, dx) - \ φ(x)u(s - , dx)Ίl + 3ε.
•"" l V 6 Φ i L J Λ 2 J/?2 J)

Thus we can write

(6.18) £{/>(/(*-, ω), φ-))} ^ Jr £{| i-

for φ 6 ΦJ,, where X7 is a positive constant depending only on ε and the number
of elements of Φί, and Mφ(s-)=*E{φ(X(s-))}. By Lemma 6.6, (6.18) and the
relation

^ -3- Σ
'* y=l

we have

(6.19)

+ 3εί

for some positive constants CΊ and c8 depending only on M and /. Inserting
(6.19) to (6.17) we have

£{| Xt(s) -

K' c9exp(c,00 /Γa'4(2+ί> + c11exp(c12ί) ε,

and hence we obtain
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(6.20) E{\Xtf) - Xm ^ K' c^exp^O n-^2^ + c1 5exp(c1 6f) e;

here, and from now on, c9, c10,... are used for positive constants which are in-
dependent of ε and n. Taking the supremum of (6.14) for O g f g T and using

(6.19) and (6.20), we obtain

(6.21) E{ sup
O ^ f ^ T

g K' c1yexp(c18T) n-'5/4<2+*> + c19exp(c20Γ) ε,

which proves the lemma.

The proof of Theorem 6.2 is now completed, because by Lemma 6.5 and
6.7 there exist a constant Kε>0 depending on M, /, T, m and ε and a constant
c depending only on M, / and T such that

E{ sup \Xfc) - Xi(t)\} ^ Ke-n-*/4(2+v + c ε.

% 7. Law of large numbers

In this section we deal with the empirical distribution, of n molecules, de-
fined by

Here (X &),..., Xn(t)) denotes the Markov process determined by the forward
equation (5.1). Let it be defined as the solution of (6.1), assuming that the

initial distribution is /® ®/ with \ \x\2+δf(dx)<co for some <5>0. /Λ(ί,
JR2

ω, ) is nothing but/(f, ω, . ) of Lemma 6.3. As in § 6, we consider the auxiliary
process (^(f),..., Xn(f)) defined by (6.7). Then, we have proved the following
estimates in (6.11) and (6.20): For any ε>0 and n, there exist positive constants
cl9 c2, c3 depending on M and / and a positive constant Kε depending on ε such
that

(7.1)

(7.2) E{\Xj(t) - Xj(t)\} ^ K£ c2exp(c20 /Γ*/4<2+*> 4- c3exp(c30 β,

l ^ J ^ w ,

where Mφ(t) = E{φ(Xj(t))} ί=\ 2ψ(x)u(t, dx)\ and Lφ is the Lipschitz constant
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of φ.

Using the above inequalities, we can prove the following law of large num-
bers.

THEOREM 7.1. Assume that \ \x\2+δf(dx)<co for some δ>0. Then,
JR2

fn(t, ω, . ) - > u(t, . ) (in probability), n -> oo,

where u(t) is the solution of (1.7) (=(4.1)) with t/(0)=/.

PROOF. For φ e Cg^R2) we estimate

(7.3) ϊn(φ) = E{ I ^R2φ(x)fn(t, ω, dx) - ^R2<p(x)u(t, dx) \ |

^ ̂  .Σ E{\φ(Xj(t))- φ(^(0)l} +^{ |̂ - Σ φ(Xj(t))-Mφ(t) \ |

By (7.2) the first term In(φ) has the estimate

(7.4) In(φ) = L ε̂ c2exp(c20

On the other hand, using the relation

2|

+ -r .Σ

and (7.1), we have

(7.5) /Λ^^L^ n-'+

where μ = \ Jx|2/(<fx). Inserting (7.4) and (7.5) to (7.3), we obtain

(7.6) ϊa(φ)£Lφ c(n,έ)

c(n, ε) = Kt c2exp(c2ί) «~ί/4(2+ί) + c3exp(c30 ε

+ {μ n-1 + Cjexp^O'T

Using the metric d in 0> defined in § 2, for any ε' >0 we have
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P{d(fn(t, ω), u(t)) > ε'} ^ rE{d(fn(t, ω), ι/

Λ l

where {^jj/^i is a countable family which is dense in CoX/ξ2) with respect to the
uniform topology. On the other hand, from the expression of c(n9 ε) we see that
there exist εΛ>0, n = l, 2,..., such that c(n,.6n)->0 as n-»oo. Thus, by the domi-
nated convergence theorem we have

lim />{</(/.(/, ω), «(/))>£'} g Λlim f 4r[(^k ^(Λ, εj) Λ 1] = 0,
n- oo fc n-»oo *=ι *•

completing the proof.

REMARK. The above convergence is also true under p-metric. In fact,
using Proposition 2.1, for any ε'>0, ε>0 and L>0 we have

P{p(Jn(t, ω), «(/)) >ε'} g }rE{p(Jn(t, ω), «(/))}'

gΛίk m a x l ί φ(x)fa(t,ω, dx)-( φ(x)u(t, dx)\
I φeΦ^ 'V*2 J*2 '

which implies the p-convergence of fn(t, ω).

§8. Remarks to the one-dimensional analogous problem

Let us consider the following one-dimensional analogy of Boltzmann-type
equation:

(8.1) fofc*) = Γ {u(ί,x')u(t9y')-u(t9xMt,y)}Q(dθ)dy^
( 0 . 2 π ) x R i

x' == x cos 0 — y sin 0, y' = x sin θ + j cos 0,
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(8.2) 20/0) = Q(θ)dθ, Q(θ) = Q(2π - 0) > 0, (2*ΘQ(dθ) < oo.
Jo

If Q(dθ) = dθ/2π, then (8.1) is the well-known Kac's one-dimensional model
of Maxwellian gas. This is the case in which Kac first considered the propaga-
tion of chaos.

Γ 2 π
The purpose of this section is to remark that the case \ Q(dθ) = oo can also

Jo
be treated by the method ot stochastic integral equations as we have done for the
two-dimensional case. The discussions here are much simpler owing to the follow-
ing inequality (8.3).

Let β^ 1, and/, g be one-dimensional probability distributions with the finite
β-th absolute moments. Denote by F"1 and G"1 the right continuous inverse
of distribution functions of /and g, respectively, and by ̂ fig the class of all two-
dimensional probability distributions whose marginal ones are / and g. Then
we have

(8.3) \F-ί(x)-G-ί(x)\iίdx^ \x-y\βh(dxdy)9
Jθ JR2

The above inequality (8.3) for β = 2 was used by H. Tanaka [15] in the study
of the trend to the equilibrium for Kac's model; for several dimensional case some
basic properties of the quantity e(/, g) itself, defined by the infimum of the right
hand side of the inequality (8.3), was investigated in H. Murata and H. Tanaka
[12]. The inequality (8.3) is probably known, but for completeness we will re-
mark that the inequality (8.3) is an immediate consequence of the following
identity (G. DalΓAglio [2]).

(8.4) \.,\x.-.y\'.h(dxdy)
JR2

\ {F(x) + G(x) - 2H(x, x)}dx, β = 1,
JR1

={ β(β - 1)1 (* - y)β~2{G(y) - H(x, yVdxdy
\ Jx>y

+ β(β - D( (y - *)"- 2 {F(x) - H(x, y)}dκdy, β>\.
Jx<y

Here F, G and H are probability distribution functions of/, g and Λ, respectively.

Proof of (8.4): Let φ be a function on R2 with the following properties.
( i ) φ is a non-negative, continuous function on R2, vanishing on the

diagonal.
(ii) φ e C2 off diagonal and φ12 ̂  0.
(iii) For each x e Rl the following (finite) limits exist:
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<p,(x, X-) = limφ^x, x - ε), φ2(x-, x) = Iinκp2(x - ε, x)*\
β l O ε i O

Then we have

φ(x9 y) = \ — φl2(t, s)dtds 4-

and a similar relation for x< y. Hence by Fubini's theorem we can write

(8.5) ί 2<p(x, .y)/ι(dxc/j;)

ί, s)ί/ίί/s \ h(dxdy) + \ — φι2(ί, s)dtds \ h(dxdy)

<p2(t-, i)dt \ h(dxdy)
l J

y<,t
x>t y>t

= -φl2(t,s)(G(s)-H(t,s)}dtds
t<S

- B(t, 0} + φ2(ϊ-, 0 {F(0 - H(i,

Putting φ(x, j) = |x- j|^ in (8.5), we obtain (8.4).

Proof of (8.3): If H^x, y) denotes the joint distribution function of the
random variables F"1 and G"1 on the probability space ((0, 1], dx\ then we
have

x -
R2

H^x, y) = min (F(x),

for any H corresponding to h e J f f g, and then from the identity (8.4) we obtain
(8.3).

As in (1.7) we consider

*) φ\> φz and φί2 denote the partial derivatives ~fa<f>(x, y\ ~foψ(χ> y) a°d dx$ φ(χ> y\ re-

spectively.
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(86) ,,φ> = {φ(x')-φ(x)}Q(dθ)u(t,dx)u(t,dy),

The Markov process X(t) associated with (8.6) is given by the following stochastic
integral equation :

(8.7) X(t) = X(ff) + \ a(X(s - ), F(s - , α), θ)p(dsdθd<x) ,
JSt

where (Y(t), ί^O} is a process defined on the probability space ((0, 1], dα) and
such that the probability distribution of 7(0 is equal to that of X(t) for each fixed
t ̂  0, St = [0, ί] x (0, 2π) x (0, 1], a(x9 y9θ) = x'-x and p is an ^-adapted
Poissofi random measure on .Rix(0, 2π)x(0, 1] with mean measure dsQ(dθ)dcn.

A merit in one-dimensional case is that we can choose Y(t — , α) to be the right

continuous inverse of the distribution function of X(t — ).

THEOREM 8.1. Let f be the probability distribution with \ \x\f(dx)<ao9JRI
and assume that X(Q) is /-distributed and & '^-measurable. Then there exists

a unique ^t-adapted solution X(t) (?/(8.7) such that \ E{\X(s)\}ds<co for each
Jo

f«x>. Therefore the probability distribution u(i) of X(t) is a solution of (8.6)

mthu(0)=f.

PROOF. We put

I Xk+ί(t) = X(0) + ( a(Xk(s-),Yk(?-> α), θ)p(dsdθdx), k ^ 0,
J s t

where Yk(s — , α) is the right continuous inverse of the distribution function of

Xk(s-)9 fc^O. We notice that

(8.8)
o

by the inequality (8.3). Using first the estimates

(8.9)

\a(x, y, Θ)—a(xι, yl9 0)| ̂  2sin-|-(|x~

and then by (8.8), we have
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(8.10)

o

for fcj>l, and

where M = 2 sin ~ρ(c/θ). Therefore

^ E{\X(ΰ)\] -(2MOk+1/(fc + 1)!,

and hence by (8.10) we have

E{ sup \Xk+l(t)-Xk(t)\} ^ E{\X(0)\} -(2MTγ+l/(k + 1)!

for each fixed T>0. Therefore pf*(0}?=o converges uniformly on each finite
/-interval with probability one, and the limit X(t) is an ^-adapted solution of
(8.7). The uniqueness can be proved similarly. The last assertion can also be
proved by making use of the transformation formula for stochastic integrals.

The propagation of chaos for this model can also be proved as in § 6, again
with some simplification.
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