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§1. Introduction

We are concerned with the following semilinear heat equation with time-lag:
(L1 G- ult, ) = dult, %) + flule = r, %), u(t, %)),

where r is a positive constant. A. Inoue-T. Miyakawa-K. Yoshida [3] studied
the initial boundary value problem of the above equation (1.1) in a domain
2 of R3 for some typical f(4, u). In this paper we assume that f(A, u) is a non-
negative continuous function and consider the initial value problem of (1.1) in
the whole of R“; the initial condition for (1.1) is given by

(1.2) u(t, x) = a(t, x), —r<t<o,

where a(t, x) is a given function on [—r, 0] x R4, If we put

‘ —_ 2
HG, x, y) = (m) 42 exp( - X215,

Ha() = | H, x yady,

then the equation (1.1) with the initial condition (1.2) is transformed into the
integral equation

u(t, x) = Ha(0, x) + S dsH,_ f(u(s — r,-),u(s, ) (x), >0,
(1.3) 0
u(t, x) = a(z, x), —r<t<O.

In this paper, when we speak of a solution of (1.1) with the initial condition (1.2),

we always mean that it is a solution of (1.3). By a positive solution we mean

a solution which is strictly positive for t>0. We assume the following conditions:

(f.1)  f(4, p) is a non-negative continuous function defined on R, x R, =[0, o) x
[0, o) and nondecreasing in A for each fixed pu.

(f.2)' For each positive number M, there exists a positive constant x,, such
that

[f( ) = f(A )l < Kpglpty — 2, O < A, py, pp < M.
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(a.1) a(t, x) is a non-negative bounded continuous function on [—r, 0] x R4
and a(0, x) is not identically zero.

Under these conditions the equation (1.1) with the initial condition (1.2) has a
unique positive (local) solution, which is denoted by u(t, x) or u(t, x; a, f;r)
when we want to stress the initial value a, the nonlinear term f and the time-lag
r. We say that a positive (global) solution u(t, x) of (1.1) grows up to infinity
(as t— ) if for any positive number M and any compact set K in R¢ there
exists a positive number T such that u(t, x)>M for any xe K and t>T.

Our problem is to find a sufficient condition for any positive global solution
of (1.1) (if it exists) to grow up to infinity as t—»oco. When there is no time-lag,
H. Fujita [1] and K. Hayakawa [2] investigated the blowing up problem. Re-
cently K. Kobayashi-T. Sirao-H. Tanaka [6] gave a sufficient condition for the
growing up of positive solutions of (1.1) with f(4, p) = f(u) (without time-lag).
The purpose of this paper is to extend the results of [6] to the case with time-lag.

Our main results are stated as follows. Put f,,(A)=ASinf af &, n), 6>0

¢,
and f,(A)=f(4, 1). Assume that f(4, u)>0 for A>0 andﬂ 1>0. Then,
under some additional conditions on f, the divergence of the integral

P
Sof,,(l)l‘z‘(z/'“dl for some >0 implies the growing up of positive global

solutions of (1.1), if they exist, while the convergence of Sofd(,l)l'?‘(z/“)d).
implies that there exists a positive solution of (1.1) converging()) to 0 uniformly
in x as t—oo. Similar results can be obtained in the case when f(4, 1)=0 for
0<A<1 and f(4, u)>0 for 0<4, u<1. Finally, it will be remarked that some
semilinear heat equations with time-lag can be described in terms of branching
processes in a way similar to the case without time-lag.

The auther wishes to thank Professor H. Tanaka for his helpful suggestions
and advice.

§2. Preliminaries

In this section we give some preliminary results, among which Theorem 2
will play an important role in the next section. First we state an elementary
comparison lemma.

LemmA 1. Let aft x), i=1, 2, be bounded continuous functions on
[—r, 0]xR¢ and f(4, p), i=1, 2, continuous functions on RxR. We assume
that for each M >0 there exists a constant k =1k, such that | f{(A, u) — fi4, uy)| <
Kl —pal, i=1,2, for |Al, |uyl, |4l <M, and that at least one of f,(A, 1) and
Sf2(4, p) is nondecreasing in A for each fixed u. Moreover, we assume that f,> f,
and a,>a,. Then, we have
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u(t, x; ay, fi; 1) 2 u(t, X; a, f257)
Jor any t>0 belonging to a time interval in which the solutions exist.

Proor. We consider the case when f;(4, u) is nondecreasing in 1. We
put uyt, x)=u(t, x; a;, fi;r), i=1,2, and prove, for each integer n>0, that
u,(t, x)=>u,(t, x) for any te((n—1)r, nr] and xe R?. Since the validity of the in-
equality for n=0 is a part of the assumptions of the theorem, we assume that the
inequality holds for n and prove that it holds also for n+1. If we put g(t, x, )=
fu(t—r, x), p), i=1,2, then u(t, x) satisfies Ju;/0t=Adu;+gt, x, u;), nr<
t<(n+Dr, and u,(nr, x)>u,(nr, x), g,(t, x, W=>g,(, x, p) for nr<t<(n+1r.
Therefore, by a well known comparison theorem in partial differential equations
we have u,(t, x)=>u,(t, x) for nr<t<(n+1)r, as was to be proved. The case
when f,(4, u) is nondecreasing in A can be treated similarly.

In the sequel, we assume that f is a non-negative continuous function on
R, xR, satisfying the conditions (f.1) and (f.2)’, and that a is a non-negative
bounded continuous function on [—r, 0] x R4 satisfying (a.1). The following
assertions 1°, 2° and 3° can be proved in the same way as in the corresponding
lemmas of [6].
1° If any positive solution u(t, x; a, f; r) of (1.1) for any time lag r>0 either
blows up in finite time or satisfies

limsup |u(t,-; a, f; 1), = 0,
t—

then any positive solution of

aa_’: = Au + ef(u(t — r, x), u(, x))

has the same property for any ¢>0 and r>0.

2° For any positive ¢ there exist positive constants « and f such that u(t, x;
a, f; r)>aexp(—B|x|?) (provided the solution exists up to ¢).

3° We consider a class of monotone radial functions:

o ={aeC(RY): a(x) 20, # 0; a(x) > a(y) for [x| <|yl}.

If f(A, p) is also nondecreasing in u for each fixed 1 and if a(t, x) e & for any
te[—r, 0], then u(t, x; a, f; r)es for t>0 (provided the solution exists up
to 7).

Making use of these preliminary results 1°, 2°, 3°, we can prove the following
theorems; the proof is much the same as that of Theorems 3.3, 3.4 in [6] and so
is omitted.

THEOREM 2. Assume that f and [ satisfy (f.1) and (£.2)' and also that the
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following conditions are satisfied:

(i) fA,w>0 for 2>0,u>0..
(ii) J(A, p) is nondecreasing in p for each fixed 1 and f(4, 0) = f(0, ) = 0.

PNy 4 ¢ A7)
i) Tim inf w0 > O

Further, we assume that for any time-lag r>0 any positive solution i(t, x) of

Ou

2.1 61: = Au + f(u(t — r, x), u(t, x))

either blows up in finite time or satisfies

2.2) lim sup ||di(t, - )|, = o0
t—00

Then any positive global solution of (1.1), if it exists, grows up to infinity for
any time-lag r>0.

THEOREM 2. Let f be a non-negative continuous function defined on
[0, 11x [0, 1] such that f(4, 1)=0 for 0<A<1 and f(4, u)>0 for 0<4, u<l.
Assume that f(A, u) is nondecreasing in A for each fixed u and satisfies (f.2)
with M=1 and that f(A, p) is a continuous function on R, xR, satisfying
(f.1), (£.2), f(4, 0)=F(0, u)=0 and also nondecreasing in pu for each fixed A.
Further, we assume that

.. )
lim inf ACYD)

a40,u10) f(4, p)
and that for any time-lag r>0 any positive solution i(t, x) of (2.1) either blows
up in finite time or satisfies (2.2). Then any positive solution of (1.1) dominated
by 1 converges to 1 uniformly on each compact set in R? as t— oo.

>0

§3. The growing up problem

3.1. A sufficient condition for growing up
Before stating our theorem we introduce several conditions concerning f.
We put fi(A)= inf f(& n) for A<6.
ASE, <o

1) f(A,wis a ’non-negative continuous function defined on R, xR, and
nondecreasing in A for each fixed u.

(f.2) f(4, p) is a locally Lipschitz continuous function on R, xR,.

f3) fALw>0 for A1>0,u>0.

€4 [ fmprdai=co for some >0,
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(f.5) There exist positive constants ¢ and J such that
fldds) = A4*afdy) for  0<A <Ay d<c A, <c.
Denote by # the class of all functions f on R, xR, satisfying (f.1)~
(£.5).
THEOREM 3. If f(A, u) belongs to &, then any positive global solution
of (1.1), if it exists, grows up to infinity as t— co.

To simplify the proof, we define a subclass % of #. Namely we denote
by % the class of all functions on R, x R, satisfying (f.1), (f.2), (f.3) and the
following conditions (f.4)*, (f.5)*, (f.6): Put f,(A)=f(4, A).

(£.4)* S" fi/A**3di = o forsome &> 0.
0

(f.5)* There exists a positive constant ¢ such that

@) fi(Ai4p) = C)‘i-’-%fd(’ll) for 0<i <44 <g

(1) fiAhy) > cA3*af,(A) for O0<A, <A <c.

(f.6) - f(4, w) is nondecreasing in u for each fixed A.
We claim that
(3.1) for each f(4, u) in F there exists f(A, p) in F such that

liminf f(4, Wi (A, w) > 0.
In fact, applying Lemma 3.6 of [6] to f,(4) we can find a nondecreasing locally
Lipschitz continuous function fyA) satisfying (i) f50) =0, f5(2)>0 (1>0),
(ii) So+ Fs(A)JA2*+2/4d) = oo, (iii) there exists a positive constant ¢ such that

FoAids) > eAb*214f(Ay), 0<i <44 <egc
JoOidz) = cA3+219(2y), 0<i, <4 <g

and (iv) liminf fy(1)/f{(4)>0. Then, f(A, u)=F5(A A u) has the desired properties.
AlO

By virtue of (3.1) and Theorem 2, it is enough to prove Theorem 3 replacing
Z by #. By 2°and Lemma 1 in §2, it is also enough to treat the case when
a(., .) satisfies a(0, x)=aexp(—p|x|?), 0<a<c, >0, where ¢ is the constant
appearing in (f.5)*. So we assume that fe &, a(0, x)=a exp(— B|x|?) and define
u,(t, x), n>0, as follows:

H,a(0, x) = a(1 + 4pt)~4/2exp{ — Blx|2/(1 + 4B1)}, t >0,

a(t, x), —rgt<Q. .

uo(ta x) =
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Hia(O, x) + || dsHyyf(p-s(s = 1y ) thy-i(5,0), 10,
u,(t, x) = [ °

a(t, x), —-r<t<0, (n>1).
Let u(t, x) be the solution of (1.1). Then by (f.1) and (f.6) we have

u(t, x) = u,(t, x), nx=0,

provided that u(., .) exists up to t. To simplify the notation we put y=1+%

and
0(t) = a1 + 4Bt)~4/2

_ (" f400(5)) _ o/ S" S a(A)
o) = | ool a5 = 5 (- LG an.
We note that the assumption (f.4)* implies ¢(f)— oo as t—o0. The following lemma
is a modification of Lemma 2.2 of [6] adapted to the present situation, and funda-
mentally the proof is also similar. But, since the proof is somewhat complicated,
we give it in full.

LeEMMA 4. Let f(A, p) belong to % and a(t, x) be a bounded continuous
Sfunction such that a(0, x)=aexp(—pf|x|?), 0O<a<c, f>0. Then we have for
any positive integer n and t>nr
3.2) u,(t, x) > (1 + 4Bnr)~42{1 + B,(t, x)}uo(t — nr, x),

where

= — pp) Ly _BO+ -+ M) 2}
Bn(t, x) C"(p(t nr) ’ ’ exp{ 1+ 4ﬁ(t — nr) |-x| , h2> 19

C = {e(1 + 4Br)'(1+7)d/2}l+y+'“+y"‘1
" +4Bnr) P 4y + o + OTE

ke (1 + 4Bkr)=4/2 }v
xklgo{(l+'y+...+-yk)1+yd/2 , n>1.

Proor. We prove this lemma by induction.

Step 1. We consider the case n=1. First we note that for s>r
[ uo(s, x) = a(l + 4Bs)"4/2 exp { — BIx|?/(1 + 4Bs)}

3.3) > +4Br)%2yy(s —r, x),

1 Ug(s = r, x) > (1 + 4r)y 42 uy(s — r, x).

Since f(4, u) is nondecreasing in A and u, we have

(3.4)  uy(t, x) > uo(t, x) + S' dsH,_sfo((1 + 4Br)™ 4/ 2ue(s — 1, - )) (x).
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Applying (f.5)* with
A =0 —1) <c,
Ay = (1 4 4Pry ¥ 2exp{ — BIx|?/(1 +.4B(s — M)} < 1,
we have
(3.5)  f4(1 + 4Br)y=42ug(s — r, x)) = f4(A14,)
> min {cA} fs(4,), A3V f4(A1)} = cA3*V f4(4y)
= c(1 + 4Br)~ 12 exp { — (1 + PPIxI?/(1 + 4B(s — M)} f40(s — 7).
In order to estimate the integrand in the right hand side of (3.4), we write
H,_sexp{ — (1 + 9BI-1*/(1 + 4B(s — )}
= {1+ 4@ — 9} 2exp{ - fIxI2/(1 + 4B'(t — 5))},
B = (1 + pP/{L + 4p(s — r)}.

Since for r<s<t

{L+4p'(t—s5)}42 = {1 + 4801 +173_(t4;(tr)—;-) 4By(s — r)}-d/z

1+ 4B(s — r)| 9?2
x{l +4ﬁ(t—r)}

> (14 y)42{(1 + 4B(s — r)) (1 + 4p(t — )1}/,

B B+y)
14+4p'(t—s) " 1+48@—1r)°

we have

(3.6) H,_exp{— (L +BI-12/(1 + 4B(s — 1)}
> (14 9)72{(1 + 4B(s — )1 + 4Bz — r))~1} 42
xexp { — B(1 +9)|x|?/(1 + 4Bt — r))}
= (1 +9)7%2ug(t — r, x) exp { — By|x|2/(1 + 4B(t — r)}/6(s — ).

Therefore, noting uy(t, x)>(1+4pr)"%2uy(t—r, x) and the definition of ¢,
we have from (3.4), (3.5) and (3.6)
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ul(t’ x)

> (1 + 4Br)~4/2u,(t — r, x)[‘ + (1 + 4Br)7142(1 + 9)7%?

x exp { = Bylx|2/(1 + 4Bt — i} [ L0 =) gy |

=1+ 4pr) 4 2ug(t —r, x){1 + By(t, )}, t=r.

Step 2. Next, assuming that (3.2) holds for n we prove that (3.2) holds also for
n+1. Write

(37) un+1(t, x) = uO(t9 X) + Sto dSHt—sf(u‘n(s - rs ¢ )9 u,,(s, M )) (x) .

From (3.3) we have, for s>(n+ 1)r,
(3.8 [ ug(s — nr, x) > (L + 4Br)~42uo(s — (n + r, x),
.8)
ug(s — (n + Dr,x) > (1 + 4pr)"42uy(s — (n + Dr, x).

First we shall estimate f(u,(s—r, x), u,(s, x)) from below. Since B,(t, x) is non-
decreasing in ¢, the use of induction hypothesis and (3.8) implies that for s>(n+ 1)r

(3.9) min {u,(s — r, x), u,(s, x)}
> (1 + 4Bnr)42{1 + B,(s — r, 1)} (L + 4Br)-4/2us(s — (n + 1) r; x)
= Ay,
where
L=0s—(n+ D), (<o,
Ay = (1 + 4Bnn)~42{1 + By(s — r, )} (1 + 4pr)y-4/2
x exp[ — BIx|2/{l + 4B(s — (n + Dr)}].
Since f(4, 4) is nondecreasing in 4 and g, we have from (3.8) for s> (n+ 1)r
Sf(u(s = 1, x), (s, x)) 2 f(A142, 4142) = f4(A14;).
We now apply (£.5)* to f,(1,2,). In case A,<4, we have from (a) of (£.5)*
Fa(Aid3) = Ay f4(Ay)
= ¢ (L + 4Bn)"12{1 + B,(s — r, )}7(1 + 4Pr)~r412

X exp [ — Byx|2/{1 + 4B(s — (n+ DA}1S40(s = (n + 1)),
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while in case 1;,>4,
Sa(Aid3) = cA3Tf4(Ay)
= c(l + 4Pnr)~(1*V412{] 4 B, (s — r, x)} V(1 + 4Br)~(1+1)d/2
xexp [ — B(1 +9)|x|2/{1 +4B(s — (n + 1))}]1f4(0(s — (n + D)r)).
Hence we have for s>(n+1)r
(3.10) f(un(s = r, x), u,(s, x))
> c(1 + 4Bnr)~ (V42 (5 — r, x)7(1 + 4fr)~(1*t1d/2
x exp [ = B(1 + ) |x]2/{1 + 4B(s — (n + 1))}1f4(8(s — (n + 1)r))
= c(1 + 4fnr)~ 1042 (1 + 4Br)=(1+0d12C)
x exp (= B"|x|)e(s — (n+ D)™ *7f(0(s — (n+ Dr)),

where f'=p(1+y+--+y*t1)/{1+4f(s—(n+1)r)}. Next, in order to estimate
the integrand in the right hand side of (3.7), we notice that for (n+1)r<s<t

{1+ 4B"(t — s)}~4/2

{1 FA4B+y + 9D (¢ — (n + l)r)}"’/z
T+ 486 — (% )7 '

y {1 +4B(s — (n+ 1)r)}4/2
[+ 4= (n+ Dr)

n+1y- 1 4+ 4B(s — (n+ Dr) 92
2(L+y++y l)d/2{1+4ﬂ(t—(n+l)r)} ,

<B4y + - +y™)
I+

P
1 +4p7(t — s) 4p(¢ (n + Dr) -’

Then we have for (n+1)r<s<
@3.11) Htfsexp(—ﬂ”l,-lz)_
= (1+4p"(t—s5)) 42 exp { — B"|x|2/(1 + 4B"(t — 5))}

S (l + y + . vn+1) d/2
T (g (n+ Dr)

__BO A+ - +y™h) _
xexp{ T+ 480G =+ DP |x|2}u0(t (n+ Dr, x).

Therefore, from (3.7), (3.10) and (3.11) we have for t>(n+1)r
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(312) un+1(ta x) - uo(ta x)
> c(1 + 4Bnr)~(1+0dI2(] 4 4fr)~(1+1d/2

X C'Y'(l + Y + e yn+l)—d/2

__BG+ -+ _
% exp{ [+ 4G =T DN lez}uo(t (n+ Dr, x)

£40Gs = (n+ D)) 4o

% S(u+l)r(p(s — (4 Dryree 0(s — (n+ Dr)

Since

t _ gty f2(0(s — (n+ Dr))
g(n+1)r¢(s (n+ 1r) ! A()(S —(n+ r) ds

= (l + Y 4 o+ ‘yn)—l(p(t — (n + l)r)1+7+...+vn,
uo(t, x) = {1 + 4f(n + )r}=42uy(t — (n + Dr, x),
t>(n+ Dr,

inserting the explicit representation of C, into the right hand side of (3.12), we
finally obtain

U 1(t, x) = (1L + 4(n + Dr)~42{1 4+ B, (¢, X)}ue(t — (n + Dr, x),

t>(n+ Dr,

and so the lemma is proved.

Now we proceed to the proof of Theorem 3. We may assume that f belongs
to £ and a(0, x)=aexp(—p|x|2), 0<a<c, >0. By Lemma 4 we have forn>1
and t>nr,

(3.13) u(t, x) > (1 + 4Bnr)~4/2B,(t, X)u(t — nr, x)
= ol + 4Bnr)=42(1 + 4p(t — nr))~42B,(1, x)
x exp{ — BIx|?/(1 + 4B(t — nr))}
= D,D,D,D,,

where
D, =a(l + 4B(t — nr))"42(1 + y + --- + pr)9/2,

D2 = {C(I + 4ﬁr)‘(l+?)d/2(p(t _ nr)}1+y+...+),n—x

x exp{ — B(1 +y + -+ y)IxI?/(1 + 4p(t — nr))},
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—1
D3 = nl—I (]_ + 4ﬂkr)_(d/2)7"”"l’
k=0

n—1

Dy=TI1(L+y+ - + yk)(ttrd/2yn-k=1,
k=0
We notice that
(3.14) D, > ol + 4B(t — nr))~4/2y=(n+1)d/2(y _ 1)d/2,

Since
(1 + 4pr)=0*»d2 ot — nr) exp { — B(1 + p)Ix|2/(1 + 4p(t — nr))}
=P(t, x, n)>1
for x belonging to a compact set provided t—nr is large enough,
(3.15) D, > &(t, x, n)tFr++r"Tl > (e, x, n)r" 7t

Since Y 2 oy *log (1 +4pkr)< oo, we have

n—1
(3.16) D, = exp{ — -t %kgo v log (1 + 4ﬁkr)}
> exp (— 4" 1),

where A4, =(d/2)X =0y *log(1+4pkr). Further, since
”1111 (I+y+-+ ‘yk)‘(l+yd/2)y-k
k=0

> (y — 1)(I+7d/2) B oy y=(1+7d/2) B o+ Dy ~*
we have
(3.17) Dy = (y82y ™)™,

where yo=(y—1) A1, A,=(14+7d/2) Yo7 ¥ <00 and A;=1+7d/2)> 2 o(k+
1)y "k <oo. If we put

A= c(l + 4Br)~(1+Nd/2g=A1pd2y-43
then from (3.13)~(3.17) we have
u(t, x) > OC()’ - 1)4/2{1 + 4ﬁ(l - nr)}_dlz[’})_(n+l)dy1"'/2

x Ap(t — nr) exp { — B(1 + p)|x|?/(1 + 4B(t — nr))} 1"

and hence
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u(t, x) 2 a(y = D2{1 + 4Bt — nr)} =42 [% Ap(t = nr)
x exp { — B(1 + ) |x|2/(1 + 4t — "f))}]’""

for t>nr provided n is sufficiently large so that y=(»*Ddvi="/2> % holds. For

any compact set K in R? we can find a positive ¢, such that
4ot = nr) exp [ = B+ ) |x|/{1 + 4B = n)}] > 2

for any xe K and t>t,+nr. Since for any positive M there exists a positive
integer N such that for any n> N and t,<t, <to+r

aly = D220 (L + 48,42 2 M,
we have
ut, x)y > M

for any xeK, n>N and ty+nr<t<ty+(n+1)r. This completes the proof
of Theorem 3.

THEOREM 3'. Let f be a Lipschitz continuous function on [0, 1]1x [0, 1]
such that f(A, 1)=0 for 0<A<1 and f(A, W)>0 for 0<A, u<l. If f(A, p) is
nondecreasing in A for each fixed u and satisfies the conditions (f.4) and (£.5),
then any positive solution u(t, x), dominated by 1, of the equation (1.1) converges
to 1 uniformly on each compact set in R? as t— 0.

This is an immediate consequence of Theorem 3 and Theorem 2'.

3.2. A sufficient condition for non-growing up

THEOREM 5. Assume that f(A, u) satisfies the conditions (f.1), (f.2), (£.6)
and the following conditions:

(.7) gz faWArhdi < o for some 6 >0.

(£.8) fA(Q)]A is nondecreasing in A > 0.

Then, for any time-lag r there exists a positive solution u(t, x) of (1.1) converging
to 0 uniformly in x as t— 0.

Assume that the initial value a(t, x) is equal to a(x)=aexp(— f|x|?) for any
—r<t<0. We consider the following equation
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dw _ [4(b0@)w(®))
dr O

w(©0) =1,

where. 6(1)= sup H,a(x)=a(1 +4B1) %/ and
xeR

b = max{ sup H,-,a(x)/Hta(x),OStzggEm a(x)/H,a(x)}

t2r,xeR
= (1 +4pr)92 > 1.

Then, as in Lemma 5.2 of [6] we can prove that u(t, x; a, f; r)<w(t)H,a(x).
The rest of the proof is much the same as that of Theorem 5.1 of [6], and. so
is omitted.

§4. Remarks to associated branching models

Some semilinear heat equations with time-lag can be described by branching
processes in the frame of N. Ikeda-M. Nagasawa-S. Watanabe[4]. For simplicity
we consider the equation

%—'; = du + u™(t — r, x)u"(t, x) — u(t, x),

4.1)
where m and n are non-negative integers such that m+n>2. Let S be the direct
sum R4+[—r, 0)x R? which is to be the basic state space of the branching
process described below. At time t=0, a single particle commences a Brownian
motion {X(#)} on RY, starting from the origin and continuing for an exponential
holding time { (branching time) independent of {X(¢)} with P({>1f)=e"!. At
time {, the particle splits in m+n new particles, n particles among which continue
along independent Brownian paths on R starting from X({) until new branching
time; the other m particles are swept out to the place (—r, X({))e [—r, 0) x R?
at time { and, after obeying to the deterministic process {(—r+t—{, X({))}
for {<t<{+r, at time {+r they land on R at the place X({) from which they
again commence independent Brownian motions on R¢ until new branching
times. Each of these particles, in turn, is subject to the same branching rule as
above. Let a(s, x) be a continuous function on [—r, 0] x R such that 0 <
a(s, x)< 1. If, at time ¢, k(t) particles X,(?),..., X;(t) are in R4 and 4(1)
particles (p,(t), Y1(8)),..., (Poy(1), Ye(t)) are in [—r, 0) x RY, then

ut, ») = EU LT a0, x -+ X0 11 ato,0, x + v}

satisfies the equation
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42)  u(t, x) = e'H,a(0, x) +S ; eSH {um(t — s — r, Jun(t — s, - )}ds
Next, if we put o(t, x)=1-—u(t, x), then o(t, x) satisfies (1.1) with f(4, p)=
—(1=Ay"(1—p)"+1—yu, for which the assumption of Theorem 2’ are satisfied
with f(4, g)= min(A1*2/4, y1+2/d) Tt is easy to see that f satisfies the assump-
tion of Theorem 3.

The branching model associated with the equation

Ju

4.3) A

= Au + u™(t — r, x)u"(t, x)

can also be obtained by introducing ‘‘age” as in M. Nagasawa [7], T. Sirao [8]
and K. Kobayashi [5].
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