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Introduction

In this paper we deal with an analogue of the Helgason conjecture [3] on the
case of a real hyperboloid of one sheet. Contrary to the case of symmetric
spaces any C® eigenfunction of the Casimir operator on our space is a ‘‘Poisson
transform” of some C® function on the sphere. Our method is quite different
from those of [2], [3], [5] etc. (cf. Remark 2). The authors are very grateful
to Professor G. Schiffmann for helpful discussions.

§1. Notation and Preliminaries

Let X denote the real hyperboloid of one sheet in RP*! (p=2) defined by
x}+--+x2—x2,,=1. Then the Lorentz group G=S0,(p, 1) acts canonically
on X so that X is identified with the homogeneous space G/H,, where
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Then any function f in C®(G/H) is identified witha C* function f on X such that
f(xX)=f(—x)(xe X). We regard C°(G/H) as a subspace consisting of all f in
C*(G) such that f(gh)=f(g9)(g € G, he H).

We denote by g the Lie algebra of G. Then g is identified with the set of
all matrices (a;;) (1<i, jSp+1) such that a;=0(1<i<p+1), a;=—a; (1=5i
<jsp) and a,,,;=a;,,; (1=Sj<p). We define subalgebras f, m, a and
n as follows. Let E;; be the matrix such that the (i, j)) component is equal to 1
and the other components are all equal to 0. We put X;;=E;;—E; 1<i<j=<p)

i
and Y,=E; ., +E,.;; (ISi<p). Let f, a and n be the subalgebras spanned
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by X;;(1=i,j<p), Y, and X,;+Y;(2<5i<p), respectively. Let m be the
centralizer of a in f. We denote by K, M, A and N the analytic subgroups
of G corresponding to f, m, a and n, respectively. Then we have G=KAH.
It follows that any f in C*(G/H) is uniquely determined by its value on KA.

Put P=MAN. Then P is a minimal parabolic subgroup of G. For any
real number ¢t we put a,=exptY;. We fix a complex number s once for all and
consider the character ¢, of P defined by £(ma,n)=e?st?=Dt2 (meM, a,€ A,
neN). Let L, be the associated line bundle over G/P and C*(G/P, L;) the space
of all C® sections of L, Then C*(G/P, L,) is canonically identified with the set
of all ¢ in C*(G) such that ¢(gman)=e=2s+tP~Dt2¢(g) (g€ G, meM, a,e A4,
neN). On the other hand C®(K/M) is canonically identified with the set of all
¢ in C*(K) such that ¢(km)=¢(k) (ke K, me M). The Iwasawa decomposi-
tion G=KAN gives us the isomorphism

C*(G/P, L)2¢— olx € C*(K/M).

For any g in G, f in C*(G/H) and ¢ in C®(G/P, L,), we define (n(g)f)(x)
=f(g~1x) and (n(g)®) (x)=¢p(g x) (xe G). Then = and &, are representations
of G on C*(G/H) and C*(G/P, L;). Let dr and dr, be the infinitesimal represen-
tations of g defined by = and =, respectively. We denote by the same notation
the representations of the universal enveloping algebra of g which are uniquely
determined by dr and dr,, respectively.

§2. The Casimir Operator
Let Q be the Casimir operator of g. Then

1

o-—L1 _(_ 2
2(p - 1)( §§f§pX” +

Yy,
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where X% and Y7 denote the squares in the universal enveloping algebra of g.
We denote by Q the Casimir operator of f defined by the bilinear form (2(p—
1)™'B(X, Y) (X, Yel), where B is the Killing form of g. Then we have the
following

LemMA 1. 1) For any fin C°(G/H),

(dn(Q)f) (kay)

2
== teE + (0= the G+ UHEO fa)

(kekK, a,e A).
2) Forany ¢ in C*(G/P, L),
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dns(@b = 505 =75(s = 25) (s + 25 1)9.

The proof is the same as in [5] so that we omit the proof.

§3. The Intertwining Operator 2

For any x=*(x;,..., X,+1) and y="(yy,..., y,+1) in RP*! we put <x, y>=x,y,
te 4+ XpYp—Xp41Yp+1- For any ¢ in C*(G/P, Ly) we define

I$)(9) = SKI <g7'key, e,> |t D2¢(k)dk (g€ G),

where dk is the normalized Haar measure on K, e, =%(1,0,...,0, 1) and e,=
(1, 0,...,0). The integral converges and defines a holomorphic function of s
when Res>(p—3)/2. It can be extended meromorphically to the whole com-

plex plane which has poles of order one at s—(p—1)/2e{—1, —3, —5,...}. We

put Z,=-p ((2s—‘lp 34 I, Then £, is defined for all complex number s

and it is easy to see that 2 is an intertwining operator of C*(G/P, L,) into C*(G/
H). Moreover one has the following lemma.

LEMMA 2.
P edn(Q) = dn(Q)o 2,.

We put #,={feC*(G/H); dn(Q)f=2(p—-1))"(s+(p—-1)/2)(s—(p—1)/
2)f}. Then we obtain

COROLLARY. 2, maps C*(G|P, L) into #.

Notice that K/M is canonically isomorphic to SP~1. We denote by A the
set of all integers or all non negative integers in case p=2 or p>3, respectively.
Then the zonal spherical function w,, with height m(m € A) is given by

wm(exp(ep—lxp—l,p)exp (ep—-ZXp—Z,p—1)"'exp(01X12))’
Fm+p—2, —m, (p—1)/2,(1 —cos0))2) (pz3),
eimés (p=2).

In the rest of this paper we assume that p=3. In the case p=2 the proof
is much easier. We denote by A, or A_ the set of all m in A which are even or
odd, respectively. Let 7 be the left regular representation of K on C®(K/M).
For any m in A we denote by I',, the subspace of C*(K/M) which is spanned by the
elements 7(k)w,, (k€ K). Let 7, be the restriction of = to I',,. Then, as is well-
known, {(t,;, I'm)}m€ 4 exhausts up to equivalence the set of all irreducible repre-
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sentations (of K) of class one with respect to M.
For any ¢ in C*(K/M) we put

0u(l0 = 4, TG0 Ok, (ke K),

where x, and d,, denote the character and the degree of t,, respectively. Let
#,, be the space of vectors in C*(G/H) which transform according to 7,., We
denote o, ,, =N ,. For any fin s, we put

1) = du| LRIk (€6,

Then it is obvious that f,, € #,, and that f=0 if and only if f,=0 for all m in
A.

LemMA 3. 1) For any ¢ in C®(K/M) the expansion ¢(k)= Y ¢,(k)
meAd

converges absolutely and uniformly on K.
2) For any f in 5 the expansion f(ka,)= Y. f.(ka,) converges absolutely
meAd

and uniformly on K.

This lemma is proved by the usual routine.

When Res is sufficiently large, the following lemma is an immediate con-
sequence of the fact that £, is an intertwining operator. By the analytic con-
tinuation we obtain

LemMMA 4. For any ¢ in C*(K/M),

(2P = P (med).
CoOROLLARY. For any ¢ in C*(K/M),

@.$)(ka) = (2$n) (kay)

converges absolutely and uniformly on K.
ProrositTioN 1. For any ¢ in I',, (me A),
(2,0) (ka,) = (P0,)(a)p(k) (keK, a,eA).
Proor. For any ¢ in I',, we put
bu(l) = | omigdm (ke K,

where dm is the normalized Haar measure on M. Then clearly we have ¢, =

P(e)wp.
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(2:9)(a,) = T'((2s —fD +3)/4) SK! <ke,, ae;> I(zs_p+l)/2¢(k) dk

= T = p ) )| <ken aiea> 4T DG k) dk

| <key, a,e;> | @s~P¥D12¢ (mk) dk

T T(Gs —p +3)/4) )k

= T = 5T | ke s> | ()

= T = A )| Skevaier> | SR wn b dk

= (2,0m) (a)(e) -

Since £, is an intertwining operator, we have

(2:9) (kay) = (2,0,) (a)d(k).

§4. K-finite Eigenfunctions

In this section we study the space 5, (m e A) by means of the separation
variables. Fix any fin 5#,. Then by definition

an(@)f = 5y (s = 25 1) (s +250)1-

On the other hand, from Lemma 1 we have

1 02 _ 0 dr(Q )
(@) (ka) = 5055 {2 + (o = Dthe 5 + L0 k).
Since dt,,(Qg)=m(m+ p—2)I, from the above formulas we get

02 _ 0 m(m+p—2)
{gr+ (o=t mdp D

(e 25 e 25 im0

Now we define F(k, t)=f(ka) and FH(k, t)=1/2{f(kkoa,)+ f(ka,)}, where
ko=Diag(—1, —1, 1,..., 1). For any ¢ in R let V¥ denote the subspace of s,
which is spanned by Ff(-, ©)(fe #,,). Then it is easy to see that V¥ is an
invariant subspace of s#,. Let M’ be the normalizer of A in K. Then M'=
MUkoM. We denote by o, the representation of M’ which is trivial on M
such that g,(kg)=+I. On the other hand it is clear that V} is contained in the
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induced representation from M’ to K generated by g.. It follows from the
Frobenius reciprocity law that Vi # {0} if and only if the restriction of z,, to M’
contains ¢ (which is equivalent to saying that 7,,(ko)w,,= + ®,). Since 7,(ko)®,,
=(—1)"w,, VE#{0} if and only if (—1)"=+1. For any fin s#,, and kin K,
we define Fk()=f(ka,).

Let us consider an ordinary differential equation

m(m+p — 2)
ch?¢

- _P_1>< P“'l)} =
(s 5 s + 5 F@®) =0
under the condition

@ F(—1) = (= D"F(@).

Then in the above we have proved that F%(f) satisfies the equation (1) under the
condition (2). We put x=th?t. Fix any solution F(¢) of the differential equation
(1) and we put

N L

u(x) = (1 — x)~@s+P-D/4F(x).

Then u satisfies the hypergeometric equation;
d?u du _
x(1 —x)W+ {c—(@+b+ l)x}E—abu—O,

where a=s/2—m/2—p/4+3/4, b=5s/2+m[2+p/4—1/4 and c=1/2. Thus we
conclude that F&(f) coincides, up to constant, with F,(f), where

ch 1~ @s+p-D/2F (% _m_p 3

s m
> itrIty

p_11 2)
- 2,th t (me4d,),
Fs,m(t)= 5
—(2s+p-1)/2 s _m_p Do S, m
cht p- thtF( 2 4+4,2+2

Z,th2)  (med).
It follows that F(k, £)=¢(k)F,(t) for some ¢ in 5#,. Thus we proved the
following

PROPOSITION 2. 5, is an irreducible K-module which is equivalent to
Ty
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Fix any m in A. Then by the corollary to Lemma 2, 2,0, € #,,. Hence
there exists a constant C,,, such that (Z?,w,)(a,)=C,,F, (1), where the constant
C;,m is given as follows:

Cs,m = (gswm) (ao)

= 230 (pT ((p = DT ((p = /DT ((2s — 2p + 5)/4)
n(p = 3T (2s —2m—p+5[HI(2s +2m +p + D[4

(meAd,).
_d
Cs,m - dt (gswm) (at) =0

_ =22 (p/T((p— D/2)L (p—2)/2)T (25 —p + 5)/4)
n(p—3)'I'(Q2s—2m—p+3)/HI'(2s +2m+p—1)[4)

(meA).

Now we assume the following

p 1 _p 1
(4) s+2+2§2Z and s 2+2€22.

ProposITION 3. Under the assumption (A), P, gives a K-isomorphism
of I, onto g,

Proor. In view of Proposition 2 we have only to prove the injectiveness.
For any ¢ in I',, Proposition 1 implies that

(2:9) (ka) = (2 0,) (a)D(k) = CsmF s m(DP(K).

Since F, () #0, 2, is injective if and only if C,#0. Using the above formulas
for C,,,, it is easy to check that C,,#0 under the assumption (4).

PrOPOSITION 4. Let s satisfy the assumption (A). Then there exists a
polynomial Pg such that |C,,|"* <Py(m) for all m in A.

Proor. For any m in A, we know that

_¢ L(@s —p +5)/4)
mT UPT((2s —2m —p + 5)[HIT(2s + 2m +p + 1)/4)°

G

where

c. = 2L (/DI ((p = D/ ((p = 2)/2)
d n(p— 3)! ’

On the other hand
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_m_p i) <_s_ m_p L)
r(2 I S YA T e

(= Dm2al(2s + 2m + p + 1)/4)
sint(2s —p+5)/4r((—2s +2m+p—1)/4) °

We put Qs(x)— H (s/2+x/2+ pl4+1/4—j), where g is the smallest

positive integer such that q > Res+1/2. Then it is easy to prove that there exists
a positive constant y, such that |C,,|™1|Qm)|"1<y, for all m in A,. For A_
we get a similar polynomial Q, and a constant y;. The proposition is now
obvious.

§5. Proof of the main theorem

First we need one more lemma.

LEMMA 5. Fix any f in ##,. Then for any polynomial P, XP(m)f,(ka,)
and 2ZP(m){(d/dt)f,(ka,)} converge absolutely and uniformly on K.

PrOOF. Let f be in &7, Then, since

—2>2={m(m+p—2)+(p_2_2)2}l

— 2
=(m+232)1

on I',, for any positive integer n we have

ol 1a | {2+ (2

= (m+252) 7o)

Qk +

27 e gran

On the other hand for any polynomial P there exists a positive number n such
that |P(m)|<(m+(p—2)/2)?". Applying [Qx+((p—2)/2)?]* to Lemma 3, we
conclude that Z'P(m)f,,(ka,) converges absolutely and uniformly on K. If we
replace f(ka,) by (d/dt)f(ka,), the proof is complete.

THEOREM. Under the assumption (A), the map 2, is a linear isomorphism
of C*(G/P, L,) onto #,.

Proor. In view of the corollary to Lemma 2 it is sufficient to prove that
2, is bijective. For any f in &, from Lemma 3 we have f(ka)=7Y f.(ka,).
The right hand side converges absolutely and uniformly on K. By Propositions
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1 and 3, for any m in A there exists a unique ¢,, in I',, such that
fu(ka;) = (2sdn) (ka,)
= (20m) (a) (k).

For any polynomial we have
3 B
= T [P0l + 3 [Pm)a(o
P O CRBICNETAC!

+ 3 1P| -2 @)

o)l e

It follows from Proposition 4 and Lemma 5 that there exists a polynomial Q
such that

S [Pm¢a()| S T 1Qm|1 £ + T 1Q0m) |- 18]
meAd meAd + meA -

Hence from Lemma 5 Z‘, P(m)¢,(k) converges absolutely and uniformly on

K. Using [6], we see that Zd)m(k) defines a C* function on K/M which we denote
by ¢(k). It is now obvious that 2,¢p=f, which shows that £, is surjective.
Suppose 2, =0 for some ¢ in C*(G/P, L;). According to Lemma 3, we expand
¢(k)=Y. ¢,(k). Then by the corollary to Lemma 4 0=2,¢=> 2.0,. Hence
by Lemma 3 2,¢,,=0 for all m in A. It follows from Proposition 3 that ¢, =0
for all m in A. Thus ¢ =0, which completes the proof of the theorem.

ReEMARK 1. The real hyperboloid of one sheet is an affine symmetric space
[1]. For the general affine symmetric spaces one can easily formulate an analogue
of the Helgason conjecture [3]. However our case is, essentially, the only case
that any C® eigenfunction can be obtained as an image of a C* section of L,.

REMARK 2. Our result can be proved by the method similar to that in [5]

(see [4]).
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