
HIROSHIMA MATH. J.
7 (1977), 743-768

On Weierstrass Points of Non-hyperellίptίc Compact

Riemann Surfaces of Genus Three

Akikazu KURIBAYASHI and Kaname KOMIYA

(Received May 16, 1977)

The purpose of this paper is, first, to determine the equations of compact
Riemann surfaces of genus three, considering these surfaces as coverings of the
Riemann sphere. We obtain Theorem 1 which asserts that the equations are given
by

y3 - j2(χ)y - VsO) = Q.

Here y2(X) is a polynomial of degree 3 or less than 3, and y3(X) is a polynomial
of degree 5 or 4. Both of them depend on Weierstrass points.

Next, we construct a basis of differentials of the first kind for these Riemann
surfaces. Using these results, we investigate Weierstrass points of these Riemann

surfaces. Our main interest is to determine Riemann surfaces which have exactly

12 Weierstrass points. The number 12 is the smallest one for all the non-hyper-
elliptic compact Riemann surfaces of genus three. We obtain Theorem 2 which
asserts that Riemann surfaces having just 12 Weierstrass points are exactly two

and these equations in homogeneous coordinates are given by

(1) x4 + y4 + z4 = 0

and

(2) x4 + y4 + z4+ 3(x2y2 + y2z2 + z2*2) = 0.

§ 1. Preliminaries

Given any point P on a compact Riemann surface of genus g (> 1), there are

exactly g orders which can be specified

1 = ni < n2 <•••< n3 < 2g

such that there does not exist any meromorphic function on the surface whose only

singularity is a pole of order nt (1 < i < g) at P.

These g orders are called the gaps at P. A point whose gap sequence con-

tains an integer greater than g is called a Weierstrass point.
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LEMMA! (Hurwitz [3]). For surfaces of genus 0 = 0 or g = ΐ there are

no Weierstrass points. If g>2 there always exist Weierstrass points. The

number N of Weierstrass points satisfies the inequality:

2g + 2<N<(g-l)g(g + 1).

If N is equal to 20 + 2, then the surfaces are hyperelliptic and vice versa.

LEMMA 2 (Schmidt [8]). Let {ut (1 <*<#)} be a basis of integrals of the
first kind on a compact Riemann surface R of genus g. Let u be an integral of
the first kind on R. Put

At =

~~dϊΓ

dug
dβug

du9

Then Au(dύ)g(β+ί)/2 is a differential form of degree g(g + l)/2, i.e., if t is another
integral, we have

Au(du) *(*+!>/* = At(dt)W+l»2.

We call this form the Wronskian of R. Let the divisor of the Wronskian of R
be

div {Au(du)9^9+ί^2} = miPi + ••• + mrPr.

Then P!,..., Pr are all Weierstrass points on R and we have

mi + +mr = (g- ΐ)g(g + 1).

LEMMA 3. Let R be a non-hyper elliptic Riemann surface of genus 3.
Let P be an arbitrary Weierstrass point on R. For the gap sequence of P there

are following two cases:

(1) Hi = 1, n2 = 2, n3 = 4,

(2) nί = 1, n2 = 2, n3 = 5

and the multiplicity mofP is one for the case (1) and two for the case (2).

PROOF. Since the multiplicity is given by the formula ([3], p. 408)

m = «i + n2 + n3 - g(g + l)/2 = nv + n2 + n3 - 6,

we have m = 1 in (1) and m = 2 in (2).
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§ 2. Equations of Riemann surfaces

Let R be a compact Riemann surface of genus three. We assume that R

is non-hyperelliptic. We shall give a canonical form of equation of R. By
lemmas in § 1, we know that there exist Weierstrass points on R. Let P be one of
them. Then there exists a meromorphic function on R which has P as an only

singularity of a pole of order three. We denote the function by x. The function

x is considered as a mapping of R onto the Riemann x-sphere. We see that R
is conformally equivalent to a three-sheeted covering surface over the Riemann
x-sphere, and we assume that the point P of R is over the point oo at infinity.
We denote the point by P^.

Let K be the field of meromorphic functions on R. Then K is an algebraic
extension of degree 3 over the rational function field C(x) such that [K : C(x)]
= deg(3P00) ( = 3). Let y be another function of K which has P^ as an only
singularity of a pole of order 4 or 5. Then we see that K = C(x, j) and we have
an irreducible equation in x and j; :

Here p0(x)9 Pι(x)9 PiW and Ps(x) are polynomials in x. We can assume that
PQ(X) is a non-zero constant, since y is integral over C[x]. Hence we assume
that PO(X) is equal to one and moreover we may assume that p^x) is equal to zero.
We rewrite the above equation

y3 - y'2(χ)y - raW =Ό

with polynomials y2 and y3 in x. Now, let t be a local parameter at P^. Then
we can express the functions x and y in

y = 1/ί4 or y = 1/ί5.

If y = l/t4, then we have y* = r12 and

y2(x)v = Γ3"'-4 +•••, y3(x) = Γ3»3 +....

Here W2= =degy 2W an<i n3 = degy3(x). We obtain that n2<2 and n3 = 4. If
y = l / t 5 , then we have y3 = r15 and

y2(x)j; = r3"'-5'*-", ?3(*) = ^"3M3 +-•

We obtain that n2<3 and «3 = 5. Thus we have the following theorem:
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THEOREM 1. // the gap sequence at P^ is {1, 2, 5}, then the equation of

R is given by

(*) y* - y2(x)y - 73(x) = 0,

where

(*) 72 (*) = 0Q*2 + 01* + 02> 73 0) = *4 + M3 + • M2 + *>3* + &4'

// the gap sequence at P^ is {1, 2, 4}, then the equation of R is given by (*) wiί/i

(**) y2(x)

O/ course, in both cases, the coefficients a's and b's must satisfy certain

relations which come from the fact that R must be of genus 3.

Now, by the formula of Riemann-Hurwitz:

2g - 2 = n(20' - 2) + V

we have 7= 10. Here V means the total sum of all ramification indices. The

Newton polygon shows that the ramification index of P^ over x = oo is two.
Hence we have the following five cases:
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Fig. 1.
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It is convenient to normalize the positions of ramification points as follows :

oo, x0 = 0, *! = 1, x2 = tί9...9 XΊ = t6.

It is worthwhile to express above coefficients of y2(x) and y3(x) in terms of ίlv.., ts

and ί6, since the number of parameters t is equal to the dimension of the space
of moduli of compact Riemann surfaces of genus three.

First, we shall investigate in case (i). If the gap sequence at P^ is {1, 2, 5},
then we have

y3 - y2(χ)y - 7aW = °

with (#) and the discriminant of the equation is given by

J(x) = 4y!(x)-27yi(x).

Then, x = 0, 1, tί and t2 are zeros of A(x), and y has triple roots at these points.
Therefore, we have

&4 = 0, a2 = 0,

! + &!+•••+ fe4 = 0, α0 + αi + «2 = 0,

*ί + Mi + - + ft4 = 0, a 0fι + fl^! + a2 = 0,

if + M! + - + b4 = 0, α0'i + 01^2 + a2 = 0.

Hence we have a0 = aί = α2 = 0 and the equation comes to be

(*) y^x(x-ί)(x-ti)(x^t2y.

If the gap sequence at P^ is {1, 2, 4}, then we have

(**) y3 - y2(χ)y - 7aW = °

with (SS). By the same reasoning as above, we have

y3 = x(x - ϊ)(x - t ί ) ( x - t2)(x - c)

with a constant c. Here c must be equal to one of these values 0, 1, tί and t2,
since otherwise this equation does not represent a Riemann surface of genus
three.

Secondly, we shall investigate in case (v). Let the gap sequence at P^ is
{1, 2, 5}. Then we have

for the discriminant and we obtain the following relations :
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(1) 4αl- 2761 = 0,

(2) 4(α0 + a, + α2)
3 - 27(1 + bi+ + ί>4)

2 = 0,

(3) 4(a0tl + aίtί + a2Y-2Ί(tϊ + b1tl+ .+ b4y = Q,

(8) 4(00fi + <M6 + 02)
3 - 27(£ + Mi 4- - + i>4

2) = 0.

We consider these relations in more detail. Let x = τ be a point of {0, 1, ί lv . ., ί6}.
We must have a point of R whose ramification index is just one over the point τ
over the Riemann sphere. Let the double root of y at τ be β and put X = x — τ,

Y=y — β Then we have

y3 + 3βY2 -

- {X4 + (4τ + fci)*3 + (6τ2 + 36^ + b2 + a0β)X2

+ (4τ3 + 3V2 + 2ί?2τ + b3 + (2α0τ + ajjg)^} = 0.

If jS = 0, then the Newton polygon shows that if

4τ3 + 3V2 + 2ί>2τ + b3 * 0,

our case reduces to (iv) and if

4τ3 + 3fc1τ
2 + 2b2τ 4- b3 = 0,

our case reduces to (iv) with some restrictions. If β^O, then the Newton polygon
shows that if

4τ3 + 3V2 + 262τ + b3 + (2a0τ + ajβ = 0,

we must have

2α0τ + a± = 0

and

6τ2 + 3^1 + ί?2 + α0j8 = 0.

Hence we have again 4τ3 + 3fc1τ
24-2ί?2τ + fe3 = 0, and so our case reduces to (iv).

Therefore, in our case we must have generally

β Φ 0 and 4τ3 + 3ί?1τ
2 + 2ί?2τ + b3 + (2a0τ + ajβ * 0.

Let the gap sequence at P^ is {1, 2, 4}. Then we have

Δ(x) = - 21x(x - l)(x - tj(x - ί2) ..(x - t6)(x - αι)(jc - α2)

for the discriminant. Here α l 5 α2 are suitable complex numbers. We have, first,
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the following relations :

(1) 4al - 21b\ = 0,

(2) 4(00 + a, + a2 - 27(1 = 0,

(3) 4(α0ί
3

(8) α3)
3 - 21(t5

6

= 0,

= 0.

We consider these relations in more detail. Over the point τ on the Riemann

sphere we must have a point of R whose ramification index is just one. Let the

double root of y at τ be β and put X = x — τ, Y=y — β. Then we have

Y33j8Y2 -

- {X5 + (5τ

+ (10τ3 +

+ (5τ4 +

= 0.

- (3α0τ

(10τ2

- (3α0τ
2

bιτ + b2

3b2τ
2 -f 2ί?3τ (3α0τ

2 a2)β)X}

We claim that α x is equal to α2. In fact, if α x ^α 2 then by the Newton polygon

we see that there are ramification points over αx and α2. This is a contradiction.

Therefore, we have

(9)

(10)

α2α + α3)
3 - 27(α5

α2α + α3)
2(3α0α

2

4(α0α
3 + α t α

2l'(α) = 0,i.e.

12(α0α
3 + α x α

- 54(α5 4-

We must remark here y2(α)^0 (consequently

If j5 = 0, then the Newton polygon shows that if

5τ4 + 4ί?1τ
3 + 3ί?2τ

2 + 2b3τ +

our case reduces to (iv) and if

b5)
2 = 0,

α2)

64) = 0.

5τ4
362τ

2'

0,

4 = 0,

our case reduces to (iv) with some restrictions. If jS^O, then the Newton polygon

shows that if
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5τ4 + 4b^3 + 3b2τ
2 + 2b3τ + b4 + (3α0τ

2 + 2αxτ + a2)β = 0,

we must have

300τ
2 + lap + α2 = 0

and

10τ3 + 4bxτ
2 + 3b2τ + b3 + (3α0τ + ajβ = 0.

Hence again we have 5τ4 + 4b1τ
3 + 3b2τ

2 + 2b3τ + b4 = 0, and so our case reduces
to (iv). Therefore we must have generally

β * 0 and 5τ4 + 4&tτ
3 + — + b4 + (3α0τ

2 + 2avτ + α2)j8 ^F 0

in our case.
To express α's and b's by ίlv.., ί6 we must investigate the Jacobian of (1),...,

(10). Namely, put

θ9 aί9 a29 a3, bΐ9 b29 b39 b49 b59 α, τf)

= 4(α0τ
3 + a^τ\ + β2τ, + α3)

3 - 27(τf + brf + - +

for τι=0, τ2 = l, τ3 = ίlv.., τ8 = ί6 (l<i<8), and put

F9(α0, α l 5 α2, α3, 6 l9 b2, 63, &4, bS9 α) = J(α),

^10(^0* a^ ai* a^ bι» fe2» &3> b49 b59 α) = J'(α).

Then we see that the Jacobian

D(aθ9...9a39 bί9...9bS9 α)

cannot be identically zero. Thus we can express α's and &'s by ίlv.., t6 at those
points which are not zeros of the Jacobian. To investigate α's and b's or f lv . ., t6

on the Teichmϋller space is interesting. However we will not discuss this problem
in this paper.

§ 3. Weierstrass points

We take Riemann surfaces defined by

y* - y2(χ)y - 7aW =
with (K) in § 2. The discriminant A(x) is given by

A(x) = 4yl(x) - 27ri(x)
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and the zeros of A(x) are common zeros of

/(*, y) = y3 - y2(*)y -

Then we have

divφ = PO + P! + Pfl + - + Pί6 - 8P,,,

div(dx) = PO + P! + Pfl + ••• + Pί6 - 4P.,

= PS1 + PS2 + PS3 + PS4 - 4P^

Here, Pό is the regular point over x=0 and sl9 s2, s3 and 54 are zeros of the
polynomial γ3(x).

Put

ωl = dx/fy, ω2 = xdx/fy, ω3 = ydx/fr

Then ωl9 ω2 and ω3 are differentials of the first kind and are linearly independent
over C, i. e., a basis of differentials.

If we take

y3 - ι>2(χ)y - ?3W = o

with (##) in § 2. The discriminant A(x) is given by

A(x) = 473(X) _ 27yl(x)

= _ 21x(x - l)(x - tj(x - ί2) - (x - f6)(x - α)2.

For x = α, there is a double root y=β. Then there are two points Pα, P'Λ over α
which correspond to these values x = α, j = jS. We denote the third point by
P«. Then we have

divφ = PO + Pi + Pfl + - + P,6 + Pα + P; -

div(dx) = PO + P! + Pfl + - + Pί6 - 4? ,̂

div(j; - ft) = Pα + P; + PK1 + PK2 + PK3 - 5P,,.

Here κί9 κ2 and κ3 with a double root α are five roots of /(x, j8)=0.
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Put

= (x - ai)dx/fy, ω2 = (x - <x)2dx/fy, ω3 = (y- β)dxjfy.

Then ωj, ω2 and ω3 are differentials of the first kind and are linearly independent
over C, i. e., a basis of differentials.

In the former, i.e., in the case that the gap sequence at P^ is {1, 2, 5}, the
Wronskian is

1/Λ

Here

*//,
(fy-xf'y)lf2y

ylf,

G3/f*

I = -/;/, + 2/;2>

G3 = (y"fy - yfW, - 2(y'fy - yf ',)?,.

Then by a simple calculation, we have

W=y"f*(dxlfy)θ

and we have

y'fϊ = (9y372 + 372y'ί - 6γ'2y'3)y2

y'2 - 6γ'3
2 + 9y3γ'3)y

In the latter, i.e., in the case that the gap sequence at P ,̂ is (1, 2, 4}, the

Wronskian is given by

W =

(y -
K3(χ, y)/f

Here,

K2(x,

H2(x,

K,(x, y) = fy - (x -α)/;,

K2(x, y) = 2(x - α)/, - (x - κ)2f'y

(dxf.
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K3(x, y) = y'f, -(y- β)f'y,

and

//2(x, y) = (2f, - (x - αp/PΛ - 2(x - «)(2/, - (x -

Then by a simple calculation, we have

W={(x- α)V - 2/(x - α) + 2(y - β)}f3

y (dx/fy)<-

and we have

{(x _ α)^" - 2/(x - α)

= (x - «)

9γ'3γ2)y+ (3y2y3y2

EXAMPLE 1. y*-y-x4=Q.

We have ω1 = dxlfy, ω2=xdx/fy, ω3=ydx/fy, and the Wronskian is

= 12x2(j2 +

Hence we obtain

div W = 24Pn + 2(P0 + Pi, + PS - 3PJ + 2{div(j + i) + div(y - ί)}

= 2POT + 2(P0 + P'0 + PS)

i + ;P2 + iP3 + A) + (-, PI + -A + -ίPs + -, P4)}

Here ,-Pj,..., jP4 are points over x1;..., x4 which are roots of the equation ί3 — /
— x4=0 and _ f ί,..., _ fP4 are points over Xj,..., x4 which are roots of the equa-
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tion — ΐ3 + ΐ — x4 = 0. Obviously these points are distinct from each other.

Therefore the number of Weierstrass points is exactly twelve.

EXAMPLE 2. y* - xy - x5 = 0.

We have ω1 = xdx//r ω2 = x2dx/fy9 a>3 = ydx/fy9 and the Wronskian is

= 6x\6x3y2 - xΊy + y + 2x4) (dx//y)
6

and we have

divCQ = PO + Q! + - + Q7 + Pα + PO - 10Pβ,

div(dx) = PO + Qi + ••• + Q7 - 4P,,,

div(x) = 2P0 + Pα - 3P,.

Hence we see that

We must evaluate div (όx3^2 — x7y + y + 2x4). From equations

y3 — xy — x5 = 0

and

6x3y2 - x7y + y + 2x4 = 0

we obtain

xs(x21 - 289x14 - Six1 + 1) = 0.

Hence by considering the Newton polygon at x=0, we have from the part x5

PO + 4Pα - 5P,,

for the divisor. From the part (x21 - 289x14 - Six7 + 1) we have

for the divisor. Here P' (l<ι<21) are roots of the equation concerned.
Thus we have

div^= P^ + PO + Pα + P1 +-.+ P21.

These points {P's} are distinct from each other and we see that the number of
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Weierstrass points of this Riemann surface is exactly 24.

REMARK. The Riemann surface defined by

y3 — xy — x5 = 0

is conformally equivalent to the surface defined by

Y7 - X(X - I)2 = 0

which has the group of automorphisms of order 168 [5].

§ 4. Extremal Riemann surfaces

In order to determine Riemann surfaces which have exactly twelve Weierstrass
points we have to prepare several propositions.

PROPOSITION 1. Let R be a non-hyperellίptic Riemann surface of genus
three. Assume that there exist distinct four points P;(l<j<4) on R which
have following three conditions:

(α) Each 4Pj(l<j<4) is a canonical divisor, i.e., each PJ (l<j'<4) is
a Weierstrass point whose gap sequence is {1, 2, 5}.

(β) The divisor (P1 + P2 + P3 + P4) is not a canonical divisor.
(y) The divisor 2(P1+P2 + P3 + P4) is linearly equivalent to 2K. Here K

is a canonical divisor.
Then R has three elliptic hyperelliptic involutions σ f (l<i<3) which have

following two properties:
(1) Each σt (l<i<3) is a non-trivial substitution of the set P^ (l<j<4).
(2) If one of σ's fixes a point PJ9 then the other two σ do not fix any ofPj

PROOF. Let φ: R-»J(R) be a canonical map of R into its Jacobian variety.
Let c e J(R) be the vector of Riemann constants. Put

Λ = φ(P, + P2) + c, f2 = φ(P3 + P4) + c.

Then /! and /2 satisfy the assumption of the theorem of Accola [2, Part III, 6,

Th. 5, p. 88] (i)Λ* ±/2, (ϋ) 2/i=2/2*0, (iii) 1(2/0, (/ι+/2)l = l, (iv) the theta
function vanishes at /t and /2. Now, we shall prove only (iii), since the others
are almost trivial. Put

ί = 2/ l ΞE2/2, s = Λ + / 2 , e = <K2PJ + c.

Then e + t = φ(2P2) + c. Theta characteristics^] and[e + f]are odd, since /(2PJ
= /(2P2) = l. We see that [e + s] is even. Indeed, assume that it is odd. Then
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there exists a positive divisor A on R such that

e + s = </>(A) + c9 degA = 2 and /(A) = 1.

On the other hand we have

e + s = φ(3Pl + P2 + P3 + P4 - K) + c.

Hence we have P1+A~P2 + P3 + P4, and we have / (PX+A) = 2 since R is non-
hyperelliptic. Therefore there exists a point Q such that Q + Pi + A is a canonical
divisor. Hence we obtain A = Q + Pj and so it follows Q = Pι This is a con-
tradiction. By the same way we can show that \_e + ί + s] is also even. There-

fore we obtain

1(0, (s)l = IMI \\β + ί]| \\e +

which shows that half periods (t) and (5) are syzygetic.

Thus we can conclude that R is elliptic-hyperelliptic.

Next, we shall construct elliptic-hyperelliptic involutions of R following
Accola [1]. It is well-known that for the syzygetic subgroup of degree 2, Γ
= {0, (0, (s), (ί + s)}, there exists a unique odd characteristic \_d~\ such that [d],
[d + ί], [d + s] and [d+f + s] are odd characteristics. For the proof see [7, II,

2, Th. 13, p. 40]. We consider four theta characteristics [/J, [/2], [d] and

[d + s] and we construct four complete linear systems of R5 over R, which are
half-canonical and fixed point free. Here, R5 is a Riemann surface of genus

five, which we construct as follows: It is easy to see that there exist Qt and Q2

different from P l5 P2 such that the divisor (Pj + P2 + Qt + Q2) is canonical. There
also exist Q3 and Q4 different from P3, P4 such that the divisor (P3-hP4 + Q3

+ Q4) is canonical. Hence we have

2(P, + P2) ~ 2(Q, + Q2), 2(P3 + P4) ~ 2(Q3 + Q4)

and

+ P4) + t = φ(Q3 + Q4).

Therefore, there exists a function h whose divisor is 2(P1+P2) — 2(Q1 + Q2).
Adjointing ^h to the function field of R we obtain a function field of a Riemann
surface whose genus is five [4]. We denote the Riemann surface by R5 and

denote by π the canonical projection of R5 to R. Then we see that R5 is un-

ramified and π-1(Pι+P2)~7ϋ-1(Qι + Q2) and π-1(P3 + P4)-π~1(
Hence by a simple consideration we see that

/(π-KPi +P2)) = 2, degπ-K?! + P2) = 4
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and π~1(P1+P2) is a half canonical divisor on R5 and the complete linear system

|π~1(P1 + P2)| is fixed point free. Similarly, we see that the complete linear sys-
tem |π~1(P3 + P4)| is half canonical and fixed point free. Since [d] and [d + s]
are odd characteristics and 2d = 2s = 0, there exist T l 9 T2 such that d = φ(Ύί+Ύ2)
+ c and T3, T4 such that d + s = φ(Ύ3 + T4) + c. Furthermore, by the same reason,

there exist Sj and S2 different from Ύί and T2 such that d + t = φ(S1 + S2) +
 c and

there also exist S3 and S4 different from T3 and T4 such that

+ c. We see that π-1(T1+T2)-π-1(S1 + S2) and TT
Therefore, as before, we see that the complete linear systems |π~1(T1+T2)|,

|π~1(T3 + T4)| are half canonical and fixed point free. Then, put

η, = φ'(π-\(Pι + P2)) + c', η2 = φf(π^(P3 + P4)) + c'

η3 = ψ'ίπ-KT, + T2)) + c', η4 = φ'(π-\Ί3 + T4)) + c1 '.

Here φ' and c' have the same meaning in R5 as φ and c in R. It is easy to see

that [f/i], . , [>/4] are even theta characteristics such that [ηi + ̂ 2 + ̂ 3 + ̂ 4] = 0
Therefore applying the theorem of Accola [1, Th. 2, p. 12] to our case, we see
that R5 is elliptic-hyperelliptic, i.e., we have an elliptic-hyperelliptic involution
σ on R5. Since π is a fixed point free involution, again by the theorem of Accola
[2, Prop. p. 86] we see that π and σ commute, and so we can construct an involu-
tion σ on R.

Similarly, we have the other two involutions on R, starting with

+ P3) + c, f'2 = φ(P2 + P4) + c

and

/ί = φ(P, + P4) + c, fl = φ(P2 + P3) + c.

It is easy to see that these involutions satisfy the properties (1) and (2) of Propo-

sition 1. Here we have to notice that any group of automorphisms which fix

a point is cyclic.

PROPOSITION 2. Under the same assumptions and notations of Prop. 1,
let σί9 σ2 be involutions in Prop. 1 such that they do not fix any Pj. Then we

have

σίσ2 =

PROOF. Assume that each of divisors

T4 + T 4; Pt + P4 + T5 + T'5, P2 + P3 + T6
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is canonical. Since R is non-hyperelliptic, we see that at least one of T,-, T^

(1 <j,k< 6) is different from P£ (1 < i < 4).
We see that Pf, TJ9 Tk are fixed points of (σ1σ2)

4. In fact, we may assume

that

σ^PJ = P2, σ2(PJ = P3, σ,(P3) = P4, σ2(P2) = P4.

Then we have

Hence

+ P + T + T) = P + P2

Since this is canonical, this is linearly equivalent to (P1+P2 + T1+T/

1). There-
fore, we have (σ1σ2)

2(T1) + (σ1σ2)
2(T;) = T1 + T1. Thus, we have

= T15 (σ1σ2)
4(Ti) = TJ.

Similarly we have

(σισ2)
4(τ;) = τ; (i < ί < 6) .

Therefore, by the theorem of Lewittes [6, Th. 6, p. 746], if one of Ty, T^

is not a Weierstrass point then we have (σίσ2)
4'= 1. However in this case we have

(tf^2)
2=l, i.e., σ1σ2 = σ2σ1. In fact, assume that (σ1σ2)

2^l. Since (<Ti<72)
2

is an involution which fixes four Pf (l<ί<4), the genus of R/<(σ1σ2)
2> is zero

or one. Since R is non-hyperelliptic, R/<(σ!σ2)
2> must be elliptic. Then the

divisor (P1 + P2 + P3 + P4) must be canonical. This is a contradiction. There-

fore if (σ1σ2)
4=^l, then all Pf, Ty, T^ are Weierstrass points and we see easily that

they are different from each other. However this conflicts with the fact which
asserts that the number of fixed points of a non-trivial automorphism is at most
6 ( = 20 + 2) [3, p. 405].

Thus we can conclude that

PROPOSITION 3. A non-hyperelliptic Riemann surface of genus three, R,
which has two elliptic-hyper elliptic involutions σί9 σ2 such as σίσ2 = σ2σi

is given by

x4 + y4 + 2ax2y2 + 2bx2 + 2cy2 + 1=0,

where a2, b2, c2^! and l + 2abc-a2-b2-c2ή=Q.

PROOF. We know that the fixed points of σ t are four. We denote them

by Q[1} (l<ϊ<4). Then σ2(Qp>) = Qί 1) O'^Λ If we put σ3 = σισ2, then σ3
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is an elliptic-hyperelliptic involution. In fact, put G = {1, σί9 σ2, σ3}. Then
the map: R-+R/G is an elementary abelian covering of type (2, 2). R/G is the
Riemann sphere and the three intermediate Riemann surfaces are all elliptic. Let
fixed points of σ2, σ3 be Q[2), Q^3) (l<i<4) respectively. We see that
4 4 4

Σ Qi1}, Σ Q[2)» Σ Qi3) are all canonical divisors. Hereby, we take two func-
i=l i=l i=l

tions x, y on R as follows :

div(x) = Σ Qί1} - Σ Qί3), divGO = Σ Qί2) - Σ Qί3)

i=l ί=l t=l i=l

Then we see easily that

σι(x) = - x, σι(y) = y, σ2(x) = x, σ2(y) = - y.

Consider the function space

L(4 |ΣQί3)) = {/I div(/)> -4ΣQI 3 )}.

The dimension of L(4Σ Qί3)) is equal to 14. Therefore, there exists a linear
i=l

relation in the set {xlyj\ 0< i, j <4, i+j<4} and we obtain finally for an equation
of R

/(x, y) = x4 + y4 + 2ax2y2 + 2fex2 + 2c>^2 + 1 = 0

with constants a, b and c. Here we have α 2— 1^0. In fact, put u = x2 + ay2

+ b. Then our equation becomes to be

u2 + (1 - 02)j;4 4- 2(c - ab)y2 + (1 - b2) = 0.

Therefore, if α2 — 1=0, then the Riemann surface whose function field is C(u, y)
is the Riemann sphere and our Riemann surface R becomes to be a covering sur-
face of degree two over the sphere. This is a contradiction. Similarly, we have
b2-1^0 and c2-1^0. Since /(x, y) must be irreducible, we have moreover

REMARK. A curve defined by the equation in Prop. 3 with conditions
stated there is irreducible, non-singular and of genus three. Moreover it is

non-hyperelliptic. In fact, put div(x)= Σ Qί1}- Σ Qi3) Then we can put
4 4 i=l ί=l

div(y)=Σ Qi2)- Σ Ql3) Let τ be an automorphism of R such that R/<τ>
i=l i=l 4 4

is the sphere. We see that τ(Σ Qlfc))= Σ Qifc) (l<fc<3) [4], and so we have
i=l i=l

τ(Q j*)) = Q<*> (f ̂  ). Hence x, y e C(R/ < τ > ). This is a contradiction.

PROPOSITION 4. Let R be a non-hyper elliptic Riemann surface of genus
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three. Assume that R has just twelve Weierstrass points. We denote them by

PI (l<ί<12). Then, reordering if necessary, we have either

(1) Pl+P2 + P3 + P^P5 + P6 + PΊ + PS9P9 + P10 }-Pil+P12 are all canonical
or

(2) P1 + P2 + P3 + P4 is not canonical but 2(P1+P2 + P3 + P4)~2K.

PROOF. For 1,7 = 1, 2,..., 12, put

tu = φ(2(Pi + Pj) - K) (i<j).

These non-zero half periods on J(R) are 66 in all. However there must be 63
( = 22f i r— 1) non-zero half periods on J(R). Therefore, there must be the same
points in these 66 ttj. Now we may put

2(Pι + P2) ~ 2(P3 + P4), i.e., 2(PA + P2 + P3 + P4) ~ 2K.

Hence we have

There exist the same elements in {ttj} besides these elements. Indeed, assume

that there were no more the same elements in {t}. Put

We see that k* -0(2P£) (1</<12). Put , ti = φ(2Pi) + k (1 <r<12). These
are non-zero half periods and different from each other. Therefore they must
coincide with a part of {f f j }. Then, put t6 = tu. We see that / and 7 are not
equal to 1, 2,..., 6 and so we may put t6 = tΊ <8. Similarly, we may put t9 = tίOΛl.
Finally, put t12 = tίj. Then, we see that i and 7 are not equal to 1, 2,..., 12.
This is a contradiction. Thus, following only three cases can take place:

(α) 2(Pί + P2) - 2(P3 + P4), 2(P5 4- P6) - 2(P7 + P8) ,

(β) 2(P, + P2) - 2(P3 + P4), 2(Pi + P5) - 2(P6 + P7) ,

(7) 2(Pt + P2) - 2(P3 + P4), 2(PX + P2) - 2(P5 + P6) .

12
In case (α), we see that 2(P9 + P10 + P11+P12)~2K, since we have 2Σ P f~6K.

i = l
Hence either (1) or (2) occurs. In case (y), we cannot have at the same time

P! + P2 + P3 + P4 - K and Pj + P2 + P5 4- P6 - K.

Therefore (2) occurs. In case (/?), we must carry our investigation further. Con-
sider following 70 divisors
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2(P, 4- Pj + Pfc), 1 < i < 7, 8 < j < k < 12.

Since ^Pj + Pj + P^^SK, we see that there must be linearly equivalent elements
in them. Therefore, (1) or (2) or the following case (*)

2(Pι + P2 + P3 + P4) ~ 2K,

2(Pi + P5 + P6 + P7) - 2K,

2(P2 + P5 + P8 + P9) ~ 2K,

occurs. To study case (*) put

tu = φ(2(Pi + Pj) - K), 5 < / , 7 < 1 2 ,

sijk = φ(2(P5 + P; + P; + Pfc) - 2K), 6 < / < < fc < 12.

If some of them coincide or some of them are equal to zero, then case (*) becomes

(1) or (2). Therefore it remains to consider the case that these 28 ty and 35 sijk

are all the non-zero half periods on J(R). Then, since tij9 for example, is a half

period, ί3}6 must coincide with one of these 28 ί0 and 35 sίjk and so we are led to

(1) or (2) or, for example if it is equal to ίg 10, 2(P3 + P6-f P8 + P10)~2K. Then
we have 2(P4 + P7 + P9 + P10)^2K by adding 2(P3 + P6 + P8 + P10)~2K to (*).

Further we see that

PI + P2 + P3 + P4, PI + P5 + P6 + P7, P2 + P5 + P8 + P9,

P3 + P6 + P8 + P10, P4 + P7 + P9 +-PIO.

are not all canonical. Thus, we are led to (2).

Now we are in position to prove the following theorem :

THEOREM 2. Let R be a non-hyper elliptic compact Riemann surface of

genus three. Assume that R has exactly twelve Weierstrass points on it. Then

R is given by

(1) j3 - y - x4 = 0

or

~(2) x4 4- y* + ~ x2y2 + - (x2+ y2) + 1 = 0 .

REMARK. (1) is birationally equivalent to

(Γ) x4 + y* = ί

and (2) is birationally equivalent to
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(2') x4 + y4 + 3(x2y2 + x2 + y2) + 1 = 0.

It is easy to see that the former has exactly 96 automorphisms and the latter

has exactly 24 automorphisms.

PROOF OF THEOREM 2. By Proposition 4, our proof is divided into two

cases :

Case (1): We take Pt instead of P^ in §2. There exists a function x such

that

Then as we see in § 2 the equation of R is given by

f(χ> y} = y3 - 72 (*)y -
72(x) = a0x

2

y3(x) = x4 + M3 + b2x
2 + fc3x + b4.

Consider the Wronskian of R. Then we have

div(//J) + 6dίv(dx//y) = 2ΣPι

Here div (Ac//,) = 4?! . Hence we obtain

On the other hand, there exist functions

such that

άίv(A±x + 5i); + CO = P5 + P6 + P7 + P8 - 4P15

+ B2y + C2) = P9 + P10 + PH + ?ι2 - 4

with suitable constants X's, 5's and C's. Here we must notice B&^Q. There-
fore we obtain

y"f* = x2(^iX + B,y + Cx)
2(^2x + B2y + C2)

2.

We shall express both sides of this equation by the linear combinations of a basis
of the function space L(22PX);

{*y 0 < i < 7, 0 <j < 2, 3i + 4; < 22} .
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On the left, we have

+ (3727273 -2727273 + fir?).

On the right, we have

x2(AlX + Bty + C,)2(,42x + B2y + C2)
2

= x2{BΪB2

2y2 + B%AlX + Ct)
2 + B\(A2x + C2)

2

3 + 2B1B2(B2(Aίx + Ct) + B^x + C2))y2

+ 2(Atx + Cί)(A2x + C2)(B2(AtX + d) + B^x + C2))}y

+ x2{2B1B2(B2(A1x + d) + Bt(A2x + C2))y3

+ (ΛίX + Cv)
2(A2x + C2)

2} .

Comparing the coefficients of both sides we obtain

2BiB2(B2Aί + B,A2} = 0 (in x7) ,

BlB2

2 = 12, ΊSAi = bιB\Bl (in x6^ x5};) .

Hence we have

B2AV + B±A2 = 0 and b± = 0.

From the coefficients of x3y2 we have AiC2 + A2C1=Q. Hence we have

a0ai = 0 (inx5).

Now, if α0 = 0, then we have AίA2 = Q (in x4j2). Hence we obtain

b2 = 0, B2Cι + B±C2 = 0 (in x4y, x6).

Therefore,

aί = 0 (in x4), 2?3 = fc4 = 0 (in x3y, x2};) .

Thus for the equation of R we have

y* -a2y -x4 = 0 (α2^0).

It is easy to see that this is birationally equivalent to the Riemann surface defined
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by

y3 - y - x4 = 0.

If «! =0, then we have ί>3 = 0 (in x3y) and the equation becomes

f(χ, y) = y3- w2y - w - (*4 + M2 + 64) = o.
We may put the coordinates of P, (0, ft) (2 < i < 4). Then

Therefore, for i = 2, 3 and 4 the equation

/(x, ft) = - x* - (floft + fr2)*2 = 0

has x = 0 as a quadruple root. Thus we have

α0ft + 62 = 0 ( 2 < * < 4 ) .

Hence we have a0 = b2 = Q and our case is reduced to the former.

Case (2): By Propositions 1, 2 and 3 we have

/(x, y) = x4 + y4 + 2ax2y2 + 2bx2 4- 2cy2 + 1 = 0

for the equation of R.

First, we have to remark following two properties:

(if) A necessary and sufficient condition for Q^3) (1 < k <4) to be Weierstrass
points is b = c = 0.

In fact, if we put u = l / x , v = y/x, then the equation comes to be

g(u, v) = u4 + v4 + 2cu2v2 + 2bu2 + 2av2 + 1 = 0 .

We may assume that the coordinates of Q^3) is (u, ι/) = (0, ak) (i<k< 4). Since
gu(Q, αk) = 0, w = 0 must be a quadruple root of g(u, αk) = 0. Hence we obtain
b = c = 0, and vice versa.

By the same way, the necessary and sufficient condition for Q^1} (l</c<4)
to be Weierstrass points is α = 6 = 0 and for Q^2) (l<fc<4) to be Weierstrass

points is c = a = 0.

(H) A necessary and sufficient condition for one of Q£1} (1<A:<4) to be
a Weierstrass point is a2 + b2 — 2abc = Q.

In fact, let the coordinates of Q^l) be (0, β). Then since x = 0 must be a
quadruple root of/(x, β) = 0, we have

β4 + 2cβ2 + 1 = 0 , aβ2 + b = 0.
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Hence we have a2 + b2-2abc = Q9 and vice versa.
By the same way, a necessary and sufficient condition for one of Q^2) (1 <k

<4) to be a Weierstrass point is a2 + c2 — 2abc = Q and for one of Q(3} (1 </c<4)
to be a Weierstrass point is

Now we shall prove Theorem 2.

First, assume that for some i (l<i<3), Q^0,..., Q4

n are Weierstrass
points. For example, if ί = 3, we see that b = c = Q by (#) and the equation comes
to be

Y4 = X4 + 2aX2 + 1

by a suitable birational transformation and by the standard method used in § 3,
we see that for the Wronskian of R

W= (aX4 + 3X3 - a2X2 + a)(dX)6/Y16.

To have just twelve Weierstrass points it must be a = ± 3 and we have

f(x, y) = x4 + y4 ± 6x2y3 + 1=0.

It is easy to see that this is birationally equivalent to

χ4 + y* = 1, i. e., y3 - y - x4 = 0.

Secondly, we shall show that the other cases are reduced to the case (It) or
to the case where we have a = ± 3/5 and b2 = c2 = 9/5. Now let P be a Weierstrass
point whose gap sequence is {1, 2, 5} and is not a fixed point of any of σt (l<i

4

<3). Since 4P~ΣQ£3), there exists a function λx + μy + v such that 4P —
4 k=l

Σ Qfc3) = div(ybc + μy + v). By the assumption of P we may assume that λμv
k=l
Φθ. Hence, we rewrite

4P - Σ Q13) =
k=ι

Put

F(x)=/(x, -(λx+l)/μ)μ*

= A0x
4 + 441x

3 + 2A2x
2 + 4A3x + A4.

Here

A0 = λ4 + μ4 + 2aλ2μ2, A, = λ (λ2 + aμ2) ,

A2 = 3λ2 + aμ2 + bμ4 + cλ2μ2,
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A3 = λ(l + cμ2\ A4 = 1 + μ4 + 2cμ2.

Since the zeros of λx + μy+l are only P, F(x) must have a quadruple root in x.

Hence we have

3AI - A0A2 = 0 (1), A1A2-3A0A3 = 0(2),

Put l = λ2, m = μ2. From (2)

9ί(l9 m) = - 2cl2 + (ab - 3c)m2 + (b - Sac)lm - 2al + (a2 - 3)m

= 0 (4).

From (1) x A3 - (3) x 3Al9

(3a - bc)m2 + (3 - c2)lm + 2cl + (50c - fc)m + 2a = 0 (5) .

Use y instead of x. Then we have

ί, m) = (ac - 3b)l2 - 2bm2 + (c - 5αh)/m + (α2 - 3)/ - 2αm = 0 (4r) ,

(3α - bc)l2 + (3 - fc2)/m + (Sab - c)l + 2bm + 2a = 0 (5') .

If (4) = (4;), then by a simple calculation we have f? = c = 0. However this

conflicts with our assumption by (#). Therefore we may assume that (4)^(4;).
If (5) = (5/)> by a simple calculation we have b = c = 0 or

a = 3/5, b2 = 30 = 9/5 for b = c *F 0,

α = -3/5, b2 = -3fl = 9/5 for b = -c * 0.

Hence we are led to the case (It) or to the case a = ± 3/5 and b2 = c2 = 9/5. There-
fore we may assume that (5) ̂  (5') Then we have further

03(/, m) = (30 - be) (I2 - m2) + (c2 - b2)lm + (Sab - 3c)l

- (Sac - 3b)m = 0 (6).

Assume that any of twelve Weierstrass points {PJ is not fixed by any of σi9

σ2 and σ3. Then we have three distinct (/, m) for the twelve Weierstrass points
{PJ. Therefore, equations (4), (4') and (6) have four common points. Of
course (0, 0) is one of these common points. Since (4) is a conic different from
(4'), there exist k and k' such that

kgι(l, m) + g2(l, m) = k'g3(l, m).

This means that we have
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- 2ck + ac -3b = (ab - 3c)k - 2b = (b - Sac)k + c - 5ab
3a — be be — 3a c2 — b2

= - 2ak + a2 - 3 _ (a2 - 3)k - la
Sab — 3c 3b — Sac

By an elementary calculation we see that

a = b = 0 or b = c = 0 or b2 = c2 * 0.

The first two cases conflict with our assumption by (ft). For the last case R has
two more elliptic-hyperelliptic involutions τί and τ2 defined by

τ1 : (x, jO — > (y, x), τ2: (x, y) — > (- y, - x), if b = c,

and

T! : (x, x) - > (- ι>, ix), τ2 : (x, y) - > (ι>, - ix), if b = - c.

Then we have τ3 = τ1τ2 = τ2τ1 ( = σ3). We remark that if we put x to ix then the
case b = — c is reduced to the case b = c.

Now, assume that there exists a Weierstrass point which is not fixed by any
of σf, τt (1 < i < 3). Then eight points

P, τι(P), ^(P),..., σ3(P), σ^CP),..., ̂ τ^P)

are Weierstrass points which are not fixed by any of σt , τ4 (l<i<3). Therefore
we see that there are fixed points of some of σ1? σ2, σ3 and τ l 5 τ2, τ3 ( = σ3) in the

twelve Weierstrass points. We remark here that if P is a Weierstrass point which
is not fixed by any of Gi (l<ϊ<3), then four points P, σ^P),..., σ3(P) are point

of the same kind. Use τ, if necessary, instead of σ. Then by the same argument

as above, we are led to the case (#) or to the case (##) satisfied for two f s or to the
case a =±3 IS and b2 = c2 = 9/5. Further, for the case (##) satisfied for two Γs
it is reduced to the case (#) or the case where we have a=±3/S and b2 = c2 =

9/5.
Finally we have two cases : The first is

x4 + y4 = 1

and the second is

The former has its Weierstrass points by fours on each three straight lines but the

latter has its Weierstrass points by fours with common points on each six straight



768 Akikazu KURIBAYASHI and Kaname KOMIYA

lines. Therefore they are not conformally equivalent.

REMARK. The second one is birationally equivalent to

x4 + y4 + 3(x2.y2 -f x2 + y2) + 1 = 0

and we can represent this equation in homogeneous coordinates as

x4 + y4 + z4 + 3(x2y2 + y2z2 + z2x2) = 0.
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