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Introduction

Let F be a p-adic field, and let O and B be the ring of integers and the maximal
ideal of O respectively. F. 1. Mautner [4] first constructed square-integrable
irreducible unitary representations of PGL,(F) which are induced by irreducible
representations of a certain maximal compact subgroup. In [5], J. A. Shalika
carried it out for SL,(F) by a different method. Independently, in [6] and [7],
T. Shintani extended Mautner’s results to a sort of special linear group of rank
n. Recently, in [2] and [3], P. Gérardin extended their results to reductive)p-adic
groups whose semi-simple parts are simply connected.

In this paper, we extend the former results of [7], which are not covered by
Gérardin’s results, to general p-adic Chevalley groups. The contents of this paper
are as follows. Let G(z) be a Chevalley group over the ring of all rational inte-
gers z. Then we have a p-adic Chevalley group G(F) and its maximal compact
subgroup G(D) by base changes. In §1, we give preliminaries on the structures
of p-adic Chevalley groups after [3]. In §2, we prepare certain lemma about
induced representations of finite groups. In §3, we show that continuous ir-
reducible unitary representations of G(D), which do not come from representations
of G(D/P), are induced by certain irreducible representations of certain sub-
groups of G(O) (Theorem 1). In §4, when we let v be a continuous irreducible
unitary representation of G(O) which does not come from a representation of
G(D/P), we obtain a sufficient condition for Ind§{§)v to be square-integrable.

In concluding the introduction, the author wishes to express his sincere
gratitude to R. Hotta who read this paper and gave him many advices.

NotaTIONSs: (i) Let F be a non-archimedean local field, and let O, P
and = be the ring of integers of F, the maximal ideal of O, and a prime element of
F, respectively. Let p be the characteristic of the finite field O/%.

(ii) For aring R, we denote by M(n, n,, R) the set of n, by n, matrices with
coefficients in R. We put M(n, R)=M(n, n, R).

(iii) For each positive integer m, we denote by ,, the reduction modulo
Pm: O->O/Pm™. For integers n=m=1, we denote by the same symbol ,, the
reduction modulo P™: O/P"—O/P™.
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(iv) If R is an arbitrary commutative ring with the identity, we denote by
R* the multiplicative group of all units in R.

(v) We denote by Z, M and C the ring of all rational integers, the set of
all natural numbers and the field of all complex numbers, respectively.

§1 p-adic Chevalley groups

The aim of this section is to describe the structures of p-adic Chevalley groups
and their subgroups.

1.1. Let & be a finite dimensional complex semi-simple Lie algebra.
Fix a Cartan subalgebra A of . Then we have the root decomposition &
=A+ Y .o A* (direct sum), where @ is the set of roots relative to (&, A). Choose
a Chevalley basis (X,),p in ® relative to A. Let Q(P) (resp. P(P)) be the root
module (resp. the weight module) of @ in the dual space N’ of A (cf. [1], 6, §1).
Let p be a finite dimensional faithful representation of ® on a vector space E
over C, and let X be the lattice generated by weights of p (w e A’ is called a weight
of p, if there exists non-zero veE such that p(H)v=w(H)v for any H € A). Then
Q(®)= X <= P(P), and we have an admissible lattice E(Z) of E for (p, E) (cf. [8],
§2). Let R be an arbitrary commutative ring with the identity. We define the
automorphisms x,(t) and h(y) of E(R)=E(Z)®;R as follows: For each ae @,
X (=250 p(X2/nD)t" (te R). Foreach ye Hom (X, R*), and for each v € E(R)
of weight w, h(x)v=y(w)v. We denote by A(R) the subgroup of Aut(E(R))
generated by all h(y) (x e Hom (X, R*)), and by G(R) that generated by all sub-
groups x,(R) (e € ®) and A(R). We call this group G(R) the Chevalley group
over R. For the above lattice X, we denote by X’ the set of all H e U such that
<H', H> e€Z for any H' € X, where < , > is the natural pairing on U’ x A.
Put G(R)=X®zR+ Y ..o R X, (direct sum), and we denote by py the represen-
tation of the Lie algebra G(R) into End (E(R)). Then py is faithful ([3], II, 2.1.6).
Hence we can define the adjoint action of G(R) on G(R) by pr(Adx-Y)=
xpr(Y)x~1 (x e G(R), Ye G(R)) (cf. [3], II, 2.1.6).

1.2. By changing base rings R in 1.1, we obtain the following groups;
G=G(F), K=G(D), G(O/PB") (neN), A=A(F), AD) and ADO/P") (neN).
From now on, we shall identify A, A(D) and A(D/P") with X'® , F*, X'®, O*
and X'®, (O/PB")* respectively by the canonical isomorphisms.

DErINITION 1.2. For each integer n=1, we denote by G(B*) (resp. A(B™))
the subgroup of K (resp. A(D)) which is the kernel of the reduction modulo
PBr: G(O)-G(O/P") (resp. A(D)—A(D/B")). For integers n=m=1, we denote
by G(P™/B") (resp. A(P™/P")) the subgroup of G(O/B™) (resp. A(D/B")) which
is the kernel of the reduction modulo P™: G(O/B")—G(D/P™) (resp. A(D/P")
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- A(D/P™)).

From [3], 2.2.5 and 2.2.7, G(B") is the subgroup of K generated by all sub-
groups x,(P") (x€ ®) and A(P")=X'®z(1+PB"), and G(P™/P*) is the subgroup
generated by all subgroups x,(B”/P") (xe®) and A(P"/P)=X'®z(1+Pm/
14+ Pn).

ExampLE 1.2. When G=SL,,,(F) (I1=1), we have G(B")={xeSL,,(D)|
x—1len"M(+1, O)} (neN) and G(P"/P)={xeSL, . (DO/P")|x—1en"M(+
1, O/P"} (nz2m=1).

G =G(F) inherits a topology from F for which G is a locally compact topo-
logical group. More precisely, G has a fundamental system of neighborhoods
{G(PB")}n20 Which consist of open and compact subgroups of G. In particular,
K=G(D) is a profinite group. For n=m=1, we obtain the adjoint action of
G(D/PB") on G(P™/P") from that of G(O) on G(P™) by the reduction modulo
B

LemMmA 1 ([3], 2.2.6, Lemma 5). If 2m=n=mz2=1, the mapping e:
G(P™/P) - G(P™/P"), defined by e(X)=1+ p(X), is an isomorphism as abelian
groups commuting with the adjoint actions of G(D/P").

1.3. Let &’ be the dual vector space over C of &. We denote by ®'(Z)
the set of all X' € ' such that <X’', X>eZ for all X e (Z). Then we have
6'(Z)=X+ Y ,0Z- X, (direct sum), where X is naturally embedded into ©’,
and where X is a linear form defined by <X, X,>=1, <X}, X;> =0 (a#p),
and <X, A>=0. We define the co-adjoint action of G(R) on &'(R)=6'(Z)
®zR;

<Ad"x- X', Adx-X> = <X, X> (X eB(R), X' € ®'(R), x € G(R)),
where R is an arbitrary commutative ring with the identity.

ExampLE 1.3. When G=SL,,(F) (I=1), we assume that the residue char-
acteristic p of F is not 2 and does not divide I+1. Then we have &(Z)={xe
M@+1, Z)[Trx=0}. Define a non-degenerate bilinear form on &(Z) by
<x, y>=Trxy (x, ye &(Z)). We identify ®'(Z) with &(Z) by the isomor-
phism induced from the above bilinear form. Note that the above bilinear form
< , > is naturally extended to a non-degenerate bilinear form on &G(D/P")
(n=1) by the above assumption. Thus we have Ad"x-X'=xX'x"!, xeSL;,,
O/B"M, X' eG'O/P)={X"e M(I+1, O/PMTrX'=0} (n=1).

1.4. From now on, we fix a base B(®) of the root system ®.

DErFINITION 1.4. For each He X', we define the element n¥ of A=X'
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®zF* by w(n®)=n<*H> for any we X. We denote by X the set of all He X'
such that <a, H> =0 for any o € B(P).

LemMA 2 (Cartan decomposition).
G = KAK = Upygex, Kn#K  (disjoint union).
Proor. The proof can be found in Theorem 21 of [8].

ExaMpPLE 1.4. When G=SL, . (F) (I1=1), put
1 0
w2 (my, my,..., my,)EZ™, m; + m, +
0 " ek myy =0, and myZmy = 2my
Then we have

SL;+1(F) = \Ugeu, SL;+1(D)-a-SL,;, (D) (disjoint union).

§2. Preliminaries for induced representations of finite groups

Let H be a subgroup of a finite group G, and let v: H->GL(V) be a linear
representation of H where V is a finite dimensional vector space over C. We
denote by Ind §v the representation of G induced from v. We assume that H
is abelian and normal. We denote by H the set of all characters of H. Then
G operates on H in an obvious way i.e., for yeH, geG and heH, 9y(h)=
%(g~thg). For each yeH, we denote by I, the subgroup of G fixing y. Let
u: G->GL(W) be an irreducible representation of G, where W is a finite dimen-
sional vector space over C. For each yeH, put W,={w e W|u(h)w= x(h)w for
any he H}. Then we see immediately that W, is a I,-invariant subspace of W,
and that p induces naturally a representation u, of I, on W,. With these nota-
tions, we have the following Lemma.

LemMmA 3 ([7], §1). Let xo be a character of H such that W, #{0}, and
let O be the G-orbit in A containing y,. Then W= > oWy, and p, is an ir-
reducible representation of I, and Ind§, p, is equivalent to u. Conversely, for
xeH, let v, be an irreducible representation of I, such that v,(h)=y(h)-1 for any
heH. Then Ind§ v, is an irreducible representation of G. Moreover, for
1 TeH, Ind§ v, is equivalent to Ind§ v, if and only if there exists ke G such
that x="*t, and v, is equivalent to v as representations of I,, where v is defined

by vi(g)=v(k~'gk) (g e L,).

§3. Irreducible representations of the maximal compact subgroup K

3.1. Let y be an additive character of F. We say that y is of order 0 if ¥
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is trivial on O and non-trivial on P~!. From now on, fix a character y of F, of
order 0. Let f, f' and f” be integers such that f>2, f=f'+f", and 2f'< f<
2f"+1.

DEFINITION 3.1. For each X'e®'(D/P’), we define a function y§. on
G(P'") by 1k (@=x(r"7 <X, e (Y (9))>) for any ge G(P’") where e is the
isomorphism of G(P’"|P7) onto G(P’"|P’) defined in Lemma 1 of § 1.

LemMA 4. (i) The function x4 is an one-dimensional representation of
G(B’") which is trivial on G(P).

(ii) For any ke K, we have *x§ = xhavy i) -x'-

(iii) The mapping X'+ % is an isomorphism of the additive group G'(D/
B’) onto the multiplicative group of all one-dimensional representations of
G(B’") which are trivial on G(P”).

Proor. (i) is clear by the definition of y%..

(i) By Lemma 1, we have *x}.(9) =k (k7gk) = x(n~/ < X', e (y (k~1gk))
>) =yl <X, AdW (k)™ (e W H9))>) = (! <Ad~ Y (k)- X', e (Y (9))
>) = yhavy,)-x(g) forany keK and any ge G(P’'").

(ili) By the well-known commutator relations in the Chevalley group G(R)
over a commutative ring R (see [8]), and by the fact that 2f”> f, we see that
G(P’" /B )= G(P'")/G(BY) is abelian. Hence every one-dimensional represen-
tation of G(’") which is trivial on G(8’) can be regarded as a character of G(P’"/
PB’). Hence in order to prove (iii), it is enough to show that the mapping X'
x4 is an isomorphism of &'(O/P/") onto G(@‘Bf ), where we denote by G(@
/) the multiplicative group of all characters of G(/"/B’). Since y is of order
0, we have a non-degenerate bilinear form (X’, X)~y(n~/ <X’, X>) on 6'(D/
PB)x G(P'"/B’). Hence an assigning each X' e G'(O/P’/) to a character
Xy < X', X>) of G(P’/"/P’) gives the isomorphism &'(O/P’")=G(B'"|

o~ P
$7). Combining this isomorphism with an isomorphism G&(P’"/B)=G(P’"/
$B7) induced from the isomorphism e: G(PB'"/P )= G(P’"/P’), we have the de-
sired isomorphism X' y%. : &'(O/P’ )gG(‘lg"TiBf ). g.e.d.

3.2. Let v be a non-trivial continuous irreducible unitary representation
of the maximal compact subgroup K of G on a Hilbert space.

DEFINITION 3.2. We call an integer f the conductor of v, if v is trivial on
G(P’) and non-trivial on G(P/~1). We denote by f=f(v) (Note that K has a
fundamental system of neighborhoods {G(")},>1)-

We assume that f=f(v)=2, and let f’, f” be integers such that f=f'+f",
2f'<f<2f'+1. For each X' eG'(D/P’), put Vy={veV|ug=yk(g9)
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for any ge G(P’")}. By (ii) of Lemma 4, for each ke K, *¥y§ =y% if and only
if Ad¥(Y(k))X'=X'. So we denote by Zg(X’) the set of all ke K fixing x§..
Then Vy. is a Zg(X')-invariant subspace of V. Put O,={X'e€&'(D/P/)|Vy
#0}. Then, since G(B/")/G(P’) is a finite normal abelian subgroup of G(D)/
G(BY), 0, is not empty. For each X’ e 0,, we denote by vy, the representation
of Zx(X’) on Vy. defined by vy.(g)=w(g)|y,  for any ge Zy(X’).

With these notations, we have the following generalization of Theorem 1

of [7], §2.

THEOREM 1. Let v be a continuous irreducible unitary representation of
K such that f=f(v)=2, and let f’, f" be integers such that f=f"+f",2f'Sf<
2f'+1. Then

(i) G(D/BY) operates transitively on O, by the adjoint action, and for
X' €0,, we have X' #0 (mod P).

(i) vy is the representation of Zxg(X') which coincides with y§ -1 on
G(B’"), and Ind ;X y. vy is equivalent to v. Conversely, for X'eG'(O/B')
such that X'#0 (mod B), let u be an irreducible unitary representation of
Z (X') which coincides with % -1 on G(B’"). Then v=Ind ;Xyu is a con-
tinuous irreducible unitary representation of K such that f(v)=f and X' €O,

Proor. Fix an element X; of O,. For each ke K, we have v(k)Vy, =
Viav@w,y-xo- Indeed, for any geG(P’") and for any wg)v(kv=
(k) (k~tgk)o=v (K)xko(k~1gk) v = (k) xha~ y s (x0)- 369V = Xhav (v k- x0° (@)V(K)D.
Then we have Ad™ (Y ;(k))- Xo €O, for any ke K. Since the representation v of
K can be regarded as an irreducible unitary representation of the finite group
G(D)/G(P), we have V=73 xVaav),)-xo- Therefore we have V=73,
Vadv @),k x6 < Zxeo, Vx <V, whe eas we have 0,={Ad” (Y y(k))- Xolk € K}.
This shows that G(O/P)= G(D)/G(P’) operates transitively on O, by the
co-adjoint action. For X'e0,, we assume that X'=0 (mod ). Then x§. is
trivial on G(P’"). Hence the representation v is trivial on G(B’"). This
contradicts f(v)=f.

(i) 1In the proof of Lemma 4, we have seen that G(B/")/G(B) is a normal
abelian subgroup of the finite group G(O)/G(B). Hence (ii) is an immediate con-
sequence of Lemma 3 in § 2. g.e.d.

In the above Theorem 1, the condition, f(v) =2, means that the representation
v of K does not come from an representation of G(O/P). Hence Theorem 1
says that continuous irreducible unitary representations of the maximal compact
subgroup K of G which do not come from representations of G(O/P) are induced
from certain irreducible representations of certain subgroups of K.
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§4. Unitary representations of G induced from irreducible representations
of tie maximal compact subgroup K of G
4.1. Let dg be the Haar measure on G such that g dg=1. Let U be a con-
K
tinuous unitary representation of G on a Hilbert space $.

DEerFINITION 4.1. U is said to be square-integrable if there exists ve
$H—{0} such that

[ @, U@L g < + o,

where ( , ) is an inner product of H and (U(g)v, v) is the complex conjugate of
U(g)v, v).

If U is square-integrable, then there exists a number d >0, called the formal
degree of U depending only the equivalence class of U and on the normalization
of the Haar measure dg on G such that

§G<U(g)u1, 0) (U@, 13)dg = d~uy, up) (v, v3)

for all u;, v;e $ (i=1, 2) (Schur’s orthogonality relation). Let v be a continuous
irreducible unitary representation of K on a finite dimensional Hilbert space V.
We denote by §, the set of all V-valued functions f satisfying the following con-
ditions:

(i) f(kg)=v(k)f(g) for any ke K and for any ge G,

(@) | (1@, f@)dg < + o,
where ( , ) is an inner product of V. We define an inner product < , > on §,
by

<fih> = SG(f (9), h(g)dg  (f, he$H,).

Then §, becomes a Hilbert space. We define a representation U, of G on §,
as follows:

U@N@)=rfd'9) (9,9'€G, feH,).

We denote by Ind § v the above unitary representation U, and by U, |K the represen-
tation of K on $, obtained by restricting U, to K. Put I(U,|K, v)=dim Homg(¥V,
$,). This is called the multiplicity of v in U,|K.

Lemma 5 ([71, §3). () If I(U,|K, v)< 40, then U, decomposes into a
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direct sum of at most I(U,|K, v) many irreducible representations. In particu-
lar, if I(U,|K, v)=1, then U, is irreducible.

(ii) If U, is irreducible, then U, is square-integrable and its formal degree
equals dim V.

42. Let G=\Upgcx, Kn#K be the Cartan decomposition of G in Lemma
2. Let v be a continuous irreducible unitary representation of K on a Hilbert
space V. For each He X}, put KE=KNn H#KnH# and we denote by v the
representation of K¥ on V defined by vH(k)=vH(nHknH) for any ke K¥. Let 9,
be the representation space of Ind ¢ v defined in 4.1. For each H € X/, we denote
by H the set of all fe $H, whose supports are contained in Kn#K. Then H¥ is
a closed subset of §, and invariant under the representation U,|K, and moreover
we have $,=Y pcx, HT (direct sum as a Hilbert space). We denote by UZ|K
the representation k—U(k) of K on HH and by v|K¥ the representation of K#
on V obtained by restricting v to K¥. Put I(v|KH, v)=dim Homg=(V, V).

LemmA 6 ([7], §3). (i) For each He X, UE|K is equivalent to Ind§xvH.

(ii) For each He X, (UH|K, v)=I(v|KH, v¥).

(i) I(U,|K, v)=X gex;, I(vV|IKH, v#) (Remark, The equality in (iii) admits
the infinity, i.e., + 00 = + ).

4.3 Let v be a continuous irreducible unitary representation of K with the
conductor f(v)=f=2, and let f’, f” be integers such that f=f'+f", 2f'<f<
2f'+1. Let O, be the set of all X'e®'(D/P’) such that Vy.#{0}. Thus
every element of O, is uniquely written as the form H'+ Y, 4, X, where H' e
X®,0/B and u,eO/P’ (xeP). For each X'=H'+3Y ..o 4, X,€0, and
each integer m such that 1<m< f’, we denote by Supp,,(X’) the set of all roots
a such that ¥, (u,)#0 (We recall that 1, is the reduction modulo Pm: O/P/ -
O/Pm). For each He X, we denote by P,(H) the set of all positive roots a
such that <a, H>2=m. Put B(®)={ay,...,o;} (the fixed base of the root sys-
tem @). Then every root is uniquely written as the form > !_,nq; where all
n; are non-negative integers and have the same sign. For each «; e B(®), we de-
note by (a;) the set of all roots a=3!_, n;x; such that n;>1.

ProposITION 1. Let v be a continuous irreducible unitary representation
of K with the conductor f(v)=f =2, and let f’, f" be integers such f=f"+f",
2f'Sf<2f'+1. Let H be an element of X,. Assume that there exists an inte-
ger m (1=mZ f") such that for any X' € O, and for any «; € B(®), (o) N\Supp,, (X")
#¢ and B(®)NP,(H)#¢. Then I(v|KH, vE)=0.

ProoF. We shall prove by absurdity. Assume that I(v|KH, v#)>0. Let
V be a representation space of v. Then there exists a non-trivial linear transfor-
mation T of V satisfying the following condition; for any ke K&,
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¢)) vk)T = Tv(n®kn~H).

Now by the assumption B(®)N\P,(H)# ¢, there exists a;, € B(®)N\P,(H) (1=Li,<
). Then

(2) (aio) < Pm(H) .

In fact, let f=3"!., n,o; be any root of («;)). Then, since n;20 and <oy, H> =0
foralli (1Si<0), we have <B, H>=3%!_,nj<o, H>2= <o, H>2=m. Hence
B belongs to P, (H). We denote by U the subgroup of K generated by the set
{x (D€ (a;), te B/~™}. Then, under some order in (o), every element of U
is uniquely written as the product Hae(aio) x,(t,) (t,€ B~™) ([8], § 3, Lemma 17).
For any ueU, say u=ITucqa,,) Xult) (t, € B’~™), we have 7:”un‘"=]'[,e(aio)~
X (1T =T Taeary) Xo(n<*#>1,). By (2), n<=">1,¢€ P/ for all ae (). Thus
we have nHunH € G(P’). Hence by (1), we have v(u)T=T for any ue U. Since
T is not trivial, there exists ve V—{0} such that w(u)v=v for any ueU.
Therefore, since V=73 yx.o, Vx. there exists a non-zero Vy-component vy. of v
such that w(u)vy =vy for any ue U. Hence we have y%(u)=1 for any ueU.
On the other hand, by the assumption (x; ) \Supp,,(X")# ¢, there exists a root
y belonging to (o;,))N\Supp,,(X"). Therefore, let X’ be the form H'+ 3. 4, X,
where H' € X®, O/, u, e O/P’ (xe ), then we have Vu(u,)#0 in O/Pm,
Here we take t,€ P/~ (x €(x;,)) such that for a=y, 1, P ™+ and x(n~u,t,)
#1, and for a#y, t,e P/ ~m+1. This is possible, because y is of order 0. Put
u0=]'[,5(aio)xa(t,), then we have uy,e U. By the definition of x4, we have
2 (o) =1 <X', e (Y (o)) >) =10~ <X, Fpeu p ¥ Xo>) = x(n" 7 t,u,)
#1. This is contradiction. q.e.d.

CoROLLARY 1. Let v, f, f' and f" be as in Proposition 1. Assume that
there exists an integer m (1=mZ f') such that for any X' € O, and for any inte-
ger i 1ZiZ0), ()N\Supp,,(X)#P. Then there exist only finitely many ele-
ments H of X/, such that I(v|[KH, vH)>0. If m=1, then I(v|KH¥, vH)=0 for
any H#0 in X/,.

Proor. If I(v|[KH, v#)>0, then we have B(®)N\P,(H)=¢ by the above
Proposition. Therefore, for all «; € B(®) (1<i<I), we have 0= <a;, H> <m---
(*). Since the root module Q(®) is of finite index in the lattice X, and the bilinear
form < , > is non-degenerated on X x X', there must exist only finitely many
H e X, satisfying (). In the case that m=1, there does not exist such H#0.

q.e.d.

By Corollary 1 and Lemma 6, we have the following Corollary.

COROLLARY 2. Let v, f, f' and f” be as in Proposition 1. Assume that
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there exists an integer m (1=<mZ f') such that for any X' €O, and for any
o;€ B(®) (1=ZiZD), (a)NSupp,, (X )#¢. Then I(U,|K, v)< +o0. Ifm=1, then
I(U,|K, v)=1.

By Lemma 6 and the above Propositions, we have the following Theorem.

THEOREM 2. Let v be a continuous irreducible unitary representation with
conductor f(v)=f =2, and let f, f' and f" be integers such that f=f'+f", 2f'
Sf=2f'+1. Assume that there exists an integer m (1=<mZ= f') such that for
any X'€0, and for any o;€B(®) (1=Zi=g]), ()N\Supp,, (X )#¢. Then U,
=Ind§v decomposes into a direct sum of at most I(U,|K, v) many irreducible
representations of G. In particular, if m=1, then U,=Ind§v is a square-
integrable irreducible unitary representation of G whose formal degree is the
degree of the representation v.

RemaRrRk. By Lemma 6 and Corollary 1 to Proposition 1, we have I(U,|K,
v)=Y I(v|KH, vH) where the summation is taken over all H € X}, such that <a;,
H> <m for all «;e B(®).

4.4. We shall compare our results with those of [7] obtained by T. Shintani.
From now on, we put G=SL,,,(F) and K=SL;,,(D) (I=1). Let v be a con-
tinuous irreducible unitary representation of K on a Hilbert space V with conductor
fWM=f=2, and f', f" be f=f"+f",2f'< f<2f'+1. By Example 1.3 and 3.2,
for this representation v, O, is the set of all x € &'(O/P”) such that V,# {0}, where
&'(O/P)={xeM(+1, O/P)|Trx=0}. For some xe0,, we define a monic
polynomial of the degree I+ 1 over the finite local ring O/’ by C(f)=det(t-
1—x) where t is an indeterminate. Then C(f) does not depend upon the choice
of an element x of 0,. Hence the polynomial C,(¢) corresponds the above repre-
sentation v of K. T. Shintani proved the following facts in [7]; If C,(¢) is an ir-
reducible polynomial, then the unitary representation Indgv of G has finitely
many irreducible components. In particular, put C()=t'"*'—at'+ --+a;,,
(a;eQ/PT). If Y (CO)=t+1+y,(a)t,+-+V¥,(a;+,) is an irreducible
polynomial over the finite field O/, then Ind§ v is a square-integrable irreducible
representation and its formal degree equals dim V. Moreover, he constructed
all continuous irreducible unitary representation v whose corresponding poly-
nomials y,(C,(?)) are irreducible.

ProrosITION 3. Let v be a continuous irreducible unitary representation
of K=SL,, (D) with conductor f(v)=f =2, and let f', f" be integers f=f'+f",
2f'<fL2f'+1. For each integer m (1=mZ f'), if ¥,.(C(?)) is an irreducible
polynomial over O/P™, then we have (o) N\Supp,,(x)# ¢ for any x €0, and for
any a;€ B(®) (1=<i<0).
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a; 0
Proor. Put A= az’. €SL,,(F)). Foreach i, let ¢; be a charac-
0 .az+1
a, 0
ter of A defined by e; i . =a;. Then as a root system of ® and its
0 .al+1

base, we can take ®={e;—¢;li#j, 1Si<I+1, 1< j<I+1} and B(®)={e; —e,,
e,—es,...,e;—e; (). Now if there exist xeO, and o, =e, — e, €B(P)
(1=ip=0) such that (o;)N\Supp,(x)=¢, then by the definition of Supp,(x)

and by Example 1.3, y,(x)e M(I+1, O/P™) is the form <’61 ;‘2) where x,
3
€ M(iy, O/P™), x, € M(iy, |+1—1iy, O/P™) and x3e M(I+1—i,, O/P™). Hence

V,(C()=det(t-1—y,(x)) is clearly reducible. q.e.d.

Thus in the case of G=SL,, ,(F), there exist continuous irreducible unitary
representations of K=SL,, () which satisfy the condition that m=1 in Theorem
2.
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