
HIROSHIMA MATH. J.
8(1978), 91-100

Axiomatic Characterizations of Grade

for Commutative Rings

Shiroh I T O H

(Received September 13, 1977)

Introduction

Let R be a commutative ring and / an ideal of R. Suppose that R is noe-

therian. Then, for every ^-module M, we can define the grade of / on M in two

different ways using M-regular sequences in / and ExtR(R/I, M) (or H7(M)). In

the case that R is not necessarily noetherian, there are two notions of grade which

may be regarded as good generalizations of the one in the noetherian case. One

is the homological grade (or 'Rees' grade) which is defined by using ExtR(R/I, )

or H 7 ( ) in the same way as in the noetherian case. Another one is the polyno-

mial grade which is a successful generalization of the notion of the longest M-

regular sequence in /. As for the last one, a characterization was given by M.

Hochster by making use of the Koszul complex in [4].

In this paper, we shall give axiomatic characterizations of the above two

different notions of grade, which show a relationship between these two notions

from another point of view.

In § 1 we shall see that the concept of localizing subcategories plays an essen-

tial role in the theory of homological grade in an abelian category. In § 2 we

are mainly concerned with the homological grade in the category of R-modules.

In this case we use Gabriel topologies on R instead of localizing subcategories.

We shall also give a proof of the Auslander-Buchsbaum theorem on finite free

resolutions in terms of homological grade. In § 3 we shall study the polynomial

grade originally introduced by M. Hochster.

Throughout this paper all rings and algebras are commutative with identity

and modules are unitary.

1. Homological grade in an abelian category

In this section, we shall discuss a homological theory of grade in an abelian

category. Throughout this section s/ is a locally small abelian category with

injective envelopes and products.

Let ^ be a localizing subcategory of s/ (cf. [8]). Then for each object M

in s/ we can assign a non-negative integer or oo as follows:

, M)= the least integer n such that R"L(M)φO if there is such an in-
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teger and oo if there is not, where L = L^ is a functor J/-»CC/ such that L(M) is

a largest ^-subobject of M and R"L is the n-th right derived functor of L (cf.

[5]). Prop. 2.13 of [5] (or Cor. to Prop. 2 in this section) shows that hgr($, M)

is also the least integer n such that Extn(N, M) =£ 0 for some N in ^ if there is

such an integer and oo if there is not. We say that hgr(<g, M) is the homolo-

gical grade of ^ on M.

Now we put φ(M) = hgr(tf, M); then φ has the following properties:

(0) ψ(0) =oo,andίfM^N9 then φ(M) = φ(N).

(1) IfM is a subobject of N and φ(N)>0, then φ(M)>0.

(2) Ifφ(M)>0, then φ(E(M)>09 where E(M) is an injective envelope of M.

(3) // {Mv} is a family of objects with φ(Mv)>09 then φ(ΠvMv)>0.

(4) Let 0-+M-+E-+N-+Q be a short exact sequence. If E is an injective

object with φ(E)>0, then φ(N) = φ(M)-i.

To prove the above properties, we first note that hgr{^, M ) > 0 if and only

if Hom(ΛΓ, M) = 0 for every N in # . Therefore the properties (0), (1), (2) and

(3) are clearly satisfied. Next we note that RML(£) = 0 for every n > 0 if E is an

injective object. Therefore we can easily show the property (4) by examining

the long exact sequence in R'L.

It is the aim of this section to show that the above properties (0), (1), (2), (3)

and (4) characterize hgr(Ή, ).

We say that a correspondence from Obj(j/) to {non-negative integers and

oo} is a homological ^-function on stf if it satisfies the above conditions (0), (1),

(2), (3) and (4). Let φ be a homological g-function on s/. We put

J? = {object M in ̂  such that φ(M) > 0}

and

^ = {object N in stf such that Hom(iV, M) = 0 if M belongs to Jί).

LEMMA 1. Ή is a localizing subcategory of s#, and J( = {object M in s/

such that Hom(N, M) = 0 if N belongs to <£}.

PROOF. The conditions on φ imply that Jί is closed under subobjects,

essential extentions and products. Therefore the assertions follow from [8],

Prop. 1.16, Part 1.

LEMMA 2. φ(M) = h gr(Ή, M) for every object M.

PROOF. We use induction on n = min {φ(M), hgr(<ί?9 M)}. The case n = oo

is trivial. Therefore we may assume that n<co. Suppose that n = 0. It is ob-

vious that φ(M) = 0 if and only if M i Jί. By Lemma 1, M i Jί if and only if

Horn (AT, M) 7*0 for some N in ^ , i.e. hgr{<g, M) = 0. This settles the case
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n = 0. We now suppose that n > 0 . Let E be an injective envelope of M. The

property (2) on φ and hgr(&, ) implies φ(E)>0 and hgr(tf, £ ) > 0 ; hence

φ(E/M) = ^(M) - 1 and ft gr(V9 EjM) = ft gr(V9 M) - 1. Since n - 1 =

min{φ(E/M), hgr(tf9 E/M)}9 our inductive hypothesis shows that φ(E/M)

= ft 0r(<r, £/M). Therefore ι/̂ (M) = ft gr(tf, M). This completes the proof.

In view of Lemma 1 and 2, we have

THEOREM 1. If φ is a homological g-function on stf 9 then there exists a

unique localizing subcategory Ή of s/ such that φ = hgr(etf9 ).

Let now φ be a homological g-function on s/9 then φ satisfies the following

conditions:

(5) Let 0->M'-»M->M"->Ό be an exact sequence. Then the following

statements hold:

(a) if φ(M') > φ(M)9 then φ(M") = φ(M);

(b) if ψ(M') < φ{M\ then φ(M") = φ{Mf) - 1

(c) if φ(M') = φ(M\ then φ(M") ̂  φ{M) - 1.

(6) If E is an injective object in s/9 then φ(E) = 0 or oo.

In fact as to (6), consider the exact sequence 0->E-*E-»0->0. If E is an in-

jective object with φ(E)>0, then φ(0) = φ(E)-l by (4). Therefore φ(E)= oo

since φ(0)=co. On the other hand, φ = hgr(&, ) for some localizing subcate-

gory # of stf. Therefore by examining the long exact sequence in R'L we know

that φ satisfies (5).

Conversely, the conditions (0), (1), (2), (3), (5) and (6) imply (4). In fact,

let 0-»M->£->N-»0 be an exact sequence and E an injective object such that

^ ( £ ) > 0 . Then ψ(£)=oo by (6). Therefore if φ(M)<oo, then φ(N) = φ(M)

- 1 by (5)-(a); if φ{M)= oo, then φ(N)^ φ(E)-1 = oo by (5)-(c). In any case

The following variation of the above theorem may be useful when we com-

pare the homological grade with another notions of grade.

PROPOSITION 1. Let <€ be a localizing subcategory of s/. A correspond-
ence φ from Obj (s/) to {non-negative integers and oo} is a homological g-

function and φ — hgr(^€9 ) if φ satisfies the following conditions:

( i ) φ(0) =oo, and if M^N, then φ(M) = φ(N).

(ii) φ(M)>0 if and only if M is tf-pure i.e. M has no non-trivial ^-sub-

objects.

(iii) Let 0-+M-+E-+N-+0 be an exact sequence. If E is an injective ob-

ject with φ(E)>O,then φ(N)=φ(M)-l.

For the rest of this section, we shall show some properties of RnL^. Assume
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that srf is an abelian category with enough injectives. Let ^ be a localizing sub-

category of jaΛ For the definition of ^-divisorial objects and its properties, we

shall refer to [5]. We denote L<# by L for simplicity. The following is a gen-

eralization of [3], Prop. 5.1 §5.

PROPOSITION 2. Let M be an object in stf and n a positive integer. If

RpL(M) = 0 for p<n, then we have a functorial isomorphism Extn(N, M)

^Hom(iV, R"L (M)) for every N in %\

PROOF. Let M-^E0 -^Eί -* be an injective resolution of M. Our assump-

tion implies that the complex 0-^L(Eo)-^L(E1)-> >L(En) is exact. Since each

L(Ei) is ^-divisorial, lm(L(Eί_1)^L(Ei)) is a direct summand of L(£ f). Now

let JV be an object in <%. Then we have

Ker(Hom(AΓ, En) > Hom(ΛΓ,

= Ker(Hom(JV, L(En)) > Hom(iV,

= Hom(iV, Ker(L(£π) — > L(£ π + 1 )))

and

Im(Hom(JV, En_x) > Hom(iV, £„))

= Im(Hom(N, L(EH^)) > Hom(N, L(En)))

= Hom(iV, I m ί L ^ . , ) — L(£M))).

Therefore we have ExtΛ(ΛΓ, M)^Hom(iV, R"L(M)).

We already have proved the following corollary in [5]. But Prop. 2 enables

us to give another proof of it.

COROLLARY. ([5], Prop. 2.13 §2) The following statements concerning an

object M and positive integer n are equivalent:

(i) Extp(N, M) = 0for every object N in %> and p<n.

(ii) R*L(M) = 0forp < n.

PROOF. We use induction on n. The case n = 0 is trivial. Now assume

that n > 0 and that the assertion has been established in the case of smaller values

of the inductive variable. First suppose that R*L(M) = 0 for p<n. Then by

Prop. 2, E x f r ^ N , M) = Hom(JV, RΛ"1L(M)) = 0 for every N in if. Conversely

suppose that Ext*(iV, M) = 0 for every N in ^ and p<n. Then also by Prop. 2

Hom(R»-1L(M)9 R"- 1 L(M) = Extw- 1(R / I" 1L(M), M) = 0. Therefore R

= 0. This completes the proof.
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Let / b e an endomorphism of the functor 1^. Assume that / commutes with

the canonical morphism L-»l^(note that L is a subfunctor of 1^). Then the

induced morphism RnL(M)-+RnL(M) from /(M): M-*M is canonically equal

to/(R"L(M)).

PROPOSITION 3. Let f be an endomorphism of the functor 1^ which com-

mutes with L-*l^r. Assume that f(N) is not a monomorphism for every N in &.

If M is an object such that f(M) is a monomorphism, then hgr(^>, M ) > 0 and

PROOF. Suppose that h gr(<£, M) = 0 i. e. L (M) Φ 0. Since /(L (M)): L (M)

->L(M) is not a monomorphism, so is /(M), and this leads a contradiction.

Therefore hgr(%, Aί)>0. Now let n = hgr(<#, M). Consider the exact se-

quence 0-^M-^^>M->iV = Coker/(M)^0. Since R*L(M) = 0 for p<n, we

have RpL(iV) = 0 for p<n — 1 by examining the long exact sequence in R*L.

There also exists an exact sequence 0-^Rw- 1L(iV)->R / lL(M)-^RπL(M). Since

0=/(R"L(M)) and RWL(M) (Φθ)e&, g is not a monomorphism. Therefore

O, which completes the proof.

2. Homological grade of a Gabriel topology

Let R be a ring and Mod(R) the category of ^-modules. By Theorem 1 § 1,

for every homological g-function φ on Mod(K), there exists a unique localizing

subcategory ^ of Mod(K) such that \l/ = hgr(tf, ). Since # corresponds to a

Gabriel topology F on R (see [5], § 3), there must be a relation between φ and

F. In fact we have

PROPOSITION 1. Under the same notation and assumptions as above,

φ(M) = the least integer n such that Extft(K/α, M ) # 0 for some a in F if there

is such an integer and oo if there is not.

To prove the above proposition, it is sufficient to show the following lemma.

LEMMA 1. Let F be a Gabriel topology on R and let <% be the localizing

subcategory of Mod(R) associated to F. Then the following statements, con-

cerning an R-module M and a positive integer n, are equivalent:

(i) Ext£(fl/α, M) = 0for all p<n and α e F .
(ii) RPL(M) = 0for all p<n, where L = L,g>.

PROOF. Since R/aetf for all α e F , the implication (ii)=>(i) follows from

Cor. to Prop. 2 § 1. (i)=>(ϋ): Since HomR (R/a, M) = 0 for all α in F, M is #-ρure

i.e.R°L(M) = L(M) = 0. Let M->E0 - ί ^ Ex - ί i * ••• ^ ^ > En_1-*^U En be an

injective resolution of M. Now choose an element x in
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n — 1). Since AnnR(x)eF, the morphism u: R/AnnR(x)^Ej9 defined by w(l) = x,
can be extended to a morphism v: RIAnnR(x)-^Ej^1 by our assumption. Then
v(l) eL(Ej_ t) and the morphism L(d, _ j) sends v(l) into u(l). Therefore L(£, _ x)
-»L(£,)-• !.(£,_!) is exact; hence R /L(M) = 0 for 1 ̂ ; < n . This completes the
proof.

For a Gabriel topology F on R, we denote the homological ^-function asso-
ciated to F by hgr(F, ), i.e. for every R-module M, hgr(F, M) = the least integer
n such that ExtR(R/a, M)Φθ for some α in F if there is such an integer and oo
if there is not. Every homological g-function on Mod (R) is of this type. We
say that hgr(F, M) is the homological grade of F on M. Now, let / be an ideal
of R. Then / defines a homological ^-function, which we denote by hgr(I, ), on
Moά(R), i.e. for every ^-module M, hgr(I, M) = the least integer n such that
Extβ (R/I, M) Φ 0 if there is such an integer and oo if there is not. Therefore there
exists a unique Gabriel topology (we denote it by F(/)) on R such that hgr(I, )
= hgr(F(I), ). We say that hgr(I, M) is the homological grade (or 'Rees'
grade) of/ on M. By the definition of F(/), we have F(/) = {ideal a of #|HomΛ

(R/a, M) = 0 for every Λ-module M such that HomΛ (R/I, M) = 0}. In particular,
J G F ( / ) .

LEMMA 2. // α e F (/), then rad (α) 3 /.

PROOF. Let p be a prime ideal containing α. Then p eF(/); hence hgr(I9

jR/p) = 0, i.e. HomΛ(R/I, R/p)φO. Therefore we can choose an element a in
R — p such that β/gp; hence J ϋ P This shows that /grad(α).

The converse of Lemma 2 is not true in general. For example, let R =
klXl9 X2,..., XH>-~ll(Xi> Xh>~, Xΐ,—) and 7 = (x1 ? x2,..., *„,...) where k is a

field and Xί9 X2,-> are indeterminates (this example is given in [1]). It is easy

to see that hgr(I, R)>0, i.e. HomR(R/I, R) = 0. Let now a = AnnR(xj) (jφl).
Since HomR(R/a, R)φO9 we have α^F(/) but rad(α) = 7. From the property of
Gabriel topology (cf. [5], § 3), it is clear that the converse of Lemma 2 is true if
/ is finitely generated.

We shall now restate Prop. 1 § 1 in the following form.

PROPOSITION 2. Let F be a Gabriel topology on R. A correspondence φ
from Mod(#) to {non-negative integers and 00} is a homological g-function
hgr(F, )ifφ satisfies the following conditions:

( i ) ^(0) = oo,andifMς*N9 then φ(M) = φ(N).
(ii) φ(M)>0 if and only ifHomR(Rla, M) = 0/or all a in F.
(iii) Let 0->M->£->JV->0 be an exact sequence. If E is an injective mod-

ule with φ(E)>0, then φ(N) = φ(M)-l.
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Further, Prop. 3 § 1 takes the form:

PROPOSITION 3. Let F be a Gabriel topology on R, and let x be an element

of R such that xerad(α)/or all a in F. If M is an R-module such that x is M-

regular, then hgr(F, M)>0 and hgr(F, M/xM) = hgr(F, M ) - l .

We shall conclude this section by establishing the Auslander-Buchsbaum theorem

in terms of hgr(F, ).

LEMMA 3. ([6], Th. 8 Chap. 3) Let M be an R-module, and let A = (ai})

be a pxq matrix with entries in R. Then the equations

have no non-trivial solutions on M if and only if 0: M / = 0, where I is the ideal

generated by all the qxq minors of A.

The following lemma is a generalization of Prop. 3 § 1.

LEMMA 4. Let φ: F-+G be an R-module homomorphism where FΦO and

GΦO are finite free R-modules of rank q and p respectively. Further let F be

a Gabriel topology on R such that F(/)ϋF, where I is the ideal generated by

all the qxq minors of the matrix of φ. If M is an R-module such that φ®M:

F®M-*G®M is injective, then hgr(F, M)>0 and hgr(F, Cokerφ®M) =

hgr(F9 Λtf)-1.

PROOF. If hgr(F, M) = 0, then 0: Ma ΦO for some α in F. Since α e F ( / )

and / is finitely generated, P g α for some s; hence 0: MIφ§. On the other hand,

by Lemma 3, the injectivity of φ®M implies 0: M / = 0, which is a contradiction.

Therefore hgr(F, M)>0. Now we put n — hgr{F9 M) and consider the exact

sequence 0->F®M->G®M-»ΛΓ=Coker(φ®M)->0. By examining the long ex-

act sequence in R/L (where L is the subfunctor of lMθd(κ) associated to F (cf.

[5])), RL*(JV) = 0 for p<n-\. We also have an exact sequence O-^R^LC/V)

-•RWL(M)-^RIIL(M). It is sufficient to show that α is not injective. Note that

a = 0®R"L(M). Therefore a is not injective if and only if Horn* (K//, R"L(M))

# 0 . Since hgr(F, RML(M)) = 0, HomR(R/a, R w L(M))^0 for some α in F. By

our assumption, / s g α for some s; hence HomR(R/I, R n L(M))#0. This com-

pletes the proof.

THEOREM 1. Let C:0-+Fn-^>Fn-1->'---*F1-±UFo(n^l) be a complex

of finite free R-modules, and let F be a Gabriel topology on R such that FgF(J),

where I is the ideal generated by all the qxq minors of the matrix of φn and

g = rank(FM). If M is an R-module such that C®M is exact, then hgr(F, M)

= n + hgr(F, Coker(φ
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PROOF. By Lemma 4, we have hgr(F9 M)=l + hgr(F. Coker (φn®M)).

Now let m be an integer such that m^n — 1 and assume that hgr{F9 M) = n — m

+ hgr(F9 Coker(φ m + ι ®M)). Since the sequence 0-+Cokeτ(φm+ι®M)~+Fm-.1®

M->Coker(0m(g)M)->O is exact and hgr(F, Coker(φm +i®M))<hgr(F, M) =

hgr(F9 F ^ φ Λ ί ) , we have hgr(F, Coker(φ m + ι ®M)) = hgr(F9 Coker(0OT®M)

+ 1; hence, by induction, hgr(F9 M) = n + hgr(F9 Coker(φΛ®M)).

By definition, an ^-module M has the restricted projective dimension n, de-

noted by Pd%(M)9 if M possesses a finite free resolution and n is the length of the

shortest such resolution. The following is the Auslander-Buchsbaum theorem on

finite free resolutions in terms of homological grade.

COROLLARY. Let R be a quasi local ring and let MφO be an R-module

which admits a finite free resolution of finite length. For any ideal J such that

rad(J) is the maximal ideal of R9 we have hgr(J9 M) + Pd%(M) = hgr(J9 R).

PROOF. Let n = Pd%(M)9 and let 0-*Fn-^Fn.1-^ •Fo->M-»0 be a finite

free resolution of M. The case n = 0 is trivial. Assume now that n ^ l . Let /

be the ideal generated by all the q x q minors of the matrix of φ and q = rank(Fπ).

Since n = Pd%{M)9 we must have 1ΦR (see [2], Lemma 1 §2). Since / is finitely

generated, F(/) = {α|rad (α) Ώ/}. On the other hand, / g rad(α) for all α in F(J).

Therefore F ( / ) i F ( J ) . Now the assertion follows from Th. 1.

3. Polynomial grade

Let R b e a ring and Mod (R) the category of ^-modules. Let / be an ideal

of R and M an Λ-module. The classical grade of / on M is the length of the

longest maximal jR-sequence on M contained in /, and we denote it by cgr(I9 M).

The polynomial grade of / on M, denoted by GτR (/, M), is defined by

lim m-+ooCgrRίXl XrJJ[Xl9...9 Z m ] , M[Xl9...9 X J ) ,

where Xl9 Xl9...9 Xw,... are distinct indeterminates (cf. [6], Chap. 5). We as-

sume some properties of polynomial grade whose proofs are all given in [6],

Chap. 5:

(a) Gr Λ (/, M ) > 0 if and only if there exists a non-zero finitely generated

ideal / g / such that 0: MJ ( = HomΛ (R/J, M)) = 0.

(b) Let /?!,..., βs be an ^-sequence on M contained in /. Then Gr Λ (/, M)

(c) Let S be an Λ-algebra and M an 5-module. Then GτR (/, M) = G r s (IS,

M).

Moreover, by the definition of polynomial grade, we have:

(d) If S=R[Xl9...9 Xm~\ and M is an Λ-module, then Gr Λ (/, M) = Gr s (J
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®RS9 M®RS).

Further, M. Hochster showed the following:

(d') ([4], Cor. 1 to Prop. 2, §1) Let S be a faithfully flat β-algebra and

ManK-module. Then GrR(I, M) = G r s ( / ® Λ S , M®RS).

REMARK. AS for (d')} we can prove it directly using the above properties

(a), (b), (c) and (d).

Summarizing the properties of φ = GrR (/, ), we have

( i ) φ(0) =00, and if M^N, then φ(M) = φ(N).

(ii) φ(M)>0 if and only ifO: MJ = 0 for some non-zero finitely generated

ideal J e / .

(iii) If x is an M-regular element contained in J, then φ(M) = φ(MlxM)

+ 1.

(iv) Let S be a faithfully flat R-algebra, and let φ\s be the restriction of

φ on Mod (S). Then

(a) φ\s satisfies (i), (ii) and (iii) for S-modules and the ideal IS instead of

R-modules and I respectively.

(b) φ(M) = φ\s(M®RS)for every R-module M.

We shall show that the above properties characterize Gr Λ (/, ).

THEOREM 1. Let I be an ideal of R and let φ be a correspondence from

ModCR) to {non-negative integers and 00}. If φ satisfies the above conditions

(i), (ii), (iii) and (iv), then φ = GτR(I, ).

PROOF. First assume that n = Gr Λ (/, M) is finite. Then n = cgrR{Xu t X w ]

(/ [*„ . . . , Z J , MIXU...9 XJ) for some m. Let fl9...Jn be an M [ l | , . . . ,

XOT]-regular sequence in I[Xί9...9 X w ] . Since φ satisfies the conditions (iii)

and (iv), we have

(*) φ(M) = φ\RίXl_ Xml(MlXl9...9 XJ)

1,..., XJ) + n.

Note that φ\RίXί J f m ](N) = 0 if and only if Gr Λ [ j r i f . . .^ m ] (/[X l f . . . , X J , Λ0 = 0

for all Λ[X 1,...,XJ-module N. Since Gr Λ [ J Γ l χm ](/[Xi,.. , X J ,

) = 0 . Therefore φ(M) = n. Finally assume that GrΛ(/, M) = oo. Then

the equation (*) shows that φ(M)^.n for all n. Therefore φ(M)= 00. This

completes the proof.

In his paper [1], S. F. Barger has proved that Gr Λ (/, M) is the least integer

n such that Extβ (/?//, Moo)^0 if / is a finitely generated ideal, where Moo is the

direct sum of countably many copies of M. We shall here give another proof
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of this statement as a corollary to Th. 1.

COROLLARY. Suppose that I is a finitely generated ideal of R. Then
GτR(I,M) = hgr(I,Moo).

PROOF. For an ̂ -module M, we define φ(M) = hgr(I, Moo). By the above
theorem, it is sufficient to prove that φ satisfies the conditions (i), (ii), (iii) and
(iv). Obviously ψ satisfies the conditions (i) and (ii). As for (iii), see Prop. 3
§ 2. Therefore all that remains to be proved is that φ satisfies the condition (iv).
Let 5= R[X!,..., Xm]. Note that every injective 5-module is also an injective
^-module and HomR(R/I, M) = Homs(5//5, M) for all 5-module M. There-
fore ExtR(R/I9 Moo) = Ext£(S/JS, Moo) for all 5-module M; hence ψ\s satisfies
(i), (ii) and (iii). Finally for an ^-module M, φ\s(M®RS) = φ(MlXu..., Xm~]) =
φ{Mco) = φ(M). This completes the proof.
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