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1. Introduction

The decomposition problems of a graph arise in the filing theory and the

combinatorial theory of design of experiments. These problems have been

developed by Bermond and Schonheim [2], Bermond and Sotteau [3], Erdos,

Sauer and Schaer [5], Huang and Rosa [7] and so on. Yamamoto, Ikeda,
Shige-eda, Ushio and Hamada [16] have completely solved the problem of

claw-decomposability of a complete graph. The claw-decomposition of a com-

plete graph yields an optimal binary-valued balanced file organization scheme of

order two which is called a Hiroshima University balanced file organization scheme
of order two (HUBFS2) [17]. A binary-valued balanced file organization

scheme is said to be optimal if it has the least redundancy among all possible

binary-valued balanced file organization schemes having the same parameters,

provided the distribution of records is invariant under the permutation of at-

tributes. A necessary condition and some sufficient conditions for complete

graph to be decomposed into a union of subgraphs have also been given by

Yamamoto and Tazawa [19]. The subgraph is a generalized graph of a claw

which is called a hyperclaw. This hyperclaw decomposition provides us an

optimal binary-valued balanced file organization scheme of general order fc,

which is called an HUBFSk, in the above-mentioned sense [20].
Recently, the decomposition problems of other graphs than a complete graph

have been investigated by many authors. Myers [9] has investigated the decom-

position problems of the product of a complete graph with itself. Sumner [12]

has given some theorems on the 1-factorization. Bermond [1], Schonheim

[11] and Wilson [15] have investigated the decomposition problems of the
directed complete graphs. The decomposition problems of a complete multi-

partite graph have been developed by Cockayne and Hartnell [4], Tazawa, Ushio

and Yamamoto [13], Ushio, Tazawa and Yamamoto [14] and Yamamoto,
Ikeda, Shige-eda, Ushio and Hamada [16]. Yamamoto, Ikeda, Shige-eda,

Ushio and Hamada [16] have completely solved the problem of claw-decom-
posability of a complete bipartite graph/ Ushio, Tazawa and Yamamoto [14]

have given a necessary and sufficient condition for a complete m-partite graph

Km(n, n,..., n) with m sets of n points each to be decomposed into a union of
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line-disjoint subgraphs which are isomorphic to a claw. This result covers the
claw-decomposition theorem for a complete graph in [16]. Tazawa, Ushio and
Yamamoto [13] have also given a necessary and sufficient condition for the
decomposability of Km(n, «,...,«) into a union of line-disjoint subgraphs each

isomorphic to a partite-claw. A partite-claw-decomposition of a complete

m-partite graph yields an optimal multiple-valued balanced file organization
scheme of order two in that it has the least redundancy among all possible bal-
anced schemes with the same parameters for an equally likely distribution of
multiple-valued records. Such an optimal scheme is called a Hiroshima Univer-

sity balanced multiple-valued file organization scheme of order two (HUBMFS2)
[18].

In this paper, we shall, in particular, establish a necessary and sufficient con-
dition for a complete m-partite graph Km(n, n,..., n) to be decomposed into a
union of line-disjoint subgraphs, each being isomorphic to a generalized graph
of partite-claw.

2. Preliminaries

The reader is referred to [6] for any term not defined below. Consider a

graph without loops or multiple lines. Let m (>2) be an integer. A graph is

said to be m-partite if there exists a partition of its point set into m subsets Vi9

J/2» > Vm

 sucn that no line joins two points in the same subset. Vi9 F2,... and
Vm are called its independent sets. An m-partite graph is denoted by Gm(nx,

w2,..., nm), where n{ is the cardinality \V{\ of V{ (i = l, 2,..., m). An m-partite
graph is called complete, denoted by Km(ni9 n2,..., nm), if it contains every line
joining different independent subsets. A complete graph Km with m points may
be considered as a special case of complete m-partite graph where nί = n2 = =

n m =l. A complete bipartite graph K2(Ί9 c) with c + 1 points and c lines is called
a claw or star of degree c (>2). A point of degree c is called a root and each
point of degree one is called a leaf of the claw.

Consider a claw which is a subgraph of an m-partite graph Gm(nl9 n2,..., nm)
with m independent sets Vl9 V2,..., Vm. Let Vlγ9 Vi2,..., Vim_1 be the point sets
not containing the root point of the claw and let vίβ be the number of the leaves

in Viχ for α = l, 2,..., m —1. Then the claw is said to be evenly-partite in the

Gm(rti, n2,..., nj if Iv^-v^l^l holds for every α, /?=! 2,..., m-1. A partite-

claw (PC) in [13] is a special case of an evenly-partite-claw (EPC) in which every

point set contains at most one leaf. In Fig. 1, a 4-partite graph G4(4, 4, 3, 3)

with four independent sets Vl9 V2, V3, V4 of 4, 4, 3, 3 points each is given. Two

claws of degree five being subgraphs of the same graph G4(4, 4, 3, 3) are also given.

Fig. 1 (a) shows an EPC since v2 = v3 = 2 and v4 = l, while the claw in Fig. 1 (b)

is not evenly-partite since v2 = 3, v3 = 2 and v4 = 0.
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G4(4,4,3,3):

Fig. 1. Two claws of degree five

DEFINITION 2.1. Let G be a graph with c lines. A complete m-partite

graph Km(nί9 n2,..., nm) with m independent sets of nί9 fl2,..., nm points each is

said to have a G-decomposition of degree c if it is a union of line-disjoint

subgraphs each isomorphic to the graph G.

3. Adjacency matrix

In this section we shall observe that the G-decomposition problem can be
considered by using the property of adjacency matrix associated with a graph.

A directed graph obtained by assigning a direction to every line of a graph is

called an oriented graph. Let Km(nί9 n2,..., nm) be a labeled complete m-partite

graph with m independent sets Fί = {ϋίp|zp = n1-f n 2 H hn i ^ ί -{ p9 p = l, 2,..., nj

(ί = l, 2,..., m) and consider an oriented complete m-partite graph Km(nί9 n2,...,

nm). The number of such oriented Km(nί9 n2,..., nm)'s is, of course, 2μ where
m—1 m

μ= Σ Σ fyn. . To an oriented Km(nΐ9 n2,..., nw) there corresponds a 0-1
i=Ί j=i+l

m
adjacency matrix of order Σ nι

(3.1) Λ f - H Λ f y l l

composed of m2 submatrices M/7 = ||mfp>y€|| of size nf x n^ defined by

{ 1 if vip is adjacent to vjq

0 otherwise.
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Clearly,

(3.2) mipiiq = 0 and mίpjq + mjqtip = 1

hold for all p, q, i and j (=£(), i.e., Mif = 0 and MίJ + MJi = G/lί>^ (iVΛ where
Gf>M denotes a txu matrix whose elements are all unity.

m
Conversely, a 0-1 matrix of order Σ nt satisfying (3.2) produces an oriented

complete m-partite graph Km(nl9 n2,..., nm). Thus for a labeled complete
m-partite graph Km(nί9 w2,..., nm) there is one-to-one correspondence between

m m
oriented Km(nί9 n2,..., nm)'s and Σ nix Σ nt binary matrices satisfying (3.2).

ί=l i=l

THEOREM 3.1. A complete m-pαrtite graph Km(nlt n2,..., «m) has a claw-
decomposition of degree c if and only if there exists an oriented Km(nίy π2,...,

m
nm) whose adjacency matrix M=||Ml7|| of order Σ n{ satisfies the following

condition:
(a) Every row sum of M is an integral multiple of c, i.e.,

m nj

Σ Σ Mipjq = <V for p = 1, 2,..., w e; ι = 1, 2,..., m.
j = l 4=1

This theorem is proved by the same method as in Ushio, Tazawa and Yama-
moto [14] and we omit the proof. In the following theorem we consider an
evenly-partite-claw instead of a claw.

THEOREM 3.2. A complete m-partite graph Km(ni9 n2,..., nm) has an
EPC-decomposition of degree c if and only if there exists an oriented Km(nl9

m
n2,' >, O whose adjacency matrix M=||Mίy|| of order Σ nι satisfies Condition

(a) of Theorem 3.1 and the following condition:
(b) The submatrix MtJ satisfies the row sum constraints

nj

βipk < Σ mipjq ^ min (aiP(k +' 1), nj) for p = 1, 2,..., nf4=1

for every pair of ί and j (^i)> where k is the greatest integer not exceeding

c/(m-l).

PROOF. Suppose Km(ni9 n2,. ., nm) has an EPC-decomposition of degree c.
Consider an oriented Km(ni9 w2,..., nm) obtained by assigning a direction to every
line in such a manner that the point corresponding to the root of an EPC
is adjacent to the other end points corresponding to its leaves. Let M be the
adjacency matrix corresponding to the oriented Km(nί9 n2,..., nm). If aip denotes
the number of EPCs which have the same root point υip, then there are exactly
aίpc points adjacent from vip, because the degree of every EPC is c. Thus Con-
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dition (a) holds for the adjacency matrix M . Since an EPC with the root vip

has k or fc+1 leaves in Vj for every j (^i\ there are at least aipk points and at
most min(αίp(/c+l), n,-) points in Vj (j^ϊ) which are adjacent from vip. Thus

we have Condition (b) for M. Conversely, suppose that there exists an oriented
m

Km(nι> n2>-"> nm) whose adjacency matrix M= ||M|y|| of order Σ nι satisfies Con-

ditions (a) and (b). Then we shall show by a constructive method that Km(nί9

n2,.. , nm) has an EPC-decomposition of degree c. Construct an aipxm non-
negative integral matrix B=\\bhj\\, where bhj satisfies k<bhj<k+l for every

Λ = l, 2,..., aίp and 7 = !, 2,..., m (^O I*s row and column sum vectors are
ΠJ

denoted by (c, c,..., c) and (si9 s2,..., sw), respectively, where Sj=ΣmiPjq
q = l

Such a matrix can be constructed (cf. Corollary 1.3 and Theorem 1.1 in [16]),
since aipk<Sj<tmin(aip(k+l)9 n,-) by Condition (b). Next, partition the set of
Sj Γs standing on the pth row of Mtj in M into aίp subsets Sίjί 52j ,..., SatpJ of

m

bίj9 b2j, .., baipj Γs each. Then 5Λ= \J Shj is the set composed of c Γs for every

Λ = l, 2,..., αίp. Thus if we select c lines corresponding to c Γs of 5Λ out of
Km(nl9 n2,.. , nm), then a collection of those c lines corresponds to an EPC of
degree c. Hence Xm(nls n2,..., nm) has an EPC-decomposition of degree c.

Let aip (p = l, 2,..., n f; r=l, 2,..., m) be Σ wi nonnegative integers satisfying
i=l

m m m-1 m
Σ Σ αίD— ( Σ Σ nini)lc Consider the following:
ί=l p=l ί=l y=i+l

(1) An m x m nonnegative integral matrix X= ||xy|| satisfying

m Πi

(3.3) Σ *ij = ^ Σ «ip, *»• = 0, xί; + χyl

(2) m nonnegative integral matrices Yt= \\yίpj\\ (ί = 1, 2,..., m) of size n, x m
satisfying

(3.4) Σ yipj = <*ipc>

nι
C3 5ΐ V v = X-\J JJ Z^y\p,ί Λ i j f5

(3.6) aipk < yίpj < min (αίp(/c + 1), n, ) (i ^ ) 9

where /c is the greatest integer not exceeding c/(m — 1).

(3) ( ̂  ) 0-1 matrices M?y=||wfpjβ|| (l<i<;<m) of size n f x n y satisfy-

ing

(3.7) Σ m?,Jf = ΛF§y and Σ mjpj< = n£ - ^ftl.
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Then we prove

THEOREM 3.3. // the above-mentioned matrices X, Yt and Mfj can be

constructed, then Km(nl9 n2,...9 nm) has an EPC-decomposition of degree c.

m m
PROOF. Consider a Σ n ι x Σ nι matrix M=\\MU\\ composed of m2 sub-

ί=l ί=l

matrices Mtj = || wίpjj of size nt x n} defined by

ffj for i < j

0 for i = j

Then M is an adjacency matrix of an oriented Km(nί9 n2,..., nm) since M satisfies
nj

(3.2). Moreover, since we have ^mipjq = yiptj for 1,7 = !, 2,..., m by (3.7), it

follows from (3.4) and (3.6) that M satisfies Condition (a) of Theorem 3.1 and

Condition (b) of Theorem 3.2. Thus Km(nί9 n2,..., nm) has an EPC-decom-

position of degree c.

Note that Theorems 3.2 and 3.3 are respectively identical with Theorems 4.1

and 4.2 in Tazawa, Ushio and Yamamoto [13] for π1 = n2 = = nm and fc=0.

4. Claw-decomposition

With respect to G-decomposition of a complete m-partite graph Km(nl9

π2,..., nm) where G is a claw, we have the following theorem.

THEOREM 4.1. Let nΐ9 n2,..., nm (m>2) be m positive integers. If a com-

plete m-partite graph Km(nl9 n2,..., nm) has a claw-decomposition of degree c9

then the following two conditions hold:

m—ί m

(i) c is a factor of

m—ί m

Σ .Σ
(ii) c<;-£u=i

i — max Πj
i=I

m-l m

PROOF. Since the number of lines of Km(ni9 n2,..., nm) is Σ Σ Wi^y,
»=1 j = l+l

Condition (i) is obviously necessary. Let Vl9 F2,..., Vm be m independent sets of

^m(nι> W2> » wm)> where 1^1 = ̂  for i = l, 2,..., m. Let _yf be the number of

claws whose roots are points of V{ (i = l, 2,..., m). Then we have yi>nt for all

i except at most one, sayjΌ, since Km(nί9 n2,..., πm) has a claw-decomposition of
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degree c. Therefore, we have

m~ 1 m

Σ Σ H|Λ/ m m m
(4.1) .teiJ^i -- Σ ,, ;> Σ „, = Σ nt - «,,.

Hence Condition (ii) is necessary since Π

For the case n1 = n2 = = nOT=M, Ushio, Tazawa and Yamamoto [14] have
shown that a necessary and sufficient condition for Km(n, n,..., n) to have a claw-

decomposition of degree c is that (i) and (ii) in Theorem 4.1 hold.

THEOREM 4.2. Let n1? n2,..., nm (m>2) and c(;>2) fee positive integers
m— 1 m

satisfying Condition (i) of Theorem 4.1. Puί fe = (Σ Σ w fn/)/c. // fe is an
i=l ;«i+l

integral multiple of Σ ni> ίΛen Km(nί9 n2,..., nm) nas a claw-decomposition of

degree c.

The following lemma, which has been given by Moon [8], is useful for the
proof of Theorem 4.2.

LEMMA 4.3. There exists an adjacency matrix M of an oriented Km(nl9

n2,..., nm) which has a given row sum vector (αu,..., αlltl, α21,..., α2Λ2,..., αml,...,
m «i m-1 m

αwιlm) satisfying Σ Σ<*ίp= Σ Σ Wj and α f l^α ί 2> ^αίnί for all i if and
»=1 p—1 i=l J—i+l

only if the inequality

(4.2) Σ U α ip ̂  ^ΛΓ - Σ *|Λ| -j-^ + ̂ f *?
i=l p=l ί=l ^ ^ i=l

holds for every set of m Integers kt satisfying O^fe^n,-, where N = nl + n2-\ ----- h
n

PROOF OF THEOREM 4.2. Put aip=blN and αίp=αίpc for p = l, 2,..., n,;

i = l, 2,..., m. Then £ Σαίp =
 mΣ JΣ ntnj. Since f?c = mΣ _Σ

£ n?)/2, we have £ Σ αίp = (N2- £ nf)X/2N. Thus

m i i m m *i c
//I 3\ J^ΛT" V lr n . KΊ Λ =- V1 If^ V1 V n — **
\*+ Jj Λ.iy ^ ^-Γ'ί 9 9 r 1 * £-* £* uip — 9\τ 5

where S = NK(N-K) + KΣ nϊ-NΣ k^-k^ Let ί^nj-lk, (i = l, 2,..., m).
i=l i=l

Then, substituting into S the following three identities
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we have

(4.4) s = Σ *t Σ tjΣ /ι - 2 Σ *A Σ o + Σ *, Σ *j + Σ /,-{( Σ *,)2 - Σ
i=ι y=ι /=ι i=ι 7=1 i=ι y=ι /=ι y=ι y=ι

= Σ *,{(/ι + Σ o)(/, + Σ *ι) - 2/κ/, + Σ o) .+ W + Σ φ)
J

m m

Σ Φ +
J

Since ί f>0 (i = l, 2,..., m) and (Σ fcy)2- Σ kj>0, S>0 is obtained. There-

fore, the inequality (4.2) holds. It follows from Lemma 4.3 that there exists an
adjacency matrix M satisfying Condition (a) in Theorem 3.1. Hence Km(nί9
M2> > nm) nas a claw-decomposition of degree c.

5. Evenly-partite-claw decomposition theorem

In the following we shall restrict our attention to the case that n1 = n2 = '- =

nm*=n. Let c be a positive integer and put c = (w — l)fc + / (0</<m — 1). For
fe=0, Tazawa, Ushio and Yamamoto [13] have given the following theorem:

THEOREM 5.1. Let m, n and c be three positive integers satisfying m — l>

c>2. Then a complete m-partite graph Km(n, n,..., n) has an EPC-decom-

position of degree c if and only if

( i ) c is a factor of i *% jn2, and

(ii) c<m —1 if n is even and c<m—\ — ~—- if n is odd.
n*+1

As usual, let |_rj be the greatest integer not exceeding r and f r'] be the smallest

integer not less than r. For fc:>l, we have the following theorem which will be

proved in Section 6.

THEOREM 5.2. Let m, n and c be three positive integers satisfying c>m>3.

Then a complete m-partite graph Km(n, n,..., n) has an EPC-decomposition of

degree c if and only if the following three conditions hold:
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( i ) c is a factor of(r% Jn2.

(ϋ) c ^(m-l)/» + 1

(iϋ)

where

n*(m-\)(2c-mk)
-2c(c -k-l) - l -- 2c(c - k) -

When / = m — 1, Conditions (i)-(iii) in Theorem 5.2 are simplified as follows:

COROLLARY 5.3. Let c (>m) be an integral multiple of m-

Then a complete m-partite graph Km(n, n,..., n) has an EPC-decomposition of
degree c if and only if the following two conditions hold:

(1) 2c is a factor of (m - l)n2.

(2) c<(™^>».

PROOF. Note first that /c>l. It is enough to show that Conditions (1)
and (2) hold if and only if Conditions (i)-(iii) in Theorem 5.2 hold. If (i), (ii)
and (iii) hold, then (1) is obtained by the first inequality in (iii). (2) is also ob-
tained by (i), (ii) and m>3. Conversely, if (1) and (2) hold, then (i) and (ii)
hold obviously. It can be shown easily that the first inequality in (iii) is ob-
tained by (1) and that the second inequality of (iii) is obtained by (2).

6. Proof of Theorem 5.2

6.1. Necessity

Suppose that Km(n9 n,,.., n) has an EPC-decomposition of degree c. Then

c is obviously a factor of the number of lines of Km(n, n,..., n) ( namely (Ύ )nj

Let Vl9 V29.. , Vm be m independent sets, each cardinality being π, of Km(n, n,...,
n) and let y{ be the number of EPC's whose roots are points of Vi (i = 1, 2,..., m).
Then we have the following statements which are immediate consequences :

(1) Every line belongs to exactly one EPC.
(2) For each EPC, there are / independent sets such that each set contains

k + l leaves and there are ra-1-/ independent sets such that each set
contains fc leaves.
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(3) yt>n for all i except at most one, say jQ.

Consider now any m-1 sets Viί9 Vt29...9Vim_l where {il9 i2,..., im_ι}c:{l,
2,..., m} and consider an EPC whose root is a point in either of Vtl, Fί2,..., F/ m_ t.
Let X denote the set of all lines joining Fία and Viβ for all α, /?=!, 2,..., m — 1
(α^/?) and let JV denote the number of lines contained in AT and in the EPC.
Then from the above-mentioned statements (1) and (2) it follows that c — k— 1 <
N<c — k holds. Thus it is easy to see that the cardinality of X satisfies

(6.1) ( "Σ Jθ(c - *) * (M " 1)(OT - 2)"2 ^ (ΣVϋίc - * - i) .

When /α^70

 for α=1» 2> » w-1,

(6.2) (m

m-l
since Σ yίβ^(m-l)n by the statement (3). Substituting fc=(c-/)/(m-l) into

α=l

(6.2) we have c<> (m~~^n +l that is Condition (ii). We shall show that Con-

dition (iii) is necessary. Consider in (6.1) a set Vj and the remaining m — 1 sets
vι* Fi2> > .̂-i τhen sίnce C"Σ Λ. = ( J)π2- V OVi«; α=l, 2,..., m-l),

(6.1) becomes

(6.3)

Thus with respect to )>,•, we have

n2(m-l)(2c-mk-m) < n2(m - l)(2c - mk)
2c(c - k - 1) S ̂  2c(c - A:)

for 7 = 1, 2,..., w

since ofc+1. Consider two sets Vt and F7 (i^j). Since the number of lines
joining Vt and F7 is n2, it can easily be seen by the statements (1) and (2) that

(6.5) (yi + yj)(k + 1) > n2 ^ (yt + >>y)fc for ί ̂  j; i, = l, 2,..., m

holds. Thus we have

(6.6) yt > 2(k4- Π ^or α" l except at most one,
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by the first inequality of (6.5). Applying (6.6) and the first inequality of (6.4)

to Σ^ί» we have

ίfi 71 m(m - l)/ι2 , _ nf n2 Ί , n2(m - l)(2c - mk - m)
(bj) 2Ϊ ^ i m 1 JI2(£ + 1)Γ 2c(c - * - 1) '

The second inequality of (6.5) gives

(6.8) yi < -5j- for all i except at most one,

since fe>0. The application of (6.8) and the second inequality of (6.4) to
gives

2c(c - jfc)

Hence combining (6.7) and (6.9) we obtain Condition (iii).

Note that Condition (ii) of Theorem 5.1 is obtained by substituting fc=0
into the inequality (6.7).

6.2. Sufficiency

For a set of parameters m, n and c satisfying Condition (i), we write in the
form

(6.10)

Then we have two cases; α=0 and α^l to prove that the remaining conditions
(ii) and (iii) are sufficient.

1°) Case 0 = 0: In this case, we obtain w = c and n=2 by Condition (ii).
Define m2 square matrices MlV (i, ; = 1, 2,..., m) of order two by

12 for 1 < i < j <, m - 1

(6.11) Mίy = < G2>2 for 1 < i < m - 1 and j = m

k 0 for i = j,

My = G2>2 — Mβ for i > j9

where It denotes the identity matrix of order ί. Then it is easy to check that the
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0-1 matrix M=\\Mtj\\ of order mn composed of these submatrices Mtj satisfies
Condition (a) in Theorem 3.1 and Condition (b) in Theorem 3.2. Thus Km(n,
n,...9ri) has an EPC-decomposition of degree c=2.

2°) Casea>l: Write r=md+s (Q<ts<m). Let Jl and J2 denote the
sets {1, 2,..., s} and {s + 1, 5+2,..., m}9 respectively. Let

f a + l (p = l,2,...,</λ)
(6.12) *ίp =

I a (p = <fA + lf dλ + 2,...,n)

for ίe JA and λ=l, 2, where dλ=d+l or d according as A = l or 2. Then αίp's

satisfy Σ Σ ai*=\2 )n2/c ^ can ^e Proved that XM(n, «,..., n) has an

EPC-decomposition of degree c by the fact that the matrices X, Yt and Mfj in
Theorem 3.3 can be constructed for the particular set of aip in (6.12). The con-
structions of such matrices X9 Yt and Mfy are given in Sections 7, 8 and 9, in
order.

7. Construction of X

As stated in [13], suppose that four nonnegative integral matrices Xλμ (λ, μ
1, 2) satisfying

,

(7.1) Xλμ + Xlμ=
[ n2G5Λ,Jμ for Λ * μ,

(7.2) ίXλi Xλ2-\\m = c(na + dλγ}sλ,

can be constructed, where jf denotes a ί-vector whose components are all unity
and s,=s or m — s according as f = l or 2. Then the matrix

(7.3)
21

is a required matrix satisfying (3.3). These submatrices Xλμ can be constructed
by the same method as in [13]. So we have the following results which are given
for the respective cases that « is even and odd.

(1) Case n is even. Letsλc/m=sλx+yλ,Q<^yλ<sλfoτλ = l,2. Then

*ΛA = γ(GSA.,A - /,J for A -1,2,

(7.4)
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where B is a 0-1 matrix of size sί x s2 whose row sums are all y2 and whose column
sums are all y±.

(2) Case n is odd. Let

x-\2c-ml
X L 2m J

V2 = c(na

Let B be a 0-1 matrix of size sίxs2 whose row sum vector a and column sum
vector β are respectively

|

(.F2» .V2» > J>2) for odd $!

(y?2 - y» » y2 -y. J2 + y. t ̂ 2 + y) for even sl9 and

{
(^i j^u ί^i) for odd J2

(yi + y ^i + y ^i - y> » JΊ - y) for even ^2-

*2/2 J2/2

Then

(7.5)

where Γ^"1-"2) = ||ίy|| is a square matrix of order v defined by

(7.6) ίu =

1 if y-lsί, ί + 1 I + MI-1 mod t> for/= 1,2,..., I ̂

if j-1 =/, /+1 /+u2-1 mod υ for /=[£fj!:J+1. +2 v

0 otherwise.
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8. Construction of Yt

For the matrix X in the preceding section, partition the partial row sum

§ Xj / of X on the submatrix Xλλ into two parts
, A

na

for ie Jλ (A=l, 2). Further, partition the partial row sum Σ *y of X on Xλμ

into two parts

(Q+ 1) v v Ί V<2) _ I (n ~ ^Λ)^ y r

+ </λ yS/^ I' 5| ̂  " L*a+dλ&*"nα

for ieJA and λ, μ = l, 2(λ^μ). Let ^^Hw^H (ι = l, 2,..., m) be m non-
negative integral matrices of size 2 x m which satisfy

(8.3) Σ«>W = Sftβ9 (/e/ A )
jeJμ

for α, A, μ=l, 2 and which satisfy

(8.4) i># = xy (ί,; = l,2,...,m).
α=*l

Let Yι=\\yipj\\ (i = l, 2,..., m) be m nonnegative integral matrices of size n x m
satisfying (3.4) and (3.6), and furthermore, satisfying

(8.5) ΣΛ,j = wί}> and £ yipj = wίj>
p*l pβ<iA+l

for ί e Jλ (A= 1, 2) and 7 = 1, 2,..., m. Then we prove the following lemma.

LEMMA 8.1. // the above-mentioned matrix Yt can be constructed for
every i = l, 2,..., m, then the matrices Yί9 y2,..., Ym satisfy (3.4)-(3.6).

PROOF. Since Y{ satisfies (3.4) and (3.6), it remains only to be proved that
the matrix Yt satisfies (3.5). Using (8.4), we have

Σ ytpj = Σytpj + £ yipJ == *ί}> -*- wjf = xv .p«l p=l p=έίA+l

Thus y satisfies (3.5).

As the first step we shall construct in Subsection 8.1 m matrices Wl9 W2,...,
Wm and then as the second step construct in Subsection 8.2 m matrices Yl9 72,...,



Claw-Decomposition and Evenly-Partite-Claw-Decomposition 517

8.1. Construction of Wi

We write SUμ as

(8.6)

for ie/ A and A, μ=l, 2 (λ^μ), where
α= 1, 2. Let I7(α) be an m x m matrix

-l and 0<r(

ίf]μ<5μ for

(8.7)

composed of four submatrices 17̂  (A, μ=l, 2) defined by

(8.8)
„(«) S(1)T Ί
"ϊ+1.22jm-s

„(«) j(2)Γ
Ms+2,_22Jm-»

for each α=l, 2, where jj° denotes a 0-1 i-vector whose ith component is only
zero. Consider 0-1 matrices N*$ (α, A, μ= 1, 2) of size SA x sμ satisfying

(8.9)

(8.10)

(8.11)

(1)S _ /-(I) _(1) -(1) )T
IμJjn vl,l|i) Γ2,lμ> > "ί.lμ/

= (rίt'i.a.i, r<i>2.2|B.... rmV2μ)
Γ

+ ΛΓl2> =μ

for μ=l,2,

for A =1,2

- Uft for λ ̂  μ λ, μ = 1, 2, and

= =0 for i = l,2,...,m,

where (A)i} denotes the (i, j)th element of the matrix A and Xλμ is given in Section
7. Then we have the following lemma.

(8.12)

LEMMA 8.2. Suppose that the matrices of order m

MV -MVl W_\~N" N®
-ΛΓ2\> ΛΓ22>J
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can be constructed. Then the matrices Wl9 W2,...9 Wm satisfying (8.3) and
(8.4) can be constructed.

PROOF. By Σ Xij^S^lμ + Stflμ and by (8.6) and (8.7), a combination of

(8.9) and (8.10) gives*

AΓ(2)| — (r(2) r(2) .(2) \T
M Iμhμ ~ V I , lμ' Γ2,lμ» > rs, Iμ)

(8.13) for μ = l,2.
λ/-(2): _ Yr(2) r(2) -(2) \Ty v2μJsM — Vs+l,2μ» Γs+2,2μ» > rm,2μ)

Consider a 2 x m matrix ̂  = \\wty\\ defined by

(8.14) wJ3f> = (t/ίβ% + (JV(β% , α = 1, 2; 7 = 1, 2,..., m

for every i = l, 2,..., m. Then it is easy to see that \v^}>0 for all α, j and ;'.

We have Σ wjj> = Σ (ϋ(β))v+ Σ (̂ ^ = 5^ (ze Jλ) from (8.6), (8.9) and
jeJμ. jeJμ jeJμ

(8.13). We also have Σ w(tf= Σ (^(α% + Σ (N^a% = xu from (8.10). Thus

the matrices JΓlf W2,...*Wm satisfy (8.3) and (8*4).

From Lemma 8.2 the construction of Wt can reduce to the construction of

JV(α). The following two lemmas, which are proved easily, are useful for the con-
struction of JV(α).

LEMMA 8.3. Let D be a 0-1 matrix of size axb whose ath row sum is ΔΛ

for α = l, 2,..., α. Let pΛ (α = l, 2,..., a) be nonnegative integers satisfying

AΛ^pΛ<bfor every α. Then two 0-1 matrices P and Q of size axb each, which

satisfy -PJδ=(pι, p2> » Pa)τ and P — Q = D9 can be constructed.

LEMMA 8.4. Let D be a 0-1 square matrix of order a with zero diagonal
whose uth row sum is ΔΛfor α=l, 2,..., a. Let pΛ (α = l, 2,..., a) be nonnegative
integers satisfying AΛ<pΛ<a — l for every α. Then two 0-1 matrices P and Q
of size ax a, which have zero in the diagonal positions and which satisfy Pjβ

=CPι» P2> > Pa)τ and P — Q = D, can be constructed.

Now we proceed to the construction of N(α). Let ι'0, ί0H-l,..., i0

denote all element of Jλ. Let J'λ and J"λ be the sets <ι*0, ί0 + 1,..., *Ό+ y Γ"l|

and jio+l ̂  I, i0 + | ̂  1 + 1,..., ί0 + sλ~l|, respectively. Then note that from

the construction of X given in Section 7 Styμ can also be written as follows:

__ c ,.(1) ,.(1) e(2) — c ,y(2) i r(2)
— Sμuλμ ~ rλμ* ^i.λμ ~ Γ
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for ί 6 J'λ and

for ieJJ, where 0<r&}, ri(

λ

α)<sλ-l and 0<r$, ri(

μ

α)<sμ for A, μ, α = l, 2

(A 96/1).- Let fl^X^-E/^-l/^. We consider the construction of

Case 1. n is even. We have ι*i5? = ιιi(

μ

β) and r{$ = r'£*> for every A, μ
and α, since S<f]μ = S<?>λμ (i e Ji; i'e JJ) by (7.4). First we construct N&>.

We have rftWβ> and ιιi\> + ιιβ>-^ since 5 λ̂ + 5^= Σ Xy=(sA-l)
^ jeJA

y(ieJλ) by (7.4). Thus DAλ = 0. Put Nft = T^'rW for A, α = l, 2 where

Γ(«ι,«2> is defined in (7.6). Then it is easy to check that (8.9), (8.10) and (8.11)
hold. We next construct N^ (A^μ) and consider r^ — r^ denoted by Δλμ.

Since S\}\2 + S(^\2=^xij = (m-s)~ + x]^y2(i€Jl\Al2 takes either -y2
jeJ2 \2 / ^

or m — s — y2. When J12= — ^2* we have D12 = B since M(
I^

)-|-II(
I^

) = -^- + X. We

also have y2<r{$<m — s, where y2 is the row sum of B. Therefore, it is
shown easily by Lemma 8.3 that we can construct 0-1 matrices N[$ and N($
which satisfy MVL-.^ίVj. and N^-N^^fl. Namely, those matrices
satisfy (8.9) and (8.10). On the other hand, when d1 2 = m — s — y29 we have

D12 = JB-G$ίm_s since u($ + u[$ = ~ + x + l. We also have m-s-

<m — s, where m — s—y2 is the row sum of GS j W_ s — JB. Therefore, it is verified
by Lemma 8.3 that we can construct 0-1 matrices Nty and N& satisfying

M12)Jm-s = '*(ι12)is and Mi)-M? = G .̂,-B, which satisfy (8.9) and (8.10).

Since 5^ + 5}^= Σ, Xιj = s(£-x}-yι for ieJ2 by (7.4), A2i takes either

y\ OΓ >Ί""S When Δ21=yί9 M2\) + w22ι)=^-""x holds. Thus we have D21 =

-JBΓ. We also have j>i<4V<s, where ^t is the row sum of Bτ. Therefore,
it follows from Lemma 8.3 that two 0-1 matrices N2\

} and N^ satisfying (8.9)
and (8.10) can be constructed. On the other hand, when Λ2l—yl— s, w^-h

i i J V s s - * - ! holds. Thus we have D21= -Bτ + Gm-StS. We also have s-y^

<s9 where s — y^ is the row sum of Gm«Sf$— Bτ. Therefore, it follows from
Lemma 8.3 that we can construct 0-1 matrices N(

2

lι and N^ satisfying (8.13)
and (8.10). Note that a combination of (8.13) and (8.10) gives (8.9).

Case 2. n is odd. We shall treat the constructions of N^} and
separately. First we construct N(

λ*J and there are two subcases with
respect to sλ.
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Case 2.1. sλ is odd. We have u$ = u'£f) and r$ = r'£f\ since
'iί i'eJJ) by (7.5). Let ^rii'-rjtf. Then since

+^ (ieJJ by (7.5), J,,. takes either 1*^ or
yeJA Z Z Z

--̂ pL When Aλλ = ̂ ^9 we have βA A=r((«A-ι>/2.(»A-ι>/2> since M^>H-M^)

= 7Z Γ" . We also have S*Γ <*r$<sλ — l, where SλΓ is the row sum of
z z z

DλA. Therefore, it is verified from Lemma 8.4 that we can construct two 0-1
matrices N$ and N$ satisfying (8.10), (8.11) and N$iaji = r^ which

satisfy (8.9). On the other hand, when JAA=-^"— , we have DAΛ =

_T(^-ι)/2,(sΛ-ι)/2)r since u<£ + u<2)=!?+lm We also have ̂ ^^rll^s^-l,
z z

„ _ 1

where - — is the row sum of — Du. Therefore, it is shown from Lemma

8.4 that we can construct two 0-1 matrices N$ and N$ which satis

^VJsA.^-Mi^-^λλ and ί8-11)- Namely, those matrices satisfy (8.9),
(8.10) and (8.11).

Case 2.2. sλ is even. Let Aλλ = r$-r$. Then since 5̂ 1]λ + 5(

ίf]A =

i) by (7.5), Δλλ takes either ^(then ιιϋ> +

Let ̂ λ = r>->^>. Then

since S λ̂ + Sif>Λ= Σ^=(^~l) + ~l(/eJΰ by (7.5), A'λλ takes
je/A 2 2

either ^A(then w^> + u^> = ̂ i) or -^(then ^>4-^/> = . We

have Sί^SrSί^ίieJi, ί'ej; and α = l, 2) by (8.1), since Σ *i/> Σ **'/•
7'eJA yeJA

Therefore, it follows that u\y>u'tf\ Thus we have the following three possi-
bilities :

^A = r ( - υ if wla^ω

(8.15) ^^Γ T--.Γ^-o) if (^λA,j;λ)

4- 1
'

With respect to the respective possibilities in (8.15), it follows from Lemma 8.4
and the method in Case 2.1 that we can construct two 0-1 matrices N$ and
JΫ&> satisfying (8.9), (8.10) and (8.11).

We finally construct N$ (λ^μ) and we consider the following four sub-
cases with respect to s and m — 5.

Case 2.3. s is odd. This case gives uty = u'& and r{*2

} = ri(

2

α), since S$2 =
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Sfc'n (ίe J'ιί ί'e Jί) by (7.5). Since .
7*6/2

+ y2

 for ίe/i, rφ-rφ takes either -y2 or m-s->*2. Along the line similar
to Case 1, N{$ and N&> satisfying (8.9) and (8.10) can be constructed for the

respective cases of A12=—y2 and J12 = m — s — y2 where Aί2 = r[1

2

) — r[2

2

).

Case 2.4. s is even. Let J12 = r(

1

1

2

)~r(

1

2

2>. Then since Sft2 + Sί2ί2= Σ
J6/2

by (7.5), J12 takes either -

(then ttft> + Mβ> = 3?±I+jc) or m-s~>>2 + -I- (then u^-f W

(

1i> = ̂ ±l+x-f l).

Let 4ia-r#>-r#>. Then since S

1 (ieJ'O, A'12 takes either -^--lAhen fi^D+fi^^Λί+I + Λ or

We have 5 1 2 > S > 2 for
2

J'[ and α=l, 2, since Σ *i /^ Σ xi; Therefore, it follows that uί(

2

α);>Mi2 •
jeJi jeJi

Thus we have the following three possibilities:

D12 = B if Gdιa, JJ2) = (-.?, +-i-, -y2--£-

(8.16) ,0,2 = B

if v £ i j 2 , ^12; =ι — yi -r -^-9

if (Aί2, A'12) = ίm — s — y2 + -y, w — s — j>2 —

where OttU is the ί x w zero matrix. With respect to the respective possibilities
in (8.16), it follows from Lemma 8.3 and the method in Case 1 that we can con-

struct two 0-1 matrices Nty and Nft satisfying (8.9) and (8.10).

Case 2.5. m — s is odd. This case gives M^"1

)==M2(ίt) and r^^r^. Since

S{f

1]1 + S}f]1= Σ xij=s(n ^ —χ) — yί for ieJ2, r(

2^ — r$ takes either yl or

j^-s. It is verified easily that N(

2\
} and N{

2

2J satisfying (8.9) and (8.10) can be

constructed for the respective cases of A21=3^ and A2i = yί — s where J21 =

Case 2.6. m-sis even. Since u'Jf*^u$ is obtained by (7.5), it is seen
easily that we have the following three possibilities:

£>2i = - Br if (J,lt A',Λ):
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(8.17) D2ί= - if

D21

if (J21, ̂ j

where ^2i:=rii)"~ri:i) and A-u — r'^ — rffi. ^n tne respective possibilities in
(8.17), it follows from Lemma 8.3 and the method in Case 1 that we can con-

struct two 0-1 matrices Nfl and N$ satisfying (8.9) and (8.10).

8.2. Construction of Yt

We shall construct m nonnegative matrices satisfying (3.4), (3.6) and (8.5)

by using m matrices W^Hw^H (i = l, 2,..., m) of size 2x m which are given in

Subsection 8.1. We write w ) as

(8.18)

for ieJA, 7 = 1, 2,..., m and A = l , 2. Let

(8.19) and αc -

for ί = l, 2,..., m. Then we can construct two 0-1 matrices Zj !) of size d A x m

and Zξ2) of size (n-dλ)xm for every i e Jλ and λ = l, 2 [10], [16] which satisfy

(8.20)
jr(2)l _ /*(2)ί 7'(2)Γ| _ (Λ2) Λ2)
^i Λm ~~ J i Jn-dA' ^ * Jn-dA ~" ^eil » eί2 »•••»

Define the matrices

y*1)* = jd (/Jpj/J^j j/ίi?) and
(8.21)

for r e JΛ. Further, define a nonnegative integral matrix Yt = \\yίpj\\ of size n x m

by

for / = 1, 2,..., m.
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Then we have (y^'+Z', '>)]„=( E/iJ)+/J1))j*l=(e + l)cJ*l and (Y\2)'+Z\»)jn

= (ΣιfW+f(t2))ϊa-<ιί = ac}n-^ by (8.19), (8.20) and (8.21). Thus Yt satisfies

(3.4) for every /. It can also be shown easily that (8.5) holds by applying (8.18),

(8.19) and (8.20) to Yfo-Y^k + YY^i.-^+WKk+Zp*!.-^ We
shall prove that Yt satisfies the remaining condition (3.6). It can be shown
easily that a(k+l)<^n. From this fact and the structure of Yt it is sufficient to
show that

(8.22) (a + ί)k </$}><: min ((a + l)(fc + 1), n) - δ\γ (j * i),

(8.23) ak £ f\γ £ a(k + 1) - δ\f (j * i)

for ie Jλ where δffi=*l or 0 according as e\f is a positive integer or zero.

Case 1. i,jeJλ (i^j). In this case sλ>2 and dλ>l. By the structure of
Wt in Subsection 8.1 and by (8.6) and (8.18) we have

( 8 24) /< ι> - ̂  - *W > "fl* " ̂  - g^ - Γ^ + (^ "" 1)g»}

(8.24) J t j ^ > j- rfjt(jA-i) ^λ(.λ - 1) *

Substituting S(

ίt

1]λ in (8.1) into (8.24) we obtain

(8.25) /ί)> - (α + 1)* > m *, ~ (na + u - R.

where Λ = {(rl>

1]λ+l)-h(sΛ-l)βl})}/dA(sλ-l). Λ^l is obvious. Thus from
Lemma 8.5 given later it follows that f\γ>(a + l)k.

Put μ0 = min((α-f-l)(/c+l), n). By considering the structure of Wi we have

(826) f(.) - ' ~ } 1} ~ }
(8.26) /„ dί(Sί _ 1} f

where £^^ = 1 or 0 according as r̂ 1^ is a positive integer or zero and Rι = {r^lλ

+ (5jl-l)(βJj)-e51))}/dA(sA-l). Substituting Sj^ in (8.1) into (8.26) we ob-
tain

(8.27) μo-*W-fW*μo + Rι-*W-R2,

where Λ2 = {(α + l) Σ xir}l(na + dλ)(sλ-l). Obviously Λ1-5{})>-l.
7"e/A

Therefore, (8.27) becomes

(8.28)

Suppos

structure of X in Section 7 to μ0—JR2. Then since α:>l and dλ>!9 we have

Suppose μ0 = w. Apply the inequality Σ ^f/'<(sι —1)—?— obtained by the
J'eJji 2
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(8.29) ,0-R2 = n-R2 = n - ±

Thus it follows from (8.28) and (8.29) that /Jj> < « - δ\ ]>. If μ0 = (α + 1) (fe + 1),
then by Lemma 8.8 given later we have

(8.30) μ0 - R2 = (a + ί)(k + 1) - R2

_ (a
— na

Thus we find /JJ^fc + lXfc + l)--^ from (8.28) and (8.30). Hence (8.22)
holds for i, j e Jλ (i^j). By Lemmas 8.5, 8.8 given later, we can similarly show
(8.23).

Case 2. i e JA and j eJμ(λ^μ). In this case s ̂  1. Along the method simi-
lar to Case 1, we obtain

(8.31) /ί}> - (α -f i)fc £ ^V<f*{jΊE ?j *υ" ~ ( Λ α *

(8.32) min((α + l)(fc + 1), π) - ίj}> -/#>

> min((α 4- l)(k 4- 1), n) —-(—
g — Σ ^ιy 4- Λ2»

where jRx and Λ2 are the numbers satisfying R^ — l and R2>-1. Applying
Lemmas 8.6 and 8.7 given later to (8.31) we have /!}};>(α4-l)fc. Let μ0 =
min((α4-l)(fc4-l), n). Suppose μQ = n. We have the inequality Σ xu'^

5^V 9 4- x 4-1) by the structure of X in Section 7. Therefore, by Λ ̂  1, dA > 1
2 1

and —•= x — 1 > 0, we obtain

/o ̂  .. Λ_4- 1 xp ^ ^ - a 4- 1 (n2 4- 1
(δ.jJJ μ0 —7TΓ-

Thus it follows from (8.32) that /J^^n-ί^. If μ0=(a + ί)(k+ί), then by
Lemma 8.9 given later we have
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= (α
na + dλ Σ ^ o.

μ(k + 1) j^Jμ

 u )

Therefore, it follows from (8.32) that fW£(a + ϊ)(k+ϊ) -δff. Hence (8.22)
holds for / e Jλ and j e Jμ (λ Φ μ). By Lemmas 8.6, 8.7 and 8.9 given later, we can
similarly show (8.23).

Some lemmas used above are given in the following.

Put n2 = 2fcα + j3(0<^<2fc).

LEMMA 8.5. Ifk>l and sλ^29 then the inequality

(8.34) - XtJ ~ na * dλ f°r

holds for the matrix X given in Section 7.

PROOF. It follows from (7.4) and (7.5) that ( Σ Xij)l(sλ-l)k>ln2l2k]=oί
je/A

for every ie Jλ. Therefore, it is enough to prove that α>nα + dλ holds. Since

(,35, .-(^

it follows that (8.34) holds for λ = 2. Consider λ = 1 . We have

f 8 36Ϊ / > ("* - 2)£ff(8.36) / > / 1 2_ J S

by the inequality ( ™ Jn2/c < (m — 1) \ ^τ + ̂ 2 which is obtained by Condition

(iii) in Theorem 5.2. By (8.36) and s^2, m(n2-β)l-m(m-l)kβ + 2cks>
m(m — 2)kβ — m(m — I)fcj8 + 4c/c = 4c/c — mkβ is obtained. Thus we have

2mck 2mck

Therefore, noting β < 2k we have α - (na + d + 1) > - 1 .

LEMMA 8.6. // ί?0ί/ι of k and s are positive integers, then the inequality

(8'37)

holds for the matrix X given in Section 7.
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PROOF. We have from (7.4) and (7.5)

m /n2 c\ ]
Σ Xiί >(m — s)(-~ -\ ) — ~- if n is odd and s is even,

7=s+ι \2 m/ 2

= (m - s)(~ + —j otherwise

for i = l, 2,...,s. It follows from s>l that ^--f— >(nα f d + l)k. Put JV =

(m— s)f^- + —) —4- Then we have N>(m — s)(na + d + l)k for odd n and

even s, since N is an integer in (7.5). Hence (8.37) holds.

LEMMA 8.7. 7/fc, s and a are all positive integers, then

(8.38) -j£ Σ Xij >na+ d for i = s + 1, s + 2,..., m

holds for the matrix X given in Section 7.

PROOF. We have from (7.4) and (7.5)

s / n2 c \ ι

Σ Xij^ ^(-y ~ — ) ~ -y if /i is odd and m — s is even,

otherwise

for i = s+1, s-f 2,..., m. We shall first prove that

(8.39) y - £ > (na + </)&

holds, and there are three cases to consider.
Λ2

Case 1. /? = 0 and />&. This case gives [tλj^"^—1 Using Condition

(iii) in Theorem 5.2 we have (^Mn2/c<m|_tλJ <m(^r- l\ Thus since /? = 0

and s> 1, we obtain na + d<^lr-2. Therefore, (8.39) holds.

. jS=0 and /</c. From s>l and (8.35) it follows that
2 2

α-1. From this fact and by k>l we have ~—--(nα + d)fc>:^-~— -(α-l)/c
2 m 2 m

m
Case 3. β^O. As seen in (8.35) it is sufficient to examine the following

three subcases with respect to na + d.
Case 3.1. nα + d^α~2. (8.39) holds obviously, since
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Case 3.2. nα + d = α-l. If j5^2, then (8.39) is obvious. Suppose /?=!.

Then using nα + d=α-l we have the equation ί̂ zi)5? - jL + 1 = ίizl.
2C 771 Λ/C

Solving for / we obtain / = (w - l)kr/(n2 - r), where r = 1 -I- 2k(l - — \ We also

obtain r < 1 -f 2k <, n since n is odd and since a > 1 . Therefore,

(8.40) / = (m - Dk-ffL- <L (m - I)ίL^l _^_ = J5-L .

Thus it follows from (8.40) that (8.39) holds.

Case 3.3. na + d=a. We have Jg—O*"*)*2- »a")c (w

m 2 2fc 2

by nα + d = α = (n2 - J?)/2fc. By using (8.36),

sc __ (m- l)β _ (n2 - β)l ^ (m - l)β _ (m - 2)kβ _ β
m 2 2k ^ 2 2k 2'

Thus β >—. Using this inequality for β and noting s ̂  1 we have (8.39). Put
m

N=s(?£-— V4-- Then from (8.39) it can be seen easily that N>s(na + d)k
\2 m/ 2

for odd n and even m — s, since N is an integer in (7.5). Hence (8.38) holds.

Put n2 = 2(fe -f l)α' - β' (0 £ β' < 2(fe + 1)).

LEMMA 8.8. // SA ̂  2, f hen

(8-41)

holds for the matrix X given in Section 7.

PROOF. It follows from (7.4) and (7.5) that ( Σ *y)/(*Λ - 1) (& + 1) 2£
J6/A

fn2/2(fc + 1)] =α' for every ί e JA. Therefore, it is enough to prove that

(8.42) na + dλ ^ α'

holds. It can be shown easily that (8.42) holds for λ = 1 . Consider the case λ = 2.
We have by Condition (iii) in Theorem 5.2

(8.43) c £ (*

Using (8.43) and £'<2(fc+l), we have
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n2 + β9 (m- l)/ι2 n2 + β' _ s
2(k + 1) (tfi - 1)«2 + £' 2(£ +1) m

(m - 1)«2 + β' 2(k +1) m

(m- 1)«2 + /?' in.'

Since β'<n2 and since s2^:2, i.e., s<:m —2,

(8.45) «α + d - α; > - n2 + β'
(m — 1)#2 + β' m m m

Hence (8.42) holds.

LEMMA 8.9. // s > 1, f/ien

1(8-46) ..Σ.

1

for i = 1, 2,..., j, 0/zέ/

/or i = ^'+ 1, s + 2,...,m

hold for the matrix X in Section 7.

PROOF. We have from (7.4) and (7.5)

/ γΛ * \

- y)( T + — ) +
\ 2 7W/

and s is even,

otherwise

for i = 1, 2,..., s. We shall first prove that

(8.48) (na + d -

holds. It is enough to examine two cases; na + d>a' and
nα + d>α'-lby(8.44).

1 . na + d>a'. (8.48) holds, since

α' — 1, because

(na + d + 1)(* + 1) - 4- > (a' + 1)(* + 1) - +

Case 2. na + d=a'-l. In this case we have
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-. Therefore, by (8.43),

(m-s)c _(m-l)n2 , (n1 + β')c
m 2 2(k+l)

(m - l)n2 (m - 1)«2 + β' _β'
2 2 2 '

Thus ff'^20"-J)c^g£. using this inequality for β' we have (8.48). Let
m m

7V=(m-5)(^Γ + —) + 4^. Then from (8.48) it can be seen easily that (m-s)
\ L mj 2

(k +1) (na 4- d +1) > N holds for odd n and even 5, since N is an integer. Hence
(8.46) holds. It can also be shown easily that (8.47) holds.

9. Construction of Mfj

As seen in Subsection 8.2, we know the following fact from the structure of
γi-\\yipj\\' yipΛj takes either/^ or/$5} 4-1 and n-yjqgιti takes either n-/^}

or n—fffl — 1 for every pair of ie Jλ and j e Jμ (i^j\ where pΛ and qΛ (α=l, 2)
are integers satisfying l<pι<dλ, dλ + l<p2<n, l<q±<dμ and dμ+l<q2<n.
It can be shown easily from (8.22), (8.23) and [10], [16] that if one of dλ9 n-dλ,
dμ and n-dμ is zero, then a 0-1 matrix Mft of order n satisfying (3.7) can be con-
structed for every pair of i and j satisfying ieJλ,jeJμ and i<j. Consider
(A, μ) = (l, 1), (2, 2) and (1, 2) and suppose that all of dλ, n-dλ, dμ and n-dμ

are positive integers. Then we have the following Statements A, B, C and D.

STATEMENT A.

•/
Λo Ws /or i e Jλ and j e Jμ (i Φ j).

STATEMENT B.

2 // e > = 0

I 2/|f + 1 otherwise

holds for i e Jλ and j e Jμ (i Φ j).

STATEMENT C.

2 if
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holds for each case 0/(a) even n and i,jeJλ (iτtj)9 (b) odd n, dλ^2 and i,je
jλ (i ̂  j) and (c) i 6 Jv and jeJ2.

STATEMENT D.

if

otherwise

holds for i e Jλ and j e Jμ (i ̂  j).

It can be verified by fc^l and Lemmas 8.5, 8.6 that Statement A holds. It
follows from a > 1 that Statement B holds. Statement D can be shown by the
structure of X given in Section 7 and by considering a > 1. Furthermore, by the
structure of N$ given in Subsection 8.1, it can be shown that Statement C holds.

By applying the above Statements A, B, C and D to the existence theorem
[10], [16] of 0-1 matrix, though some calculations are needed, we can show that
a 0-1 matrix Mfy of order n satisfying (3.7) can be constructed for every pair of i
and j satisfying i e Jλ, j e Jμ and i <j.
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